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INTERTWINING RELATIONS FOR DIFFUSIONS IN
MANIFOLDS AND APPLICATIONS TO FUNCTIONAL

INEQUALITIES

BAPTISTE HUGUET

Abstract. We prove intertwining relations by twisted gradients for Markov
semi-groups. These relations are applied to Brascamp-Lieb type inequalities
and spectral gap results. It generalizes the results of [1] from the Euclidean
space to Riemannian manifolds and to non symmetric twisted operators.
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1. Introduction

The aim of this paper is to extend our understanding of intertwining relations
between Markov semi-groups in the setting of Riemannian manifolds and its appli-
cations in functional inequalities but also the underlying role of stochastic processes
as the deformed parallel translation. These relations have been first investigated
in the discrete case for birth-death processes in [9] and in the one dimensional
case in [6]. The case of the Euclidean space Rn is treated in [1] for reversible
and ergodic diffusions. In this paper, we also investigate the case of reversible
and ergodic diffusions, on a complete connected Riemannian manifold M , with
generator

Lf = ∆f − 〈∇V,∇f〉
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inequalities; spectral gap.
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2 B. HUGUET

where V is a smooth potential on M . Such diffusions admit an unique invariant
measure, µ, absolutely continuous with respect to the Riemannian measure, with
density proportional to e−V .

We are looking for intertwining relations by differentiation: the goal is to rewrite
the derivative of a smooth Markov semi-group acting on functions as a Markov
semi-group acting on differential forms. Unlike in the one-dimensional case, where
functions and their derivatives have the same nature, in a manifold setting, the two
intertwined semi-groups act on different spaces. Actually, we look at semi-groups
on 1-forms which restriction on differential forms satisfy an intertwining relation.

At the level of operators, the intertwining relation occurs without further as-
sumptions. The generator L is intertwined with a weighted Laplacian acting on 1-
forms, LW , unitary equivalent to the Witten Laplacian. A large study of this
operator can be found in the work of Helffer, with application to correlation de-
cay in spin systems (see [11]). At the level of stochastic processes, LW is the
generator on 1-forms of a diffusion on the tangent bundle: the deformed parallel
translation (or geodesic transport in [18]). In [2], this process appears naturally
as a spacial derivative of a flow of the diffusion with generator L. This suggests
a stochastic representation of the intertwined semi-group. At the level of semi-
groups, intertwining relations are not so obvious: more assumptions are required.
In the Euclidean space, the classical assumption is the strong convexity of the
potential V or, in other way to say it, the positiveness of its Hessian. A classical
generalization of this condition on Riemannian manifolds is the positiveness of an
operator depending on the Hessian and the Ricci curvature, known as the Bakry-
Émery criterion (see [3]). In the present paper, we consider twisted gradients, or
equivalently, twisted metrics on the tangent space by a section of GL(TM). This
operation does not change the stochastic diffusion on M but creates new ones on
the tangent space, with associated generators and semi-groups. Under assump-
tions on these twists, which replace the Bakry-Émery condition, we can obtain
intertwining relations at the level of semi-groups. A consequence of these inter-
twinings is a family of Brascamp-Lieb type inequalities, extending the classical
case satisfied under the strict convexity assumption of the potential.

Let us summarize the content of this paper. In Section 2, we recall basic facts
about semi-group, deformed parallel translation and the classical commutation at
the level of the generators. The semi-group considered is stochastically defined on
bounded continuous functions. In Section 3, we see what an intertwining relation
can imply in terms of covariance representation. For that, we work under the
Bakry-Émery criterion. We obtain some applications to measure concentration.
In Section 4, we introduce twistings, associated semi-groups and their generators.
The goal of Section 5 is to find conditions for these generators to be decomposable
as a sum of a symmetric positive second order generator and a zero order potential.
In Sections 6 and 7, we obtain conditions to have intertwining relations for the L2

semi-groups on 1-forms. Theorem 6.2 is a generalization of theorem 2.2 in [1], in a
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manifold setting, with the same kind of assumptions: conditions of symmetry and
positiveness of the second order operator and bound on the potential. Theorem 7.1
extends this result when the second order operator is not symmetric non-negative.
We achieve to release all assumptions over the second order operator by a stronger
bound on the potential. These intertwinings are applied in theorems 6.3 and 7.3
to obtain generalized Brascamp-Lieb and Poincaré inequalities.

2. Deformed parallel transport and Commutation

On a connected complete Riemannian manifold (M, g), endowed with its Levi-
Civita connexion ∇, let C∞(M) be the space of smooth real-valued functions
and C∞c (M) its subspace of compactly supported functions. In this paper, we
consider the second order diffusion operator defined on C∞(M) by

Lf = ∆f − 〈∇V,∇f〉, (2.1)

where V is a smooth potential. We denote by µ the measure on M with den-
sity e−V . On C∞c (M), the operator L is symmetric with respect to µ, that is for
all f, g ∈ C∞c (M), ∫

M

Lfg dµ = −
∫
M

〈df, dg〉 dµ =

∫
M

fLg dµ. (2.2)

Let Xt(x) be a diffusion process with generator L, started at x ∈ M . Such
a process exists and is unique in law, up to an explosion time τx. We define a
family (Pt)t≥0 of operators on the space of bounded continuous functions by:

Ptf(x) = E [f(Xt(x)1t<τx ] . (2.3)

The Markov property for diffusion processes implies that (Pt)t≥0 is a semi-group
and for all f ∈ C∞c (M), we have

∂tPtf(x) = LPtf(x) = PtLf(x).

Above Xt(x), one can construct the parallel translation �t(x). It is an isometric
isomorphism from TxM to TXt(x)M . It also can be seen as a diffusion on the
tangent bundle with the following generator on 1-forms:

〈L�α,w〉 = 〈∆hα−∇Uα,w〉, (2.4)

where ∆h is the horizontal Laplacian on 1-forms. According to the Weitzenböck
formula, we have:

〈∆hα,w〉 = 〈�α,w〉+ 〈α,Ric](w)〉, (2.5)

with � being the Hodge-de Rham Laplacian. One can look at [12] for instance.
Above Xt(x) one can also construct the deformed parallel translation Wt(x). It

is the linear map TxM → TXt(x)M determined by the differential equation:{
DtWt(x)v = −M∗Wt(x)vdt

W0(x) = idTxM
, (2.6)
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where

DtWt(x)v = �t(x)d
(
�−1t (x)Wt(x)v

)
(2.7)

stands for the covariant derivative of Wt(x)v and the operator M∗ is a section
of TM ⊗ T ∗M defined by

M∗w = ∇wU + Ric](w). (2.8)

Theorem 2.1 in [2] shows that Wt(x)v can be seen as the spatial derivative of a
flow of the diffusion with generator L, obtained from Xt(x) by parallel coupling.
In some way, the processes Xt(x) and Wt(x) are intertwined.

Alternatively, the deformed parallel translation can be seen as a diffusion.

Proposition 2.1. The deformed parallel translation over Xt(x) is a diffusion on
the tangent bundle with generator on 1-forms

〈LWα,w〉 = 〈L�α(Xt), w〉 − 〈Mα,w〉. (2.9)

Proof. Let α a 1-form and v ∈ TxM .

d〈α(Xt(x)),Wt(x)v〉 = 〈Dtα(Xt(x)),Wt(x)v〉+ 〈α(Xt(x)), DtWt(x)v〉, (2.10)

where Dtα(Xt(x)) = d (α(Xt(x) �t (x)) �−1t stands for the covariant differential
of α(Xt(x)). There is no quadratic term because the deformed parallel translation
has finite variations. As the parallel translation is a diffusion and as Wt(x) satisfies
equation (2.6), it ends the proof. �

Using (2.5), one obtains

〈LWα,w〉 = 〈�α−∇Uα,w〉 − 〈α,∇wU〉. (2.11)

Let L2(µ) be the space of measurable 1-forms α such that∫
M

|αx|2 dµ(x) < +∞.

Theorem 2.2. The operator LW is essentially self-adjoint on L2(µ).

Proof. We denote by δV the adjoint of the exterior derivative on forms for the
scalar product on L2(µ). Some calculation shows that, for all smooth compactly
supported 1-forms, we have:

LW = −(dδV + δV d) (2.12)

Then −LW is non-negative. Adapting the proof of [11], we obtain the result. �

Then, without any assumptions, the deformed parallel translation defines a semi-
group (Qt)t≥0 on L2(µ). Under suitable assumptions over the potential M, it
generates a semi-group, also denoted by Q, on the space of bounded continuous
1-forms, with the following stochastic representation:

〈Qtα, v〉 = E [〈α,Wt(x)v〉1t<τx ] . (2.13)
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The generator of the deformed parallel translation satisfies a commutation for-
mula. For all f ∈ C∞(M), one has:

dLf = LWdf. (2.14)

This commutation formula on generators and the intertwining relation at the
level of stochastic processes suggest an intertwining relation between the semi-
groups P and Q. This is this kind of relation we want to prove.

3. A covariance inequality

In this section, we consider Q as the semi-group on bounded continuous 1-forms
defined by 2.13. We prove an intertwining relation and we use it to obtain an
asymmetric Brascamp-Lieb inequality in the spirit of Ledoux (see [16] or [8]). This
inequality is called asymmetric because it gives an L1-L∞ bound of the covariance.
We firstly have to find a condition so as to properly define the semi-group. As an
endomorphism of T ∗xM , M(x), defined in (2.8), is symmetric with respect to the
metric. We denote by ρ(x) the smallest eigenvalue ofM(x) and by ρ, its infimum
over M :

ρ = inf
x∈M
{smallest eigenvalue ofM(x)} (3.1)

The assumption of this section is the so-called Bakry-Émery criterion (known
as CD(ρ,∞) condition in [5]).

Assumption 3.1 (Bakry-Émery criterion). The operatorM is uniformly bounded
from below, i.e ρ > −∞.

It is a sufficient condition for hypercontractivity of the diffusion and allows to
prove Poincaré or Log-Sobolev inequalities (see [4]). Bakry proves in [3] that,
under this criterion, the diffusion X does not explode (i.e for all x ∈M , τx = +∞
almost surely). The following result is well known.

Proposition 3.2. Under the Bakry-Émery criterion, the semi-group Q has the
stochastic representation (2.13) and we have: for all 1-form α,

|Qtαx| ≤ e−ρt‖α‖∞. (3.2)

Proof. The heart of the proof is to show that under this criterion, the deformed
parallel translation is bounded. For all x ∈M and all v ∈ TxM , one has

d

dt
|Wt(x)v|2 = 2〈Wt(x)v,DtWt(x)v〉

= −2〈Wt(x)v,M∗Wt(x)v〉
≤ −2ρ|Wt(x)v|2.

By Grönwall lemma, this yields

|Wt(x)v|2 ≤ e−ρt|v|, a.s. (3.3)
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This shows that the stochastic representation (2.13) is well-defined and concludes
the proof. �

Proposition 3.3. Under the Bakry-Émery criterion, the semi-groups P and Q
are intertwined by the derivative of functions: for all f ∈ C∞c (M),

dPtf = Qtdf. (3.4)

Proof. The bound for |Wt|2 obtained in equation 3.3 and the non explosion of the
process guarantee the differentiation under the expectation. �

This intertwining relation results in an asymmetric Brascamp-Lieb inequality.

Theorem 3.4. Assume that ρ > 0, then for all functions f , g ∈ C∞c (M), one has

|Covµ(f, g)| ≤ 1

ρ
‖dg‖∞

∫
M

|df |2dµ. (3.5)

Proof. Using the ergodicity and proposition 3.3, we have for all f, g ∈ C∞c (M) the
following covariance representation:

Covµ(f, g) =

∫
M

f(g − µ(g)) dµ

= −
∫
M

∫ +∞

0

fLPtg dt dµ

=

∫ +∞

0

(∫
M

〈df, dPtg〉 dµ
)
dt

=

∫ +∞

0

(∫
M

〈df,Qtdg〉 dµ
)
dt.

We conclude with the estimate of 3.2. �

The heart of the proof, is the integral representation of the covariance. This is
the reason why we want to obtain intertwining relations.

In [3], Bakry shows that the condition ρ > 0 implies that µ is a finite measure.
Up to renormalization, we can assume it is a probability measure. A consequence
of theorm 3.4, is the Gaussian concentration of the probability µ. This concen-
tration has been shown by Ledoux in [13] for the volume measure of a compact
Riemannian manifold under the condition of positive Ricci curvature and in [14]
in the Euclidean space under the condition of strictly convex potential. This in-
equality is deeply exposed in [15]. Our proof gives a new outlook of the result,
with only stochastic tools.

Proposition 3.5. If ρ > 0, then for all 1-Lipschitz f ∈ C∞c (M) and for all r > 0,

µ (|f − µ(f)| > r) ≤ 2e−ρ
r2

2 . (3.6)
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Proof. The idea of the proof is to bound the Laplace transform. For any λ > 0,
we have:

d

dλ
Eµ[eλf ] = Covµ(f, eλf )

≤ 1

ρ
‖df‖∞E

[
λ|df |eλf

]
≤ λ

ρ
E
[
eλf
]
.

By Grönwall lemma, it yiels

Eµ[eλf ] ≤ e−λ
2/2ρ. (3.7)

The proof ends by using Markov’s inequality and optimizing in λ. �

4. Twisted processes and semi-groups

Let B be a smooth invertible section of TM ⊗ T ∗M , i.e for all x ∈ M , B(x)
is an isomorphism of TxM . The section B is used to twist the semi-group so as
to obtain an intertwining relation even when the Bakry-Émery criterion is not
satisfied. Firstly, we define the B-parallel translation by conjugation as:

�B
t (x) = B(Xt(x)) �t (x)B(x)−1 : TxM → TXt(x)M. (4.1)

Proposition 4.1. The B-parallel translation is a diffusion on TM with generator
on 1-forms

L�,Bα = L�α + 2(B−1)∗∇B∗ · ∇α + (B−1)∗(L�B∗)α.

Proof.

d〈α(Xt), B(Xt(x)) �t (x)w〉 = d〈B(Xt(x))∗α(Xt),�t(x)w〉 (4.2)

so

〈L�,Bα,w〉 = 〈L�(B∗α), B−1w〉. (4.3)

On the other hand writing v = B−1w

〈L�(B∗α), v〉 = 〈B∗L�α, v〉+ 〈L�(B∗)α, v〉+ 2〈∇B∗ · ∇α, v〉. (4.4)

�

Unlike the parallel translation, the B-parallel translation is not an isometry
for the Riemmanian metric. Yet, it is an isometry for the B-twisted metric: for
all v, w ∈ TxM

〈v, w〉B = 〈B−1(x)v,B−1(x)w〉. (4.5)

Similarly, we define the B-deformed parallel translation as:

WB
t (x) = B(Xt(x))Wt(x)B(x)−1 : TxM → TXt(x)M. (4.6)
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Proposition 4.2. The B-deformed parallel translation is a diffusion with gener-
ator on 1-forms

LW,B = L�,B −MB (4.7)

where
MB = (B−1)∗MB∗. (4.8)

The B-deformed parallel translation could also be defined as in 2.6 by a sto-
chastic covariant differential equation:

DtW
B
t v = −

(
MB − (B−1)∗L�(B∗)

)
WB
t v dt+ (∇dmXtB) (B−1)∗WB

t v. (4.9)

Unlike, in 2.6, there is a martingale part in the stochastic covariant derivative. If
we want to strip it away, we must the B-stochastic covariant derivative:

DB
t = �B

t d
(
�B
t

−1
)
. (4.10)

The generators LW,B and LW are conjugated: LW,B = (B−1)∗LWB∗. So, LW,B

and L are intertwined:
(B−1)∗dL = LW,B(B−1)∗L. (4.11)

We denote by 〈·, ·〉B the intertwined-metric on 1-forms: for two 1-forms α, β,

〈α, β〉B = 〈B∗α,B∗β〉, (4.12)

and by L2(B, µ) the space of measurable 1-forms α such that∫
M

|α|2B dµ < +∞. (4.13)

As LW , LW,B is also essentially self-adjoint, on L2(B, µ) and is associated to a L2

semi-group of diffusion on 1-forms, QB
t . Under suitable conditions, it generates

a semi-group on smooth compactly supported 1-forms, also denoted by QB
t , with

the stochastic representation

〈QB
t α, v〉 = E

[
〈α,WB

t (x)v〉1t<τx
]
. (4.14)

Proposition 4.3. Under the Bakry-Émery criterion, the semi-groups P and QB

are intertwined by (B−1)∗d, i.e. for all f ∈ C∞c (M),

(B∗)−1dPtf = QB
t

(
(B∗)−1df

)
.

Proof. As in proposition 3.2, the Bakry-Émery criterion prove the existence of the
stochastic representation 4.14. For all f ∈ C∞c (M), we have:

(B−1)∗dPtf = (B−1)∗Qtdf

= (B−1)∗E [〈df,Wt(x)·〉]
= E

[
〈df,Wt(x)B−1(x)·〉

]
= E

[
〈(B−1)∗df,B(Xt(x))Wt(x)B−1(x)·〉

]
= E

[
〈(B−1)∗df,WB

t (x)·〉
]
.
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The operators M and MB are conjugated so they have the same eigenvalues.
ThenMB does not seem useful to improve inequalities such as Section 3 even if we
could obtained the intertwining relation without using the Bakry-Émery criterion.
We define the generators on 1-forms

L
�
B = L� + 2(B−1)∗∇B∗ · ∇· (4.15)

and

MB =MB − (B−1)∗L�(B∗). (4.16)

Then we have

LW,B = L
�
B −MB. (4.17)

From the operators point of view, this new split seems more satisfying because the
potential MB contains all the zero-order terms and only them. From the stochastic
point of view, it seems also more relevant because MB is the drift of the covariant
derivative of WB

t . So, this potential is the natural candidate for a generalization

of Bakry-Émery criterion.

5. Symmetry and positiveness of −L�
B

First, as we noticed, LW,B is conjugated to LW , and so, is self-adjoint in L2(B, µ).
For the same reason, in the subspace of twisted gradients {(B−1)∗df : f ∈ C∞c (M)},
we additionally have the non-positiveness of LW,B:∫

M

〈(B−1)∗df, LW,B(B−1)∗df〉B dµ =

∫
M

〈df, LWdf〉 dµ

=

∫
M

〈df, d(Lf)〉 dµ

= −
∫
M

(Lf)2 dµ.

Now we are looking for conditions such that L
�
B be symmetric with respect to

the B-twisted metric. This is not trivial, even in the subspace of twisted gradients.
First, by integration by parts for the horizontal Laplacian, we have∫

M

〈L�α, β〉 dµ = −
∫
M

〈∇α,∇β〉 dµ (5.1)

with 〈∇α,∇β〉 =
∑

i 〈∇eiα,∇eiβ〉, with (ei) any orthonormal basis. On one hand,∫
M

〈(−L�)α, β〉B dµ =

∫
M

〈(−L�)α, (B∗)tB∗β〉 dµ
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=

∫
M

〈∇α,∇((B∗)tB∗β)〉 dµ

=

∫
M

〈∇α, (B∗)tB∗∇β〉 dµ+

∫
M

〈∇α,∇((B∗)tB∗)β〉 dµ

=

∫
M

〈∇α,∇β〉B dµ+

∫
M

〈∇α,∇((B∗)tB∗)β〉 dµ

where (B∗)t denotes the dual map of B∗ with respect to scalar product on T ∗M .
On the other hand,

−
∫
M

〈
2(B−1)∗∇B∗ · ∇α, β

〉
B
dµ = −

∫
M

〈2∇B∗ · ∇α,B∗β〉 dµ

= −
∫
M

〈
∇α, 2 (∇B∗)tB∗β

〉
dµ.

This yields∫
M

〈(
−L�

B

)
α, β

〉
B
dµ =

∫
M

〈∇α,∇β〉B dµ−
∫
M

〈B∗∇α,B(B∗β)〉 dµ. (5.2)

where
B =

(
(∇B∗)(B∗)−1

)t − (∇B∗)(B∗)−1 (5.3)

We immediately get this first criterion of symmetry and non-negativeness.

Proposition 5.1. If (∇B∗)(B−1)∗ is symmetric with respect to 〈·, ·〉 then the gen-

erator −L�
B is symmetric with respect to 〈·, ·〉B, non-negative and we have:

−
∫
M

〈L�
Bα, β〉B dµ =

∫
M

〈∇α,∇β〉B dµ (5.4)

The operators LW,B and MB are symmetric with respect to 〈·, ·〉B. We have

L
�
B = LW,B +MB − (B−1)∗L�(B∗). (5.5)

So a necessary and sufficient condition for the B-symmetry of L
�
B is the B-

symmetry of (B−1)∗L�(B∗). But unlike the condition of proposition 5.1, this
is not a sufficient condition for positiveness. For example, one can look at (R∗+)2

with the potential V (x, y) = x+ y and the twist

B∗ =

(
ϕ ϕ
1 eV

)
,

where ϕ is positive such that Lϕ 6= 0. The associated L
�
B is symmetric but is not

non-negative.
The following result is immediate and gives examples satisfying the condition of

proposition 5.1:
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Proposition 5.2. If B(x) = λ(x) idTxM for some smooth positive function λ then
(∇B∗)(B−1)∗ is symmetric with respect to 〈·, ·〉

Proof. If B(x) = λ((x) idTxM then B∗(x) = λ(x) idT ∗
xM , ∇B∗ = dλ ⊗ idT ∗M

and (∇B∗)(B−1)∗ = λ−1dλ⊗ idT ∗
xM . It is clearly symmetric. �

6. Intertwining: a symmetric positive case

In this section, we assume that B = 0. According to Proposition 5.1, −L�
B

is symmetric, non-negative, with respect to 〈·, ·〉B. As LW,B is symmetric with
respect to this metric, then MB, defined in (4.16), is symmetric too. We denote
by ρB the infimum over M of the smallest eigenvalue of B∗MB(B∗)−1:

ρB = inf
x∈M

{
smallest eigenvalue of B∗MB(B∗)−1

}
. (6.1)

We also assume that ρB is bounded from below. As we already said, the genera-
tor LW,B is essentially self-adjoint. With this new assumption, LW,B is the sum of

a symmetric non-negative operator L
�
B and a bounded potential MB. So we could

obtain a new proof of the the essential self-adjointness as a generalization of proof
of Strichartz in [20]. In order to obtain the intertwining relation, we need to show
that (B∗)−1dPtf is the unique L2 strong solution to the Cauchy problem{

∂tF = LW,BF

F (., 0) = G ∈ L2(B, µ)

where the mapping t 7→ F (., t) is continuous from R+ to L2(B, µ). Remark that
we are looking for a strong solution. Actually, as we do not know the domain
of LW,B, we cannot use the uniqueness in the sense of self-adjoint operator.

Proposition 6.1. Assume that B = 0 and that MB is uniformly bounded from
below. Let F be a solution of the L2 Cauchy problem above. Then, we have

F (., t) = QB
t (G), t ≥ 0.

Proof. We generalize the argument of [17] and [1] which deal respectively with the
case of a Laplacian in a Riemannian manifold and the case of our operator LW,B

in Rn. By linearity, it is sufficient to show the uniqueness of the solution for the
zero initial condition. Replacing the solution F by e−ρBtF , let assume that MB is
positive semi-definite. For every φ ∈ C∞c (M) and τ > 0, we have:∫ τ

0

∫
M

φ2〈F,L�
BF 〉B dµ dt =

∫ τ

0

∫
M

φ2〈F, (LW,B +MB)F 〉B dµ dt

=

∫ τ

0

∫
M

φ21

2
∂t|F |2B dµ dt+

∫ τ

0

∫
M

φ2〈F,MBF 〉B dµ dt

≥
∫
M

φ21

2
|F (., τ)|2B dµ.
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On the other hand, by the integration by parts formula of proposition 5.1, we
have ∫ τ

0

∫
M

φ2〈F,L�
BF 〉B dµ dt = −

∫ τ

0

∫
M

〈∇(φ2F ),∇F 〉B dµ dt

= −
∫ τ

0

∫
M

φ2|∇F |2B dµ dt

− 2

∫ τ

0

∫
M

φ〈∇φ⊗ F,∇F 〉B dµ dt.

By Cauchy-Schwarz inequality, we have for every λ > 0,

2 |〈∇φ⊗ F,∇F 〉B| ≤ λ|∇φ|22|F |2B +
1

λ
φ2|∇F |2B. (6.2)

Combining the above inequalities, in the particular case of λ = 2, we obtain

1

2

∫
M

φ2|F (., τ)|2B dµ ≤ −
1

2

∫ τ

0

∫
M

φ2|∇F |2B dµ dt

+ 2

∫ τ

0

∫
M

|∇φ|22|F |2B dµ dt.

By completeness of M , there exists a sequence of cut-off functions (φn)n∈N
in C∞c (M) such that (φn)n converge to 1 pointwise and ‖∇φn‖∞ → 0 as n → ∞.
Plugging this sequence in the previous inequality, gives∫

M

|F (., τ)|2B dµ = 0, τ > 0. (6.3)

Hence F = 0 in C0 (R+, L
2(B, µ)). �

Theorem 6.2. Assume that B = 0 and that MB is uniformly bounded from below.
Then the semi-groups P and QB are intertwined by (B−1)∗d, i.e for every f ∈
C∞c (M)

(B−1)∗dPtf = QB
t

(
(B−1)∗df

)
, t ≥ 0.

Proof. The main argument is to prove that F (., t) = (B−1)∗dPtf is a solution of
the previous L2 Cauchy problem with initial condition G = (B−1)∗df . First, G is
in L2(B, µ) since f is compactly supported. For every t > 0, we have:∫

M

|F (., t)|2B dµ =

∫
M

|(B−1)∗dPtf |2B dµ

=

∫
M

|dPtf |2 dµ

= −
∫
M

PtfLPtf dµ,
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which is finite since Ptf ∈ D(L) ⊂ L2(µ). So F (., t) is in L2(B, µ) for every t > 0.
Besides, the L2 continuity is proven by the same calculus, since for every t, s ≥ 0,∫

M

|F (., t)− F (., s)|2B dµ = −
∫
M

(Ptf −Psf)L(Ptf −Psf) dµ. (6.4)

By spectral theorem, this is upper bounded by (supx∈R+
|
√
x(e−tx − e−sx)|)2‖f‖22

which tends to zero as s tends to t > 0 (see [19] for more details on spectral
theorem). For the right-continuity in t = 0, we use that∫

M

(Psf − f)L(Psf − f) dµ =

∫ s

0

∫ s

0

∫
M

PtLfPuL
2f dµ du dt. (6.5)

Finally, the commutation property 4.11, yields

∂tF = (B−1)∗dLPtf = LW,B
(
(B−1)∗dPtf

)
= LW,BF.

The result follow by the uniqueness of the solution of the Cauchy problem. �

Now, we are able to give a covariance representation, as in theorem 3.4, using
the semi-group QB

t : for all f, g ∈ C∞c (M),

Covµ(f, g) =

∫ +∞

0

(∫
M

〈
(B−1)∗df,QB

t ((B−1)∗dg)
〉
B
dµ

)
dt. (6.6)

The main result is a generalization of an inequality due to Brascamp and Lieb,
in [7], known as Brascamp-Lieb inequality.

Theorem 6.3. Assume that B = 0 and that MB is positive definite, then for every
f ∈ C∞0 (M) we have the generalized Brascamp-Lieb inequality:

Varµ(f) ≤
∫
M

〈df, (B∗MB(B∗)−1df〉 dµ.

Firstly, we need a little lemma.

Lemma 6.4. Let C and D be symmetric non-negative operators such that D and
C +D are invertible. Then we have

0 ≤ D−1 − (C +D)−1.

Proof. We have:

D−1 − (C +D)−1 = (C +D)−1CD−1,

and we have

〈(C +D)−1CD−1α, α〉 = 〈CD−1α, (C +D)−1α〉.
Letting (C +D)−1α = β this equals

〈CD−1(C +D)β, β〉 = 〈CD−1Cβ, β〉+ 〈Cβ, β〉
= 〈D−1Cβ,Cβ〉+ 〈Cβ, β〉 ≥ 0,

since D−1 and C are non-negative. �
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Proof. First, let assume that ρB is positive. This implies that for all 1-form α, we
have ∫

M

〈(−LW,B)α, α〉B dµ ≥ ρB

∫
M

|α|2B dµ. (6.7)

So −LW,B is essentially self-adjoint and bounded from below by ρB id. Then it
is invertible in L2(B, µ) i.e given any smooth compactly supported 1-form α, the
Poisson equation −LW,Bβ = α admits a unique solution β in the domain of LW,B

which has the following integral representation:

β =

∫ +∞

0

QB
t (α) dt = (−LW,B)−1α. (6.8)

Using the variance representation formula (6.6), we have

Varµ(f) =

∫ ∞
0

(∫
M

〈
(B∗)−1df,QB

t

(
(B∗)−1df

)〉
B
dµ

)
dt

=

∫
M

〈
(B∗)−1df,

∫ ∞
0

QB
t

(
(B∗)−1df

)
dt

〉
B

dµ

=

∫
M

〈
(B∗)−1df, (−LW,B)−1

(
(B∗)−1df

)〉
B
dµ

=

∫
M

〈
(B∗)−1df, (−L�

B +MB)−1
(
(B∗)−1df

)〉
B
dµ

Using the lemma 6.1 to C = −L�
B and D = MB, we have:

Varµ(f) ≤
∫
M

〈
(B∗)−1df,M−1

B

(
(B∗)−1df

)〉
B
dµ

≤
∫
M

〈
df,
(
B∗MB(B∗)−1

)−1
df
〉
dµ

Now, when the operator MB is not uniformly bounded from below by a positive
constant, we need to regularize. For all ε > 0, the operator εid−LW,B is invertible
and we have the following integral representation for all 1-form α:

(εid− LW,B)−1α =

∫ +∞

0

e−εtQB
t α dt. (6.9)

Similarly, (εid−L) is invertible on the sub-space of centred functions and we have
the integral representation for all centred f ∈ C∞c (M):

(εid− L)−1f =

∫ +∞

0

e−εtPtf dt := gε. (6.10)

We have:

Varµ(f) =

∫
M

f 2 dµ



15

=

∫
M

f(εid− L)gε dµ

= ε

∫
M

fgε dµ+

∫
M

f(−L)

(∫ +∞

0

e−εtPtf dt

)
dµ

= ε

∫
M

fgε dµ+

∫ +∞

0

e−εt
∫
M

f(−L)Ptf dµ dt

= ε

∫
M

fgε dµ+

∫ +∞

0

e−εt
∫
M

〈
(B∗)−1df,QB

t ((B∗)−1df)
〉
B
dµ dt

= ε

∫
M

fgε dµ+

∫
M

〈
(B∗)−1df,

∫ +∞

0

e−εtQB
t ((B∗)−1df) dt

〉
B

dµ

= ε

∫
M

fgε dµ+

∫
M

〈
(B∗)−1df, (εid− LW,B)−1((B∗)−1df)

〉
B
dµ.

We can apply the lemma to εid− LW,B = εid− L�
B +MB. We have:

Varµ(f) ≤ ε‖f‖L2(µ)‖gε‖L2(µ) +

∫
M

〈
(B∗)−1df, (MB)−1((B∗)−1df)

〉
B
dµ.

Finally, we have

ε‖gε‖L2(µ) =

∥∥∥∥∫ +∞

0

e−tPt/εf dt

∥∥∥∥
L2(µ)

≤
∫ +∞

0

∫
M

e−t(Pt/εf)2 dµ dt.

By ergodicity of P and dominated convergence, this term converges to 0 as ε→ 0.
This ends the proof. �

An immediate corollary of this theorem is the Poincaré inequality.

Theorem 6.5. Assuming that B = 0 and that ρB is positive, for all f ∈ C∞c (M),
we have

Varµ(f) ≤ 1

ρB

∫
M

|df |2 dµ,

In the case where MB is only positive and not uniformly bounded from below
(i.e ρB = 0), this inequality is trivially true. Let us give an alternative proof
which does not use the generalized Brascamp-Lieb inequality, and thus, avoids the
inversion of LW,B and its integral representation.

Proof. Using a time change and the symmetry of the semi-group QB, we have a
new representation of the variance:

Varµ(f) = 2

∫ ∞
0

(∫
M

〈
(B∗)−1df,QB

2t((B
∗)−1df)

〉
B
dµ

)
dt

= 2

∫ ∞
0

(∫
M

∣∣QB
t ((B∗)−1df)

∣∣2
B
dµ

)
dt.
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Let

φ(t) =

∫
M

∣∣QB
t ((B∗)−1df)

∣∣2
B
dµ. (6.11)

We have

φ′(t) = 2

∫
M

〈
QB
t ((B∗)−1df), LW,BQB

t ((B∗)−1df)
〉
B
dµ

= 2

∫
M

〈
QB
t ((B∗)−1df), (L

�
B)QB

t ((B∗)−1df)
〉
B
dµ

− 2

∫
M

〈
QB
t ((B∗)−1df),MBQ

B
t ((B∗)−1df)

〉
B
dµ

= −2

∫
M

∣∣∇QB
t ((B∗)−1df)

∣∣2
B
dµ

− 2

∫
M

〈
QB
t ((B∗)−1df),MBQ

B
t ((B∗)−1df)

〉
B
dµ

≤ −2

∫
M

〈
QB
t ((B∗)−1df),MBQ

B
t ((B∗)−1df)

〉
B
dµ

≤ −2ρBφ(t)

By Grönwall lemma, this implies

φ(t) ≤ e−2ρBtφ(0) = e−2ρBt
∫
M

|df |2 dµ. (6.12)

Integrating on R+ ends the proof. �

We finish with an interpretation of the Poincaré inequality in terms of spectral
gap.

Proposition 6.6. Assume that B = 0 and that ρB is positive then the spectral gap
λ1(−L, µ) satisfies

λ1(−L, µ) ≥ ρB (6.13)

This is a generalization to Riemannian manifolds of the Chen and Wang for-
mula established in the one dimensional case in [10]. This spectral gap gives an
exponential rate of convergence to equilibrium to the ergodic semi-group P.

7. Intertwining: general case

Except the strong condition of proposition 5.1, we do not have relevant con-

ditions for L
�
B to be symmetric non-negative. We are looking for a proof of the

intertwining which does not use this symmetry. Actually, we can release all as-
sumptions on the second order operator if we are ready to strengthen the conditions
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on the potential MB. In this case, the eigenvalue ρB is not a good criterion any-
more. We need to find a quantity which offsets the lack of symmetry. For all
1-form α, according to 5.3, we have:∫

M

〈
α,L

�
Bα
〉
B
dµ = −

∫
M

|B∗∇α|2 dµ+

∫
M

〈B∗∇α,B(B∗α)〉 dµ

= −
∫
M

∣∣∣∣B∗∇α− 1

2
BB∗α

∣∣∣∣2 dµ+

∫
M

1

4
|BB∗α|2 dµ

≤
∫
M

〈B∗α,NBB
∗α〉 dµ

where

NB(x) =
1

4
Btx.Bx ∈ End(T ∗xM), (7.1)

and
B =

(
(∇B∗)(B∗)−1

)t − (∇B∗)(B∗)−1. (7.2)

Hence, we have:∫
M

〈
α,
(
−LW,B

)
α
〉
B
dµ ≥

∫
M

〈
B∗α,

[(
B∗MB(B∗)−1)

)s −NB

]
B∗α

〉
dµ. (7.3)

where (B∗MB(B∗)−1))
s

is the symmetric part of B∗MB(B∗)−1 with respect to
the Riemannian metric. So the quantity we need to control seems to be the
following:

ρ̃B = inf
x∈M

{
smallest eigenvalue of

(
B∗MB(B∗)−1)

)s −NB

}
. (7.4)

First, as in the symmetric case, we show the intertwining relation.

Theorem 7.1. Assume that (B∗MB(B∗)−1))
s − (1 + ε)NB is bounded from below

for some ε > 0. Then the semi-groups P and QB are intertwined by (B−1)∗d, i.e
for every f ∈ C∞c (M)

(B−1)∗dPtf = QB
t

(
(B−1)∗df

)
, t ≥ 0.

Proof. The core of the proof is still the uniqueness of the solution of the same L2

Cauchy problem. We assume that (B∗MB(B∗)−1))
s − (1 + ε)NB is non-negative

without any loss of generality. Let F be a solution with the zero initial condition.
For φ ∈ C∞c and τ > 0, as in the proof of proposition 6.1, we have∫ τ

0

∫
M

φ2〈F, (L�
B − (1 + ε)(B−1)∗NBB

∗)F 〉B dµ dt ≥
∫
M

φ21

2
|F (., τ)|2B dµ. (7.5)

On the other hand, according to the formula 5.2, we have∫
M

φ2〈F,L�
BF 〉B dµ = −

∫
M

〈∇(φ2F ),∇F 〉B dµ+

∫
M

〈B∗∇F,B(B∗φ2F )〉 dµ

= −
∫
M

φ2|∇F |2B dµ+

∫
M

φ2〈B∗∇F,B(B∗φ2F )〉 dµ
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− 2

∫
M

〈∇φ⊗ F, φ∇F 〉B dµ

= −
∫
M

φ2|B∗∇F − 1

2
BB∗F |2 dµ+

∫
M

φ2〈F,NBF 〉 dµ

− 2

∫
M

〈∇φ⊗ F, φ(∇F − 1

2
(B−1)∗BB∗F )〉B dµ

− 2

∫
M

〈∇φ⊗ F, φ1

2
(B−1)∗BB∗F 〉B dµ.

According to Cauchy-Schwarz inequality, for every λ, k > 0, we have:

2|〈∇φ⊗ F, φ(∇F − 1

2
(B−1)∗BB∗F )〉B| ≤ λ|∇φ⊗ F |2B +

1

λ
φ2|B∗∇F − 1

2
BB∗F |22

2|〈∇φ⊗ F, φ1

2
(B−1)∗BB∗F 〉B| ≤ k|∇φ⊗ F |2B +

1

k
φ2|1

2
BB∗F |22

So, we have:∫
M

φ2〈F,L�
BF 〉B dµ ≤

(
1

λ
− 1

)∫
M

φ2|B∗∇F − 1

2
BB∗F |2 dµ

+

(
1 +

1

k

)∫
M

φ2〈F,NBF 〉 dµ+ (λ+ k)

∫
M

|∇φ|22|F |2B dµ.

Combining the above inequalities, we obtain that there exists a c > 0 such that
for every φ ∈ C∞c (M), and every τ > 0

1

2

∫
M

φ2|F (., τ)|2B dµ ≤ c

∫ τ

0

∫
M

|∇φ|22|F |2B dµ dt. (7.6)

Using the same sequence of cut-off functions, we prove that F = 0. The end of
the proof follows the proof of theorem 6.2 without any differences. �

Remark that under the condition of proposition 7.1, ρ̃B is bounded from below,
since NB is non-negative. But unlike theorem 6.1, this proof requires a stronger
condition. The intertwining relation of proposition 7.1 give an new covariance
representation as in 6.6. This brings Brascamp-Lieb and Poincaré type inequalities.

Theorem 7.2. Assume that (B∗MB(B∗)−1))
s − (1 + ε)NB is bounded from below

for some ε > 0 and that ρ̃B is positive. Then for all f ∈ C∞c (M), we have

Varµ(f) ≤ 1

ρ̃B

∫
M

|df |2 dµ,
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Proof. Let f ∈ C∞c (M) and Ft = QB
t ((B∗)−1df). As in 6.8, we set

φ(t) =

∫
M

|Ft|2B dµ (7.7)

and we have the following representation of the variance

Varµ(f) =

∫ +∞

0

φ(t) dt. (7.8)

We have:

φ′(t) = 2

∫
M

〈
Ft, L

W,BFt
〉
B
dt

≤ −2

∫
M

〈
B∗Ft,

[(
B∗MB(B∗)−1)

)s −NB

]
B∗Ft

〉
dµ

≤ −2ρ̃Bφ(t)

So we have

φ(t) ≤ e−2ρ̃Bt
∫
M

|df |2 dµ. (7.9)

Integrating on R+ gives the results. �

As for the theorem 6.3, the result still make sense when ρ̃B = 0. With the same
kind of hypothesis ,we can also prove a generalized Brascamp-Lieb inequality.

Theorem 7.3. Assume that (B∗MB(B∗)−1))
s − (1 + ε)NB is bounded from below

for some ε > 0 and that (B∗MB(B∗)−1))
s −NB is positive definite, then for every

f ∈ C∞c (M) we have the generalized Brascamp-Lieb inequality:

Varµ(f) ≤
∫
M

〈
df,
[(
B∗MB(B∗)−1)

)s −NB

]−1
df
〉
dµ. (7.10)

Proof. First, let assume that ρ̃B is positive. Equation 7.3 implies that for all
1-form α we have: ∫

M

〈(−LW,B)α, α〉B dµ ≥ ρ̃B

∫
M

|α|2B dµ. (7.11)

As in the proof of theorem 6.3, −LW,B is invertible with the same integral
representation. So

Varµ(f) =

∫
M

〈
(B∗)−1df, (−LW,B)−1

(
(B∗)−1df

)〉
B
dµ. (7.12)

Furthermore, we have:∫
M

〈α, (−LW,B)α〉B dµ ≥
∫
M

〈
B∗α,

[(
B∗MB(B∗)−1

)s −NB

]
B∗α

〉
dµ

≥
∫
M

〈
α, (B∗)−1

[(
B∗MB(B∗)−1

)s −NB

]
B∗α

〉
B
dµ.
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As (B∗)−1
[
(B∗MB(B∗)−1)

s −NB

]
B∗ is symmetric with respect to 〈·, ·〉B and

positive by assumption, we can use the lemma 6.1 to obtain

Varµ(f) ≤
∫
M

〈
(B∗)−1df, (B∗)−1

[(
B∗MB(B∗)−1

)s −NB

]−1
B∗
(
(B∗)−1df

)〉
B
dµ.

Now, if ρ̃B = 0, we regularize as in the proof of theorem 6.3. It ends the
proof. �

We also obtain a bound for the spectral gap.

Proposition 7.4. Assume that (B∗MB(B∗)−1))
s−(1+ε)NB is bounded from below

for some ε > 0 and that ρ̃B is positive. Then the spectral gap λ1(−L, µ) satisfies:

λ1(−L, µ) ≥ ρ̃B. (7.13)

Remark that if the hypothesis of proposition 5.1 are satisfied, then NB = 0
and B∗MB(B∗)−1 is symmetric and so ρB = ρ̃B. In particular, theorem 7.2 (re-
spectively 7.3 and 7.4) can be applied to small perturbations of generators satis-
fying the conditions of theorem 6.5 (or 6.3 and 6.6) and the bounds obtained are
stable with respect to perturbations.
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[2] Marc Arnaudon, Koléhè Abdoulaye Coulibaly, and Anton Thalmaier. Horizontal diffusion
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[9] Djalil Chafäı and Aldéric Joulin. Intertwining and commutation relations for birth-death
processes. Bernoulli, 19(5A):1855–1879, 2013.

[10] Mu-Fa Chen and Feng yu Wang. Estimation of spectral gap for elliptic operators. Trans.
Amer. Math. Soc., 349(3):1239–1267, 1997.



21

[11] Bernard Helffer. Semiclassical Analysis, Witten Laplacians, and Statistical Mechanics.
World Scientific, 2002.

[12] Elton Hsu. Stochastic Analysis on Manifolds, volume 38 of Graduates Studies in Mathemat-
ics. American Mathematical Society, 2002.

[13] Michel Ledoux. A heat semigroup approach to concentration on the sphere and on a compact
riemannian manifold. Geom. Funct. Anal., 2(2):221–224, 1992.

[14] Michel Ledoux. Concentration of measure and logarithmic sobolev inequalities. In Séminaire
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