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Abstract
Periodic structures found a big interest in engineering applications

because they introduce frequency band effects, due to the impedance mis-
match generated by periodic discontinuities in the geometry, material or
boundary conditions, that can improve the vibroacoustic performances.
However, the presence of defects or irregularity in the structure, leads to
a partial lost of regular periodicity (called quasi-periodic structure) that
can have a noticeable impact on the vibrational and/or acoustic behaviour
of the elastic structure. The irregularity can be tailored to have impact on
dynamical behaviour. In the present paper numerical studies on the vibra-
tional analysis of one-dimensional finite, periodic and quasi-periodic struc-
tures are presented. The contents deal with the finite element models of
beams focused on the spectral analysis and the damped forced responses.
The quasi-periodicity is defined by invoking the Fibonacci sequence for
building the assigned variations (geometry and material) along the span
of finite element model. Similarly, the same span is used as a super unit
cell with Floquet-Bloch conditions waves for analysing the infinite peri-
odic systems. Considering both longitudinal and flexural elastic waves, the
frequency ranges corresponding to band gaps are investigated. The wave
characteristics in quasi-periodic beams, present some elements of novelty
and could be considered for designing structural filters and controlling the
properties of elastic waves.

1 Introduction
The analysis of the propagation of waves in structures is a fundamental task
in many engineering applications. The knowledge of dispersion relations, pro-
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viding information on the type and nature of propagating waves is of interest
for the prediction of forced response, acoustic radiation, non-destructive testing
and transmission of structure-borne sound. All these themes are nowadays the
subject of many studies in order to improve the vibro-acoustic comfort of pas-
senger carries, bridges, pipelines, and space vehicles.

Wave propagation in simple structures can be investigated through ana-
lytical models, exact or approximated. However, this kind of analysis usually
involves assumptions and approximations concerning the stress, strain and dis-
placement states of the structure, and always more refined numerical models
are required as the frequency increases since the wavelength may become com-
parable with the cross-section dimensions. For example, if the propagation
of bending waves in a beam is investigated, Euler-Bernoulli, Rayleigh, Timo-
shenko or 3-dimensional elasticity-based theories might be used, depending on
the frequency range of interest [1, 2]. For complex structures, such as layered
(composite and sandwich) beam [3, 4, 5] and plate [6, 7, 8, 9, 10, 11, 12], or
cylinders [13, 14, 15], analytical formulations become quite difficult: beyond the
required assumptions and approximations in the models, the resulting disper-
sion relations are usually transcendental and/or of high order, therefore their
resolution is not straightforward or requires symbolic manipulation [15, 16]. For
this reason, for the analysis of complex structural components, semi-analytical
or numerical methods have been developed for the computation of dispersion
curves. However, if the structure under investigation presents characteristics
which are periodically repeated in one or more directions, the analysis proce-
dure can take advantage of this property by exploiting the periodicity [17]. A
generic structure obtained as an assembly of identical elements, called cells, can
be considered as periodic. Several engineering structures can be assumed as
periodic, starting from simple beams and plates, moving to stiffened plates or
car tyres, up to aircraft fuselages, railways, tracks, etc. In this case the study of
the wave propagation through the waveguide can be reduced to the analysis of
a single cell by applying the periodicity conditions together with continuity of
displacements and equilibrium of forces at the interfaces between two consecu-
tive cells (Floquet-Bloch theorem) [18, 19, 20].

Periodic structures found a big interest in engineering applications because
they introduce frequency band effects that can improve the vibroacoustic per-
formances. In fact, in periodic structures, the impedance mismatch generated
by periodic discontinuities in the geometry, acting as a waveguide, and/or in
the material, can cause destructive wave interference phenomena over specific
frequency bands called “stop band“ or “band gaps“ [21]. However, the presence
of imperfections (i.e. defects or irregularity) in the structure, due to the man-
ufacturing process or not exact reconstructions of the boundary conditions for
example, lead to the loss of the periodicity of the structure: this can have a
noticeable impact on the vibrational and/or acoustic behaviour of the elastic
structure.

In this case it is more correct to speak about quasi-periodicity which is the
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property of a structure that displays irregular periodicity. A quasi-periodic
structure can be idealised as repeated substructures which have asymmetric
translations in any direction of the Euclidian space. It can be considered as
an intermediate case between periodic and random elastic medium [22]. Quasi-
periodic behaviour is thus a pattern of recurrence with a component of unpre-
dictability that does not lend itself to a precise measurement. An example of a
natural quasi-periodic structure is a quasicrystal. It was discovered in 1981 by
Dan Shechtman [23, 24] and it is a structural form that are both ordered and
non-periodic [16]. These structures are characterized by several properties, such
as low coefficient of friction and low heat conductivity, just to cite some of them,
that made them very attractive and interesting for technological applications,
mainly in the fields of crystallography and photonics [23, 24, 25, 26, 27, 28, 29].
Quasi-crystals were used as non-stick coating on frying pans and cooking uten-
sils [30] and to develop heat insulation, led and new materials able to convert
heat to electricity [31, 32, 33].

In recent years there is a growing interest in the design possibilities offered
by quasi-periodic structures also in the field of structural mechanics. This leads
to some modelling issues which will be well analysed due to the impossibility
of periodic simplifications, but an adequate design of the quasi-periodicity may
offer new vibroacoustic properties to the structure [34, 38, 39, 40], they also
provide experimental verification of the transmission properties of one dimen-
sional phononic crystals based on the quasi-periodic Fibonacci and Thue-Morse
number sequence. Hou et al. [34] investigated the transmission properties and
the frequency spectra of Fibonacci binary composite material with different
thickness ratio of two layers. Whereas in this paper Fibonacci series is ded-
icated for 1D structures i.e. beams and the vibration properties and band
structure of their unit cells are investigated. In term of analysis this paper is
mainly focused on Frequency Response Functions (FRF) and spectral analysis
to study the dynamic behaviour of the structures[35, 36, 37]. Aynaou et al.
[38] performed a theoretical investigation on acoustic wave propagation of one-
dimensional phononic band gap structures made of slender tube loops pasted
together with slender tubes of finite length according to a Fibonacci sequence.
In this analysis Aynaou et al, found that besides the existence of extended
and forbidden modes, some narrow frequency bands appear in the transmission
spectra inside the gaps as defect modes. Similarly, in the results of the current
investigation, there are narrow frequency peaks that appears in the frequency
bands of the geometrical impedance mismatch case, especially on longitudinal
frequency response. Aynaou et al consists a treatment procedure that spatial
localisation of the modes lying in the middle of the bands and at their edges
is examined by means of local density of states. In the other hand, Chen and
Wang [39] studied band gaps of elastic waves propagating in one-dimensional
disordered phononic crystals. Similar topological formation of Fibonacci and
Thue-Morse are investigated in an experimental observation of the formation of
phononic scattering band structure in one-dimensional periodically and quasi-
periodically based on the Fibonacci and Thue-Morse number sequences by King
and Cox [40]. Gei [41] shows that in the case of axial and flexural vibration for
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systems based on different Fibonacci sequences, the number of stop/pass bands
within a defined range of frequencies changes and follows the Fibonacci recur-
sion rule, by showing also a self-similar pattern. From a design point of view the
asymmetrical conditions in quasi-periodic structures can be built by following
different sequences, such as: higher order generations of Fibonacci sequence,
Thue-Morse, Rudin Shapiro sequences as well as Penrose lattices [42]. In this
paper the modelling of simple quasi-periodic structures is built with the con-
ventional finite element method (FEM) to fulfil the generation of quasi-periodic
patterns since these are based on an asymmetrical distribution of identical cells
[43, 44]. Finite, periodic and quasi-periodic structures are thus proposed and
compared by using the Fibonacci sequence to investigate about the possibility
to have and control useful frequency bands in which the response can be re-
duced as much as possible. In Section 2 the models and their specific lexicon
are presented. Section 3 contains the methods and tools used for the numeri-
cal investigations. The main results obtained are commented in Section 4 and
finally, some concluding remarks are given in Section 5.

2 Models and Lexicon
In this paper, quasi-periodic beams with a finite number of cells are analysed.
In these models specific sequences like Fibonacci series will be used to generate
impedance mismatches in view of the desired degree of quasi-periodicity [45, 46].
The degree of quasi-periodicity might be controlled with mathematical rules
that will be introduced in the next section.

2.1 Fibonacci Sequence and Nomenclature
The well-known sequence called Fibonacci [49] is a series of integer numbers
such that:

Sn = Sn−1 + Sn−2 (1)

For instance the Fibonacci sequence starting with 1 and 2 is 1, 2, 3, 5, 8, 13,
21,....The configuration of the quasi-periodic structures is here carried out by
using a sequence of two possible variations according to Fig.1.

The variations can typically be due to the sections, materials or boundary
conditions. The first cell coincides with S1, then the cells can be assembled,
forming a sequence defined by a simple integer (order). The Sn denote the n-th
sequence:

Tab.1 shows the number of unit cells necessary to generate a given order of
Fibonacci sequence.
The numerical models is identified by the order of the Fibonacci sequence, and
thus the length of the n-th order sequence, Sn, will be greater than Sn−1. As ex-
ample, Fig.2 shows a Fibonacci (S6) beam with a sequence of 13 [ABAABABAABAAB]
cross-sections.
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Figure 1: Configurations of quasi-periodic beam following a Fibonacci
pattern[22].

Table 1: Example of number of cells according to Fibonacci orders.
Fibonacci orders function of number of cells

Orders 4th 5th 6th 7th 8th 9th 10th 11th

Number of Cells 5 8 13 21 34 55 89 144

Figure 2: Fibonacci configuration of 6th order

2.2 Cases
In this framework, variations between cells A and B will be obtained through
impedance mismatch. Two cases will be considered.
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Figure 3: Configuration of discontinuities: (M1) and (M2).

Case M1: impedance mismatch due to geometrical discontinuity, Fig.3 [case M1];

Case M2: impedance mismatch due to material discontinuity, Fig.3 [case M2].

The various configurations considered for M1 will be described in the next sec-
tion. Without loss of geometry, the material used in case M1 is steel A-36 whose
properties are provided in Tab.2
For the typical quasi-periodic structure case M2 the material variation is re-
ported in Tab.2.

Table 2: Mechanical properties of quasi-periodic bi-material beam.
Material Modulus of elasticity (Pa) Poissons Ratio Density (kg ·m−3)

Steel A-36 2× 1011 0.26 7800
Aluminium 2045-T4 73× 109 0.33 2700

Magnesium 45× 109 0.35 1770
Copper 110× 109 0.355 8960

2.3 Geometrical variations of case M1
A comparison for the case M1 by keeping constant the mass of the sum of the
A and B cells is considered. The aim is to find the most efficient geometrical
variation behaviour of unit cells (A) and (B) for vibration control. The fac-
tors prescribed in Tab.3 are the ratio of the length of section edges. The four
configuration types are displayed in Fig.4. The configuration Type IV has no
impedance mismatch, and Type II will be first analysed as a reference.
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Figure 4: Comparison of case M1 by keeping constant the mass and the length
of sum of the A and B cells (the beams have square cross sections).

Table 3: Sizes of cells A and B as sub-cases for M1.
Geometrical variation

Type Cell width [mm] height [mm] Factor

I A 42.00 42.00 2.7B 15.36 15.36

II A 40.00 40.00 2B 20.00 20.00

III A 38.00 38.00 1.6B 23.58 23.58

IV A 31.62 31.62 1B 31.62 31.62

3 Methods and Tools
Two numerical methods are used: the FEM is considered for analysing the
Frequency Response Functions (FRF) of the finite beam while the Wave Finite
Element Method (WFEM) together with spectral analysis is taken into account
for computing the dispersion diagrams.

3.1 Finite Element Analysis
The analysis is performed with the conventional FE method: frequency response
function (FRF) analysis of damped quasi-periodic beams. The FE analysis is
carried out using ANSYS-APDL linked with MATLAB.
The types of elements used are Beam 188, which is a linear 2-node beam element.
Each cell (A and B) are composed of 4 nodes (three beam elements) and each
node has three degrees of freedom: longitudinal in the axial direction (x axis),
bending in lateral direction (y axis), and torsional rotation around (x axis). The
actual distance between each cell is 100 mm.

Hkj(Ω) =

N∑
p=1

ψpkψpj
mp(ω2

p − Ω2 + i2ξpωpΩ)
(2)
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where Hkj(Ω) is the transfer function, mp the modal mass, ωp the eigenfre-
quency, Ω the forcing frequency; ξp is the modal damping; ψpk and ψpj are the
components of the p-th eigenvector evaluated at the source and receiver points
and N the number of retained eigenmodes. Accordingly, the FRF of the quasi-
periodic beams are computed.

These forced response analysis are performed with free-free boundary conditions.
The input force is located at one end of the beam in the transverse direction
and the response is computed at the other end of the beam in the same direction.

Figure 5: Schematic diagram of beam with 6th order of Fibonacci for numerical
analysis.

3.2 Spectral analysis of infinite beam (waveguide)
The Floquet-Bloch conditions can be applied to simulate infinite periodic beams
that is waveguides. This is classical for perfectly periodic structures. In order
to perform spectral analysis on quasi-periodic structures, super unit cells are
used.

3.2.1 Super unit cell:

In this work, a super unit cell is a cell hosting every single order of the Fibonacci
sequence and it hosts given orders of deterministic quasi-periodic pattern in a
single cell. Although it will be repeated in a periodic way, the cell itself has
a quasi-periodicity replication inside the super unit cell. In this work, we also
consider a second case, called double unit cell, as a reference. This case is
perfectly periodic. For illustration, the substructures in Fig.6 and Fig.7 are
modelled as a super unit cell and double cell respectively. In this example, the
super unit cell is defined according to the 6th order of Fibonacci sequence (type
ABAABABAABAAB). The super unit cell is used in the Wave Finite Element
Method (WFEM) analysis presented in the next section.
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Figure 6: Periodic wave-guide (Super unit cell with 6th order of the Fibonacci
sequence).

Figure 7: Periodic wave-guide (reference double unit cell).

3.2.2 Transfer matrix of super unit cell:

The transfer matrix is a square matrix of even dimension and is function of
frequency of the disturbance propagating in the structure [52]. For a given
structure, each super unit cell composed of n individual cells, has the same
transfer matrix [T] such that;

xn = Tx0 (3)

where xn is the state vector on the left-side of the cell (i.e. on the left-side of
the super unit cell), x0 is the state vector on the right-side of cell 1 (i.e. on
the right-side of the super unit cell), and T = TnTn−1, ...T1 where Tj is the
transfer matrix of cell j. In order to obtain the transfer matrices, both mass
and stiffness matrices are extracted from APDL-ANSYS.
The dynamic behaviour of the cell number j is described by:

Djqj = fj (4)

where Dj ,fj , and qj define respectively the dynamic stiffness matrix, force and
displacement vector. The dynamic stiffness matrix writes

Dj = −ω2Mj + Kj∗ (5)
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with Kj∗ = Kj∗(1 + iη) where Mj ,Kj , and η are respectively the mass matrix,
the stiffness matrix and the loss factor corresponding to the structural damping.
The matrices and vectors are partitioned according to the degrees of freedom:
qjL, qjI , and qjR respectively refer to the left-side, internal, and right-side parts
of the super unit cell number j. The corresponding terms in the matrices are
written Dj

LL Dj
LI Dj

LR

DjT
LI Dj

II Dj
IR

DjT
LR DjT

IR Dj
RR


qjL
qjI
qjR

 =

fjL
0
fjR

 . (6)

The internal degrees of freedom can then be condensed using the second row of
Eq.6, in order to retain the analysis to the left and right boundary displacements
and forces.

qjI = −Dj−1

II (DjT
LIq

j
L + Dj

IRqjR). (7)

it leads to[
Dj
LL −Dj

LID
j−1

II Dj
IL DjT

LR −Dj
LID

j−1

II Dj
IR

Dj
RL −Dj

RID
j−1

II Dj
IL Dj

RR −Dj
RID

j−1

II Dj
IR

]{
qjL
qjR

}
=

{
fjL
fjR

}
. (8)

The reduced dynamic stiffness matrix is written as follow:[
D̃
j

LL D̃
j

LR

D̃
jT

LR D̃
j

RR

]{
qjL
qjR

}
=

{
fjL
fjR

}
. (9)

One define state vectors for the boundaries of the component j:

ujL =

{
qjL
fjL

}
,ujR =

{
qjR
fjR

}
. (10)

The transfer matrix is hence obtained by reorganising the degrees of freedom
according to the state vector:

ujR = TjujL (11)

where, ukL and ujR are the displacement vector of the right and left component
of the unit cell, and Tj is the transfer matrix in Eq.11:

Tj =

 −̃D
j−1

LR D̃
j

LL −̃D
j−1

LR

D̃
j

RL − D̃
j

RRD̃
j−1

LR D̃
j

LL D̃
j

RRD̃
j−1

LR

 . (12)

The transfer matrix of the super unit cell is then obtained in Eq.3.
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3.2.3 Dispersion analysis:

Periodicity conditions applied on the super unit cells are then written as

up+1
L = eµupL (13)

where µ is the propagation constant. Combining Eq.11 and Eq.13,yields to the
eigenvalue problem:

Tpφi = λφi. (14)

where λ = eµ.
Depending on the nature of the eigenvalue of [Tp], the waves propagating in a
periodic structure are described as travelling waves and attenuating waves which
occur in alternating frequency bands known as pass-bands and stop-bands. If
the eigenvalues of [Tp] are complex and of the form e±ikL, k ∈ IR the corre-
sponding wave is in a pass-band and the wave travels in the form of e±ikL,
where k is a real wave number, the positive and negative signs indicating left
and right travelling waves, respectively. On the other hand if all eigenvalue
of the [Tp] are of the form e±β or e±β+iπ , β ∈ IR, is pure real exponent,
the corresponding frequency is in a stop-band and the wave amplitude after
travelling n elements are attenuated by the factor e(±βn), in which the real ex-
ponent β implies attenuated waves [52].The dispersion curves are computed by
imposing frequency and computing k according to the given eigenvalue problem.

4 Frequency response function of finite beams us-
ing FEM

FRFs of finite structures are analysed in two subsections according to the cases
named M1 and M2.
The FRFs are plotted in wider frequency ranges of 10 kHz for flexural and 25
kHz for axial vibration. The frequency range was chosen for the first 22 natu-
ral frequencies. A modal analysis is taken into consideration to investigate the
number of elements per wavelength in order to fulfil a criterion for a sufficiently
accurate numerical modal analysis. The boundary condition is free-free and a
frequency range up to 10kHz for flexural and 25 kHz for axial vibration is cho-
sen because the main target is on the first 22 natural frequencies. The model is
meshed by 1D 2-node beam element type 188. Mesh setting with two different
beam elements (188 − 2 node and 189 − 3 node) with the number of elements
per wavelength 4, 5, and 10 are checked. The span of the beam is 1300 mm
and 39 elements per wave length was more accurate with beam element 188− 2
node to converge the exact natural frequency which is 9700 Hz.
The strategy to compute the harmonic response function of periodic beams is
carried out in MATLAB. A script is created to define finite element model of
the periodic double cell with an arrangement of 13 unit cells. The boundary
condition is considered as free-free and a white noise (i.e. harmonic force of 1N
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from 0− 10 kHz with a bandwidth of 10 Hz is applied to one end of the beam.
The white noise is applied in vertical z and horizontal x direction, respectively
for flexural and longitudinal vibrations.

4.1 FRF results for Case M1-Type II

A first analysis of M1-Type II is performed, considering increasing orders of
the Fibonacci sequence (4th, 5th, 6th, 7th, 8th, 9th, 10th, and 11th orders). It is
reminded that the structure is not periodic, and that an increase in Fibonacci
order is associated to an increase in the length of the beam. All results are
carried out in the frequency range [0 − 10000] Hz. The results in Fig.8 shows
multiple stop bands which stay coherent from one order to the other, for in-
stance, around [600 − 900] Hz, [1900 − 2300] Hz and a larger frequency stop
band around [2900− 4000] Hz.

Figure 8: FRFs of the flexural waves for given orders of Fibonacci beam with
geometrical variation

The trend is similar to periodic structures when the number of cells increases:
the band gaps location does not change, while the depth in the FRF is becoming
larger. The largest frequency stop band appears around [4900− 7100] Hz. The
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lowest depth of the amplitude that exceeds (−450) decibels corresponds to the
precision of the numerical tool and is obviously not measurable in practice. The
dark blue curve corresponds to the highest generated order of Fibonacci, the
11th order in this investigation and shows the deepest gaps. Other curves follow
in unequal increment in the depth as the generation order is increasing. The
picks which can be observed in the Fig.8 corresponds to the resonances of the
finite beams.
Beside the flexural response shown in Fig.8, a similar analysis is performed for
the longitudinal waves. Fig.9 shows responses of the beams with an applied
force in the axial direction. There are only two stop bands around [4300−4800]
Hz and [6600− 10000] Hz.

Figure 9: FRFs of the longitudinal waves for given orders of Fibonacci beam
with geometrical variation

The trend is similar to the flexural waves shown in Fig.8 when the number of
cells is increasing: the band gaps locations do not change, while the depth in
the FRF is becoming larger. There is also a localised mode which is appearing
inside the band gap of longitudinal waves. The effects of dynamic behaviour of
the beam-spans when increasing the number of cells following Fibonacci orders
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is emphasised by this analysis. In practice, these types of beam-spans can be
used as a junction filter between structures. The induced vibrational energy
transfers through this junction, and it acts as a meta-material filtering property
to the elastic waves due to the impedance mismatch in geometry and material.

4.2 Frequency response function of double cell and super
unit cell structure using WFEM:

In this part, FRFs of periodic beams are analysed. Two cases are considered, a
double cell variation with a span of 13 unit cells having perfect periodic order
and a super unit cell Fibonacci 6th order with 13 unit cells, which has non-
symmetric repetition of cells inside periodic super unit cell. The results are
discussed with four types of variations in geometry for both cases. The aim of
this analysis is to investigate the effect of the geometric variation on width and
shift in frequency of band gaps and comparing the two models in order to find
a compromised one for vibration control.

Figure 10: WFEM frequency response function of periodic double cell beam for
flexural waves

The application is based on flexural and longitudinal waves of perfectly periodic
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models in Fig.10 and Fig.11. The analysis is applied for four types of geomet-
rical variations as a test cases.

Figure 11: WFEM frequency response function of periodic double cell beam for
longitudinal waves

Both, flexural and longitudinal waves are investigated under FB periodicity con-
dition. The ranges of frequency of FRF of flexural waves in Fig.9 is considered
at around 10 kHz, whereas for longitudinal waves in Fig.11 is around 25 kHz,
depending on the frequency stop bands zone. More details on geometrical vari-
ation of the Types plotted in Fig.10 and Fig.11 are reported in Table 3. The
response shows an enlargement in frequency stop bands as the height of cross
section (B) decreases and the frequency stop bands tends to increase from al-
most 8 kHz up to around 2.5 kHz. Similarly, a frequency response function of
the same periodic double cell is considered for longitudinal waves to describe
the dynamic behaviour of beam in compression conditions.
Fig.11 shows an enlargement of frequency stop bands into the left and right
sides of the frequency ranges. The result shows an enlargement of frequency
stop bands compared to continuous beam type IV, characterised by no ranges
of free wave propagation, to almost 15kHz range covered by stop bands.

Now we consider a super unit cell. In Fig.12 the frequency response function is
derived in the frequency range [0 − 1]kHz. The results are based on frequency
band gaps shift and enlargement of width of the band gaps. Fig.12 shows a
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frequency response function of a 6th order beam. It can be noted that band
gaps move to higher frequencies at increasing the height of the second cell (B).
For instance, the first subplot which is dedicated for Type I (B height=15.36
mm) has a band gaps around 400−650 Hz. In case of Type II (B height=20.00
mm) the band gap is shifted to higher frequencies.

Ultimately, the use of super unit cell has a significant pros compared to the
double unit cell. The first point that can be noticed in the FRFs of the Fig.12
is that there is a tremendous shift of frequency stop bands from lower to higher
frequency ranges. The second point is that there is a frequency stop band ap-
pearing in lower frequency ranges bellow 1 kHz, which is not the case in double
unit cell approach. In conclusion the characteristics of the beam with Fibonacci
series or simply (quasi-periodic beams) is that the geometrical impedance mis-
match between the non-symmetrical interfaces in these types of beams gives an
efficient impact on reducing the response especially in lower frequency regimes
compared to (ABABABABABABA) periodic case. If we consider in terms of
band gaps, it does not show an efficient result in creating wider stop bands, but
it has multiple attenuation level in lower and medium frequency ranges. The re-
sults obtained in this paper shows that the beam with Fibonacci characteristics
can improve performances in terms of attenuation level without weight penalty,
which can be an asset for meta-materials.

Figure 12: WFEM FRF for flexural waves of super unit cell with 6th order of
Fibonacci sequence
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4.3 Frequency response function of quasi-periodic beam
with geometrical variations of type II:

This test case is influenced by the previous results. As it can bee seen from Fig.
10, Fig. 11 and Fig. 12, that there is an evident band gaps shift and width
enlargement while the factor of the cross sections of Tab.3 increased from (1−
2.7). Now in this sub-section the same procedure is applied to the quasi-periodic
beam with the 11th order of Fibonacci using four types of geometrical variation
according to the Tab.3. Fig.13 shows four curves, each corresponding to the
four cross-section types of variations. Type IV is a continuous beam without
impedance mismatch of the cross-section, while the others include geometrical
variations. Starting from Type III with dashed line, Type II dot curve line,
and Type I with dot dashed line, each has stop bands in different ranges of
frequencies. It can be highlighted that by increasing the factor of the geometrical
variation the wide of band gaps is increasing. There are some few band gaps
that exist in Type II and III but not as deep as Type I.
In conclusion, case M1 shows significant impacts on vibration control of the

Figure 13: FRFs of the flexural waves for 11th order of Fibonacci beam with
geometrical variation

beam span. The first case, flexural analysis shows that, by increasing the length
of Fibonacci orders, the depth of the band gaps grows deeper and it is also
emphasised in longitudinal waves. The second part describes width enlargement
and shift in frequency of band gaps, in which quasi-periodic super unit cell shows
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more impact compared to the double unit cell approach.

4.4 FRF results for Case M2
The second quasi-periodicity configuration is based on the impedance mismatch
of material constituents. The beam is analysed as a continuous span (with no
cross section variation). The mass of the system for all orders of Fibonacci is
kept the same, while the length of the beam is changed and the number of cells
are increased according to Fibonacci pattern. the length of the structure varies
from 0.5 m to 14.4 m that includes [4th,5th, 6th, 7th, 8th, 9th, 10th, 11th] orders
of Fibonacci with [5, 8, 13, 21, 34, 55, 89, 144] cells. The results of the dynamic
analysis for flexural waves in Fig.14 shows similar behaviour as those for the
geometrical impedance mismatch in terms of increase of the depth of the band
gaps when the order increases.

Figure 14: FRFs of the flexural waves for given orders of Fibonacci beam with
material variation.

The main result in this analysis is that material constituent discontinuity does
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not have a high dynamical influence in the depth growth of frequency stop bands
as it is in the cross section variation case. Analysing again the numerical results
in comparative way (i.e. without paying attention to the absolute values), the
growth of depths in the frequency band gaps is lower than those computed for
the variation of cross-sections.
Fig.15 is dedicated to the longitudinal waves of the case M2, where it shows
a change in the location of band gaps compared to the flexural waves. The
ranges of band gaps can be observed in two locations between [4400− 4800] Hz
and [6700− 10000] Hz. It has much better influences regarding the locations of
the band gaps compared to the flexural waves and also the depth is gradually
becoming larger.

Figure 15: FRFs of the longitudinal waves for given orders of Fibonacci beam
with material variation.

The response of the 11th order of Fibonacci beam in the FRF shows a flat curve
in the larger band gaps location (without any higher dynamics), that is due to
the longer length of the beam. Beside the flexural and longitudinal (FRFs) of
the caseM2, another extra sub-case scenario has been investigated by consider-
ing combination of lower and higher sound velocity materials. As there was not
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a big difference between the sound velocity of (Aluminium 2045-T4) and (Steel
A-36), two other materials (copper and magnesium) are also taken into account
for the flexural FRFs of the 11th order of Fibonacci sequence.

Fig.16 shows three curves, each corresponding to the material combination of
case M2. Steel A-36 is selected as a constant material (cross-section (A)) and
the copper, aluminium and magnesium are varied according to the Fibonacci
sequence alongside axial direction as (cross-section (B)). The results shows that
materials combination of steel and copper respectively with velocity of 5063m/s
and 3503m/s has a very low depth of attenuation and narrower band gaps
marked in solid line in the frequency ranges between [5000 − 7000] Hz. In
contrary materials combination of steel with aluminium and magnesium respec-
tively with velocity of 5199m/s and 5042m/s are reported in dashed and dot
dashed lines which has larger depth and wider band gaps compared to the cop-
per one.
In conclusion, the dynamic response of quasi-periodic finite span reduces while

Figure 16: FRFs of the 11th order of Fibonacci beam with material variation.

keeping the four types of variations. It seems from the lexicon that the sound
velocity of case M2 with constant cross sections and material variation is simply
the ratio between modulus of elasticity and density. In contrary, the sound ve-
locity of case M1 with constant material and cross section variation is the ratio
of modulus of elasticity with respect to density multiplied by a factor that is
squared of height of the cross section. Thus, it explains that M2 is less efficient
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in terms of change in the impedance mismatch.

5 Spectral analysis of the M1 waveguides

5.1 Double cell
The same transfer matrix, extracted for the FRFs of the previous results based
on periodic double cell, is used again for dispersion curves computation. Frequency-
shift of the stop/pass band positions is quantified, using the real solution of
waves [41]. Herein, for quantifying the frequency shift of stop bands, the disper-
sion curves are plotted considering only the real parts of propagative waves. In
Fig.17, three types of cross-section variation for double cell periodicity is plotted
by fixing type I. The investigated frequency range is zoomed to [0− 2] kHz for
periodic double cell in order to visualise precisely the shift of band gaps. There
is one main observation: the shift in frequency. Concerning the first, again the
band gaps move to higher frequencies at increasing the height of cross section
B. The frequency stop bands in the first types is around [650−850] Hz, whereas
for Type II it shifts to higher frequencies at around [1000 − 1350] Hz with a
little width compared to first type.
In Type III, band gap moves to higher frequencies [1300−1600] Hz. Evaluating
the stop band width in four cases, it seems that the stop band width is enlarging
after Type I up to Type III, while in Type IV , the width of stop band tends
to disappear with a shift to higher frequencies compared to the other types. In
fact, it gradually shifts by reducing the height of the second cross section (B)
as it reaches the zero impedance mismatch in Type IV .

5.2 Super unit cell
Similarly, an important part of analysis had to be taken into account for the
spectral analysis of the quasi-periodic embedded super unit cell in periodic in-
finite systems. Fig.18 shows the dispersion curves of 6th order of Fibonacci.
The same technique used for the dispersion of fully periodic double cell is also
considered in this system. Again the comparison is plotted between Type I,
used as reference, and the other Types.

Comparing the results, in terms of real part of the wave number, of periodic
beam Fig.17 and quasi-periodic beam Fig.18 it can be noted that in both cases
the stop bands shift to higher frequencies but for the quasi periodic beam it
changes quite dramatically. In fact, comparing the same band gap for the two
beams it can be noted that the band gap in quasi-periodic beam is almost 2
times larger than periodic one. In view to be more clear in Fig.19 a compar-
ison between band gaps of periodic and quasi periodic beam, at same cross
section ratio, is provided. The horizontal axis of the plot shows an average
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Figure 17: WFEM frequency response function of periodic double cell beam for
flexural waves

frequency which corresponds to the band gaps interval ∆f over the overall se-
lected range of frequency f in each Fig.17 and Fig.18 respectively. The plot has
two different curves, the blue one corresponds to the fully periodic beam with
double cell including the geometrical cross-section variation, whereas the red
curve corresponds to the quasi-periodic beam with the 6th order of Fibonacci
and including those four types of geometrical cross section variation effects.The
band gap width of quasi periodic beam is higher then the periodic one up to
ratio 2. After that the band gap width of periodic increases by increasing the
ratio, while the band gap of quasi periodic decreases.

6 Comparison of two quasi-periodic models (Fi-
bonacci & Thue-Morse)

In this section a comparison of flexural waves obtained by investigating two
different quasi-periodic models, Fibonacci and Thue-Morse sequence [22], is dis-
cussed. The Thue-Morse sequence can be obtained within the present approach
always invoking the [A] and [B] base modules. In view to compare beams hav-
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Figure 18: Dispersion curve of super unit cell with 6th order of Fibonacci se-
quence

ing the same mass, since the two models follow different sequences, the two
models have two different orders: 5th for Fibonacci and 3rd for Thue-Morse.
For the Fibonacci case the beam is composed of 8 unit cells with the sequence
[ABAABABA], Fig.1: whilst for the Thue-Morse case the beam consists of 8
cells following this sequence [ABBABAAB]. Hence, the beams have constant
masses and same length but with different material properties. Cell(A) is made
of steel (A−36) whereas cell(B) is made of Aluminium alloy (2045−T4). There
are 8 unit cells in each beam. The length of the beam is 80 mm. They have
free-free boundary conditions and are forced with a unit spectrum force in the
first node while the response is taken from the last node of the beams.

Comparison is made by comparing FRFs and spectral analysis and results are
reported respectively in Figs.20 and 21. The results carried out from the two
models are both good showing different levels of attenuation with some differ-
ences in frequencies. In fact, focusing on the FRF results plotted in Fig.20,
both the curves show a large stop band around [7800−9800] Hz with Fibonacci
−10 dB lower attenuation level compared to Thue-Morse, but, in the remaining
frequency range, there is another stop bands (less in width and depth) that
appear in a frequency range for one model and in another frequency range for
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Figure 19: Spectral behaviour of band gaps for periodic and quasi-periodic
embedded beams

the other one.
This is more evident in Fig.21 where the real and imaginary parts of the
wavenumber are plotted. This plot is much visible and it can be noted that
the number of stop bands for both curves are the same, but the width and the
depth of the bands gaps for Fibonacci and Thu-Morse models is different. For
instance in the frequency [2000 − 2500] Hz the stop bands of the Thue-Morse
model outperforms, both in width and in depth, the one obtained by Fibonacci
one. In the frequency range [3000− 4000] Hz the behaviour is vice versa.

By accomplishing the outcome results of two different quasi-periodic models,
it should be noticed that globally, both models perform similar results with
a slight different width and the attenuation level. Fibonacci model has lower
attenuation level in their large stop bands, which can lead to a compromised
model in vibration control of beam spans.

7 Conclusions
The structural response of periodic and quasi-periodic beams are investigated.
These beams are modelled using deterministic approach. Periodic beams are
made of two different cells in terms of mass and cross section dimensions.
Whereas quasi-periodic beams has the same configuration of cells made of these
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Figure 20: FRFs of the Fibonacci and Thue-Morse beams with the material
variations.

two different cells but the replication of periodic cells are not perfect and it
follows Fibonacci sequence pattern.

In the first case an analysis of the harmonic response of quasi-periodic beams
with increasing orders (length) of Fibonacci sequence with the finite element
method is investigated. In this case, beams are made up of cells (constant
length) whose cross-section areas and materials properties follow a Fibonacci
sequence is studied.

The second one relays on the four types of geometrical variations. The geomet-
rical variations of case M1 are applied in the periodic and quasi-periodic beams
of double and super unit cells. In this case while comparing the results, global
mass of the beams are kept constant and cross sections are varied.

The last case consist of spectral analysis or the wave propagation behaviour of
periodic structures with the WFEM. In this case beams are made up of identi-
cal super-unit-cells/patterns which are composed of cells whose properties follow
Fibonacci sequence of a 6th order.
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Figure 21: Dispersion curve of the Fibonacci and Thue-Morse beam based on
flexural waves.

7.1 Main results
The first results by increasing the orders of a quasi-periodic beam with the
impedance mismatch due to geometric variation (cross-section variation) give
a clear view of the phenomena. A rapid growth in the depth amplitude of the
band gaps by increasing the Fibonacci orders can be noted.

Studies of the geometric variation applied to a quasi periodic beam is extended,
in a proper way for the periodicity condition, in the WFEM method to reduce
and increase the volume representative of cross-section (A) and cross-section (B)
proportionally, while keeping the total mass of the both cells constant. Focused
on flexural and longitudinal waves, four types of numerical models are designed
for the spectral analysis.

As stated in the last case study conclusion, a quasi-periodic beam with 6th order
of Fibonacci sequence is placed in a super unit cell for FB waves analysis. Four
types of cross-section variations in the beams are considered. The main results,
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obtained for 6th order, show that a larger difference between the cross-sections
(i.e. cross section (A) is much larger and cross section (B) is much smaller) lead
to three main effects: i) change in extension/enlargement of frequency band
gaps, ii) shift of frequency band gaps to lower frequency range and iii) an in-
crease in the depth of amplitude of frequency band gaps.

Overall the quasi-periodic structures with geometrical impedance mismatch
have an efficient impact on reducing the response in lower frequency regimes
compared to strictly periodic counterparts. Although, it does not show large
widths in lower frequency stop bands, but a small degree of geometrical impedance
change, can shift the stop bands drastically compared to the strictly periodic
spans. The results obtained have also shown that the quasi-periodicity can im-
prove performance since attenuation, in given frequency range, can be obtained
without weight penalty, which can be an asset for lightweight structures.

Highlights and contribution of the study
1. Forced response of quasi-periodic beams with increasing the order of Fi-

bonacci, shows rapid growth in the depth displacement amplitude of the
band gaps.

2. Forced response studies of four types of geometrical variations in iden-
tical super-unit-cells and double unit cells/patterns shows three aspects:
i) change in extension/enlargement of frequency band gaps, ii) shift of
frequency band gaps to lower frequency range and iii) an increase in the
depth of amplitude of frequency band gaps.

3. Frequency response function of a quasi-periodic beam of 11th order with
four types of geometrical and material variations gives an efficient results
containing enlarging the wide of band gaps towards left and right of fre-
quency ranges. For instance geometrical variation of TypeI and material
variation of (Steel-Aluminuim).

4. Spectral analysis of four types of geometrical variations in identical super-
unit-cells and double unit cells/patterns are analysed. The significants
of periodic beam composed of cells whose properties follow Fibonacci se-
quence of a 6th order and cells whose properties follow a perfect periodic
orders are studied. The results shows larger (∆f) for a unit cell with
composition of cells following Fibonacci sequence.
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