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Accumulating evidence shows that T cells penetrate the
central nervous system (CNS) parenchyma in several
autoimmune, infectious, and degenerative neurological
diseases. The structural and functional consequences for
CNS neurons of their encounter with activated T cells
have been investigated in several experimental systems,
including ex vivo co-cultures, electrophysiology, and in
vivo imaging. Here, we review the modalities of neuron/
T cell interactions. We substantiate the contention that T
cells are directly responsible for neuronal damage in a
large number of neurological diseases and discuss
mechanisms of neuronal damage mediated by distinct
T cell subsets, the impact of which differs depending on
the disease. Finally, we describe how a better under-
standing of the mechanisms at play offers new possibili-
ties for therapeutic intervention.

Introduction
Interactions between the CNS and the immune system
must be carefully balanced to allow the immune system to
fight invading pathogens, while preventing excessive in-
flammatory damage to this organ, given its vital functions
and poor regenerative capacity. A series of mechanisms,
collectively dubbed ‘immune privilege’, ensure that im-
mune reactions are kept to a minimum in the CNS. How-
ever, this immune privilege is relative, and there is a
crucial need for constant surveillance [1,2]. This is sup-
ported by observations that treatments aimed at prevent-
ing CNS access by circulating immune cells have led to
uncontrolled viral infection of the CNS [3].

Accumulating evidence shows that T cells actively pen-
etrate the CNS parenchyma in numerous inflammatory,
infectious, and degenerative diseases. Moreover, T cells are
also able to enter the CNS under non-pathological condi-
tions [4–6]. The consequence for CNS resident cells, and
more specifically for neurons, of their encounter with
activated T cells is a major issue. This review summarizes
current knowledge on immune–neuronal crosstalk in
the CNS, its mechanisms, functional consequences, and

implications for therapeutic intervention. The physiologi-
cal influence of T cells on steady state neurogenesis has
been recently reviewed [7] and will not be discussed here.

Modalities and consequences of neuron/T cell
interactions
T cell entry in the CNS

Entry into the CNS occurs either directly across the blood–
brain barrier from capillaries and post-capillary venules,
or indirectly through the choroid plexus and the subarach-
noid space via the cerebrospinal fluid [2,8,9]. Regardless of
their route of entry, the penetration of T cells into the CNS
relies on a number of molecular interactions involving
integrins, selectins, and chemokines [2]. The interaction
between a4b1 integrin expressed by T cells and its ligands,
vascular cell adhesion molecule (VCAM)-1 and fibronectin,
appears essential for efficient penetration of both CD4 and
CD8 T cells in the subarachnoid space [10–12]. However,
the requirements for migration into the CNS differ signifi-
cantly for these two T cell subsets. For example, cerebral
endothelial cells constitutively express MHC class I, but
not MHC class II, molecules, thereby allowing antigen-
specific transendothelial traffic into the brain for CD8 T
cells only [13]. Additionally, evidence indicates that CD4 T
cells that have gained access to the subarachnoid space
need to be reactivated by resident antigen-presenting cells
(APCs) to access the neuropil [2], an issue that remains
undetermined for CD8 T cells.

T cells also exhibit differences in terms of migration
depending on their activation status. Except during the
perinatal period [6], naı̈ve CD4 or CD8 T cells do not
readily penetrate the CNS because they do not express
the appropriate adhesion molecules and chemokine recep-
tors [4]. Conversely, activated T cells [9–12] and regulatory
CD4 T cells [5] can enter the CNS, but with regional
preferences depending on the functional subset considered
(Box 1). For example, T helper (Th)1 cells preferentially
infiltrate the spinal cord. By contrast, when Th17 cells are
more numerous than Th1 cells, inflammation in the brain-
stem, cerebellum, and cerebrum predominate. This may
result from the fact that Th1 cells rely on the a4b1 integrin
to penetrate the spinal cord, whereas Th17 cells are de-
pendent on the aLb2 integrin to enter the brain parenchy-
ma [14]. Th17 cells are also more sensitive than Th1 cells to
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kinin receptor-1 agonists, thereby inhibiting their migration
into the CNS [15]. Finally, it was recently reported that
other adhesion molecules, in particular Ninjurin 1, play an
important role for activated T cell crawling along the endo-
thelium and for their transmigration into the CNS [16].

It should also be noted that Th17 cell entry might result
from the disruption of blood–brain barrier tight junctions
by inflammatory cytokines. Such cytokines could target
local endothelial cells, which are known to express IL-17
and IL-22 receptors [17].

Expression of MHC class I molecules and antigen

presentation by neurons

T cells are activated, proliferate, and acquire effector
functions in response to an antigen-specific signal trans-
mitted by surface T cell receptors (TCRs), which recognize
short peptide fragments associated with MHC molecules at
the surface of APCs (Box 1).

Because neurons do not express MHC class II molecules,
they cannot interact in an antigen-specific way with effector
CD4 T cells. By contrast, strong evidence indicates that
CNS neurons can express MHC class I molecules, either
constitutively or during infection or inflammation. There
are, however, differences according to the neuronal subsets
or the developmental stages. For instance, adult cerebellar
Purkinje neurons express detectable levels of MHC class I
[18], whereas cortical neurons, which constitutively express
MHC class I molecules during development, exhibit a
progressive reduction of expression after postnatal day 23
[19,20]. MHC class I expression has also been demonstrated
in situ, appearing in association with synaptic structures
at steady state [18–20], and has been clearly documented
in inflammatory conditions or during neurodegeneration
[21–23]. Intriguingly, some neuronal populations, such
as the hypothalamic magnocellular neurons, appear more

easily inducible for MHC class I expression upon inflamma-
tion [24].

Expression of MHC class I molecules can also be induced
in primary cultures of CNS neurons by viral infection or
inflammatory stimuli such as IFN-g but not TFN-a [25,26].
The MHC class I inducing property of IFN-g is dramatically
increased by blockade of sodium channels by tetrodotoxin
[26,27]. Likewise, IFN-a/b is induced in neurons upon trig-
gering of membrane-bound Toll-like receptors and cytosolic
sensors for viruses such as retinoic acid-inducible gene
(RIG)-like receptors and promotes MHC class I expression
in an autocrine and/or paracrine manner [25,28]. Addition-
ally, ionotropic glutamate receptor stimulation leads to
potent nuclear factor (NF)-kB activation and strong MHC
class I protein expression in rat cerebellar granule cells [29].

Most antigenic peptides are derived from cytosolic pro-
teins upon their degradation by the immunoproteasome.
Transporters translocate the cytosolic peptides to the
endoplasmic reticulum where they associate with the
nascent MHC class I molecule. Importantly, neurons
can express the different components of this molecular
machinery under inflammatory or degenerative situations
[26,30,31], thereby expressing functionally relevant MHC
class I–peptide complexes [25].

These observations led to the concept that, in an inflam-
matory context, functionally impaired neurons may be-
come targets for CD8 T cell cytotoxicity. A systematic
analysis of the propensity of CNS neurons to express
MHC class I molecules and of the underlying molecular
mechanisms is, however, warranted.

Consequences for neurons of their antigen-dependent

interactions with CD8 T cells

Interactions between neurons and CD8 T cells have been
mostly studied in vitro using confocal imaging [27] and

Box 1. T cells: three main subsets, each with different flavors

The thymus-derived T cells constitute key players of antigen-specific

immune responses. They are characterized by surface expression of T

cell receptors (TCRs). Each TCR is composed of two highly variable

chains involved in antigen recognition, associated with invariant

signal transduction molecules. Each T cell expresses �30 000

identical TCRs. Most T cells (�97%) express TCRs composed of

variable a and b chains, which recognize short antigenic peptides

bound to MHC molecules at the surface of antigen-presenting cells

(APCs). They are divided into three main functional subsets:

(i) CD8 T cells are characterized by the surface expression of CD8

molecules. Their TCRs recognize antigenic peptides associated

with MHC class I molecules on nearly all nucleated cells.

Following activation, they produce cytotoxic factors, such as

perforin and granzymes, compartmentalized into secretory lyso-

somes called lytic granules. These granules traffic rapidly to the

contact zone between cytotoxic CD8 T cells and target cells and

their content is released in this confined area. This leads to the

formation of transmembrane pores, allowing entry of granzyme

molecules within the target cell. Consequently, local accumula-

tion of Ca2+ and activation of proteases and caspases may occur.

CD8 T cells also release cytokines such as TNF, Fas ligand, and

IFN-g. Thus, the main function of CD8 T cells is to destroy infected

or tumor cells and to activate innate immune cells such as

macrophages. More diverse functions have been reported for

CD8 T cells, owing to their ability to secrete chemokines and

other cytokines.

(ii) Helper CD4 T cells express CD4 molecules on their surface and

are activated when their TCR recognize antigenic peptides

associated with MHC class II molecules, which are expressed

on the surface of professional APCs only, namely dendritic cells,

macrophages, and B cells. Their main function is to promote

activation and differentiation of both innate (macrophages) and

adaptive (B cells, cytotoxic CD8 T cells) immune cells. This

function is carried out through the release of cytokines. Depend-

ing on the specific conditions of their initial activation, helper CD4

T cells can differentiate into various functional subsets differing

in the cytokines they synthesize. For instance, helper CD4 T (Th)1

cells produce IL-2, TNF, and IFN-g that enhance, among others,

the killing potential of macrophages and CD8 T cells. Th2 cells

produce IL-4, IL-5, IL-13, and promote activation and maturation

of B cells. T follicular helper cells are specialized in the secretion

of IL-21 and promote antigen-specific B cell immunity. Th17 cells

release IL-17, IL-21, and IL-22 and are involved in the activation

and recruitment of neutrophils. Myelin-specific Th17 cells are

highly encephalitogenic upon transfer into non-immunized

animals. However, the role played by individual Th17 cytokines

and by plasticity towards the Th1 lineage in vivo is still debated.

(iii) Regulatory CD4 T cells are key in the prevention of autoimmune

responses, the limitation of immune responses in tissues exposed

to foreign antigens, and terminating immune responses. The main

regulatory CD4 T cell type stably expresses the Foxp3 transcription

factor. Their ablation leads to rapid multi-organ inflammation.
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time-lapse videomicroscopy [25,32]. Much less information
is currently available on the in vivo consequences of such
antigen-specific neuron/CD8 T cell contacts, although in-
travital microscopy will undoubtedly soon provide novel
information [33,34].

Experimental evidence on the mechanisms whereby ef-
fector molecules of cytotoxic CD8 T cells disturb the electri-
cal excitability of neurons is sparse, but this has been
extensively studied in ventricular cardiomyocytes [35]. Both
cell types share features on electrical excitability. Because
most of the pathways involved in cardiomyocytes are also
present in neurons [36], it seems conceivable that similar
mechanisms will be used in both cases. Indeed, analysis of
the molecular consequences of cytotoxic granule release
using cardiomyocytes has provided insights into mecha-
nisms most likely also operational in neurons [36]. In addi-
tion, whole-cell patch clamp recordings revealed an
immediate impairment of electrical signaling in MHC class
I-expressing, peptide-loaded hippocampal neurons upon
contact with antigen-specific CD8 T cells. Electrical silenc-
ing was due to massive shunting of the membrane capaci-
tance, following insertion of channel-forming perforin,
which was paralleled by an increase of intracellular Ca2+.
These effects were mediated by perforin per se and could not
be induced by granzymes alone [32].

Importantly, cytokines released from T cells might also
contribute to direct and collateral disturbances of electrical
signaling in neurons. For instance, IFN-g secreted by both
CD4 and CD8 T cells was shown to induce neuronal
excitotoxicity by intracellular trans-signaling between
the IFN-g receptor and a Ca2+-permeable neuronal
AMPA/kainate receptor [37]. The impact of cytotoxic
CD8 T cells on neuronal electrical excitability might have
functional consequences in patients, for example, conduc-
tion blocks or paroxysmal neurological symptoms.

Once effector CD8 T cells are arrested, they establish
stable contacts with axons, dendrites or more rarely neu-
ronal somata in an antigen- and MHC class I-dependent
manner [25,27]. These stable contacts rapidly cause seg-
mental damage of neurites in the form of spheroids or
beads, independent of detectable morphological changes
of somata (Figure 1a). Localized transection of neurites
was also detected at contact sites with effector CD8 T cells
[27]. The molecular mechanisms whereby CD8 T cells
inflict structural damage to neurites are not fully under-
stood, although it probably results from the transfer of
cytolytic granule content [38]. It seems that cytokines such
as IFN-g and TNF-a are not able to promote direct local-
ized damage of neurites [27]. The contribution of other T
cell mediators such as Fas ligand, metalloproteinases, or
reactive oxygen species [39] is currently unknown.

Antigen-specific lysis of target cells by activated CD8 T
cells also applies to neurons, although peculiarities have
been described (Figure 1b). Indeed, despite the rapid forma-
tion of stable conjugates between CD8 T cells and neurons in
vitro, neuronal apoptosis is not observed before 3–4 hours
[25,40]. The delayed kinetics as well as experiments using
gene-deficient animals are consistent with cytotoxicity me-
diated by the triggering of Fas on the neuron by Fas ligand
expressed by CD8 T cells, rather than by release of pre-
formed lytic granules [32,40,41]. As neurons can upregulate

surface expression of Fas upon incubation with IFN-g [40], a
plausible scenario involves a dialog between CD8 T cells and
neurons at the contact zone. Recognition of specific MHC
class I–peptide complexes by T cells would promote the
polarized release of IFN-g, which would in turn enhance
neuronal Fas expression and susceptibility to apoptosis. In
addition, impairment of neuronal electrical activity would
enhance MHC class I expression on neurons and their
subsequent CD8 T cell-mediated killing [26].

Antigen-independent interactions between T cells and

neurons

These aspects have classically been discussed in autoim-
mune CNS diseases, in particular multiple sclerosis (MS)
and experimental autoimmune encephalomyelitis (EAE),
its main animal model. Activation of T cells and APCs
within the CNS leads to a local release of inflammatory
cytokines and cytotoxic molecules (perforin, granzyme,
death ligands, nitric oxide, reactive oxygen species, gluta-
mate). Moreover, damage to glial cells may result in indi-
rect axonal degeneration through the lack of trophic
support. In demyelinated neurons, an altered distribution
and expression of various ion channels and transporters
leads to local enhanced activity and intracellular calcium
accumulation with subsequent neuronal cell death [42].

CD4 T cells, which cannot recognize antigens on neu-
rons due to lack of expression of MHC class II molecules,
have nevertheless a major impact on neurons, eventually
causing apoptosis, in particular through the TNF-related
apoptosis-inducing ligand (TRAIL) pathway [43,44]
(Figure 2a,b). In brain slice/T cell co-cultures, activated
T cells induce oscillatory calcium alterations in neurons
[45], leading to calcium overload and death of neurons,
which can, however, be blocked by NMDA/AMPA/kainate
antagonists or inhibition of perforin. Among CD4 T cells,
Th17 cells exhibit a preferential ability to engage sus-
tained contacts with neurons [33]. In EAE, it was also
shown that neuron/Th17 cell contacts induce localized Ca2+

oscillations and neuronal injury, which could be reversed
by the NMDA receptor antagonist MK801. Importantly,
this damage was reversible, even during full-blown inflam-
matory attack, offering a window of opportunity for thera-
peutic intervention [33]. Interestingly, blockade of AMPA/
kainate receptors ameliorates the neurological sequelae in
EAE [46,47]. Reactive oxygen and nitrogen species pro-
duced by macrophages during neuroinflammation also
trigger mitochondrial pathology and initiate focal axonal
degeneration, a phenomenon reversible upon neutraliza-
tion of these mediators [48].

Paradoxically, the end result of neuron/T cell interac-
tion can even be beneficial. In co-culture experiments,
activated human CD8 T cells inhibit neurite outgrowth
without detectable neuronal apoptosis in a contact-depen-
dent but antigen-independent manner, whereas activated
CD4 T cells promote neurite outgrowth [49]. Interestingly,
activated T cells can produce neurotrophins [50], notably
brain-derived neurotrophic factor (BDNF), which may con-
tribute to axonal protection following T cell-directed ther-
apeutic strategies [51–53]. Collectively, these observations
support the concept that some T cells have neuroprotective
and/or neuroregenerative properties [50,54]. However, the
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nature of the T cells involved and the modalities of action
remain controversial [55–57].

It should be mentioned that several studies have dem-
onstrated that T cells exert beneficial effects not only

during pathological situations, but also under physiologi-
cal situations such as neurogenesis, learning and memory,
or responses to stress [7,58]. Of particular note, regulatory
CD4 T cells have been demonstrated to contribute to CNS
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Key:

20 μm
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Figure 1. Interaction of neurons with cytotoxic CD8 T cells. (a) Morphological changes of infected neurons following contact with Borna disease virus (BDV)-specific CD8 T

cells. In mammals, BDV replicates in central nervous system (CNS) neurons without damaging the host cells. BDV-induced encephalitis develops with preferential

accumulation of CD8 T cells within lesions, which play a central role in neuronal destruction [96]. CD8 T cells freshly purified from the brains of rats infected with BDV were

labeled with PKH-26 (red) and added to calcein-loaded (green) cultures of BDV-infected neurons [25]. The figure in the left panel is taken at the onset of neuron/CD8 T cell

interaction. The figure in the right panel, taken after 45 minutes of stable neuron/CD8 T cell contact, shows calcein leakage throughout the culture, affecting both neurites

and neuronal somas. After longer neuron/CD8 T cell interaction (4–6 hours), neuronal apoptosis and progressive disaggregation of the neuronal network were noted [25].

(b) Schematic illustration of the consequences of antigen-specific CD8 T cell interactions with neurons. Upon recognition of antigenic peptides associated with major

histocompatibility complex (MHC) class I molecules through their specific T cell receptors (TCRs), cytotoxic CD8 T cells release lytic granules containing perforin and

granzyme A and B in a polarized manner towards the target structure, here an axon [41]. Cytokines such as interferon (IFN)-g and tumor necrosis factor (TNF)-a are also

released and will affect the biology of the neurons that express their receptors, sensitizing them to apoptosis [26,37]. Fas ligand at the cell surface of the CD8 T cells can

engage Fas expressed by neurons and initiate an apoptotic cascade [40]. Other mediators may be involved in the dialog between neurons and CD8 T cells including other

cytokines, chemokines, neuromediators, reactive oxygen species, and metalloproteinases.
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homeostasis and to counterbalance inflammation [59,60].
The potential of CNS resident cells to induce regulatory
CD4 T cells, and in particular of neurons through their
production of TGF-b, thereby contributing to a local anti-
inflammatory environment, has attracted considerable at-
tention [61].

The influence of neurotransmitters in the dialog be-
tween neurons and immune cells is just beginning to be
recognized and much remains to be explored [62,63].

Neuron/T cell interactions under pathophysiological
conditions
The in vitro and in vivo data summarized in the previous
section stress the multiple modalities and consequences of

antigen-specific and antigen-independent interactions of
neurons with T cells. Consequently, the concept that neu-
rons may serve as targets for T cells has emerged in a
variety of neurological disorders (Box 2). Specific examples
of how neurons interact with T cells during disease are
detailed below.

Non-infectious diseases associated with antigen-

dependent interactions of neurons with CD8 T cells

These recent years, neurons have been identified as targets
of adaptive immune responses in a growing number of
autoimmune CNS disorders [64–66]. In diseases associat-
ed with antibodies to synaptic and extra synaptic neuronal
cell surface antigens, the antibody-mediated disturbance of
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Figure 2. Interaction of neurons with helper CD4 T cells. (a) Interaction of T helper (Th)17 CD4 T cells (tdRFP-red) with neuronal processes (EGFP-blue) in the brainstem of a

mouse suffering from experimental autoimmune encephalomyelitis, as assessed by two-photon laser scanning microscopy. Areas of close proximity at neuronal process

varicosities (blue, dotted area) were identified through the colocalization channel (white). Reproduced, with permission, from [33]. (b) Schematic illustration of antigen-

independent interactions between helper CD4 T cells and neurons. Due to the lack of expression of major histocompatibility complex (MHC) class II molecules by neurons

[21,23], T cell receptors (TCRs) cannot bridge CD4 T cells with neurons. Rather, adhesion molecules may be at play, such as lymphocyte function-associated antigen-1

(LFA1) on T cells interacting with intercellular adhesion molecules (ICAM) on the neuron surface [33]. Th1 cells, and even more so Th17 cells, have demonstrated a

propensity to contact axons in vivo, promoting increase in intraneuronal Ca2+ concentration that precedes axonal and neuronal injury [33]. Candidate molecules that might

be involved in these processes include neuromediators, in particular glutamate, the array of cytokines and chemokines produced by the different CD4 T cell subsets,

reactive oxygen species, and matrix metalloproteinases. Some CD4 T cells, notably Th1 cells, also produce cytotoxic mediators such as granzymes or perforin. TNF-related

apoptosis-inducing ligand (TRAIL), Fas ligand, and other members of the tumor necrosis factor (TNF) family as well as interferon (IFN)-g are also important candidates for

the deleterious effects of CD4 T cells on neurons, acting either directly to induce neuronal apoptosis or through sensitization to excitotoxic molecules [37,43–47].
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synaptic transmission and neuronal excitability is often
reversible, accounting for a generally good response to
immunotherapy. In diseases associated with antibodies to
intracellular neuronal antigens, CD8 T cell-mediated neu-
rotoxicity seems to be the prevailing pathogenic mechanism,
causing progressive neuronal cell death and neurological
decline with poor response to immunotherapy [67]. For
instance, selective loss of Purkinje neurons in paraneoplas-
tic cerebellar degeneration (PCD) might be mediated by
cytotoxic CD8 T cells recognizing the onconeural antigen
Cdr2, a cytoplasmic antigen expressed by both tumor cells
and Purkinje neurons. Indeed, T cell infiltration in the
cerebellum can be detected in PCD [68,69] and Purkinje
neurons can express MHC class I molecules [18].

Rasmussen’s encephalitis (RE) is considered a paradigm
of a MHC class I restricted CD8-mediated epilepsy syn-
drome. This intractable focal epilepsy is associated with
spreading inflammation affecting only one hemisphere.
The pronounced T cell infiltrate is predominantly com-
posed of CD8 T cells, leading to substantial loss of neurons
and astrocytes [22,70]. Lytic granules in T cells exhibit a
polar orientation towards the neuronal plasma membrane
in the absence of notable Fas ligand expression. Neurons
display impaired axonal transport as well as signs of
apoptosis [22]. CD8 T cells found in RE lesions exhibit a
restricted TCR diversity, suggesting that they expanded
from few precursors locally responding to as yet unidenti-
fied antigens [71].

Neuron/CD8 T cell interactions during viral encephalitis

Virus-specific CD8 T cells play a central role in the control
of many neurotropic viruses, such as West Nile virus
(WNV), or herpes simplex virus type 1 (HSV-1). However,
their pathological impact differs according to the virus
studied, with CD8 T cells either clearing infection through
killing of infected cells or maintaining viral latency without
destroying the infected neurons.

WNV, a mosquito-transmitted neurotropic flavivirus,
leads to severe meningoencephalitis in humans. Mouse
models have unambiguously revealed that CD8 T cells
control viral infection in the CNS through both perforin
and Fas/Fas ligand pathways [72]. Interestingly, infection
favors a productive interaction between antiviral CD8 T
cells and neurons. Indeed, infected neurons rapidly pro-
duce the CXCL10 chemokine that promotes recruitment of
CXCR3-expressing CD8 T cells into the CNS [73]. More-
over, WNV infection induces TRAIL-R2 and Fas expres-
sion on neurons, thereby inhibiting viral replication and
favoring neuronal killing by WNV-specific CD8 T cells
[72,74].

In both mice and humans, HSV-1 enters a lifelong latent
state within infected sensory neurons in the trigeminal
ganglia. Strikingly, activated CD8 T cells are found in
direct contact with infected neurons [75] and frequently
polarize their TCR to the interface between T cells and
neurons without causing overt cell lysis. In mice, these
CD8 T cells are largely virus-specific and use at least two
non-cytolytic mechanisms to maintain HSV-1 latency. The
first one involves the secretion of IFN-g, which inhibits
expression of HSV-1 gene products required for viral reac-
tivation. The second involves release of granzyme B-con-
taining lytic granules, which curiously does not activate
neuronal caspases but rather degrades the HSV-1 imme-
diate early protein ICP4, while sparing the infected neu-
rons [76]. Of note, CD8 T cells residing in the infected
trigeminal ganglia are not renewed by the circulating T cell
pool, and resemble the tissue-resident memory CD8 T cells
found in the brain following viral elimination [77].

Pathogenic contribution of CD4 T cells in
neurodegenerative disorders
CNS infiltration and neuronal killing by T cells are also
observed in prototypical neurodegenerative disorders such
as Parkinson’s disease (PD), or amyotrophic lateral sclero-
sis. The mechanisms responsible for the loss of dopami-
nergic neurons in PD are not fully deciphered, but
immunohistochemical studies have revealed a localized
infiltration by both CD4 and CD8 T cells in the substantia
nigra [78]. In addition, the 1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine (MPTP) intoxication model of PD applied
to gene-deficient mice revealed that CD4, but not CD8, T
cells contribute to loss of dopaminergic neurons [78]. The
deleterious CD4 T cells appear to act on dopaminergic
neurons in a Fas ligand-dependent manner. Moreover,
immunization with nitrated a-synuclein activates specific
Th1 and Th17 cells that enhance the loss of dopaminergic
neurons in the MPTP model [79]. Conversely, regulatory
CD4 T cells were shown to provide neuroprotection,
through attenuation of microglial activation [79,80].

Neuron/T cell contribution to MS
Genetic studies and data from animal models have long
suggested the key contribution of CD4 T cells in MS
pathogenesis. However, the importance of CD8 T cells in
the disease process has recently emerged. Indeed, CD8 T
cells by far outnumber CD4 T cells in white matter lesions.
Moreover, CD8 T cells are frequently found in the paren-
chyma, whereas CD4 T cells display a more perivascular

Box 2. What is the range of immune-mediated disorders

targeting neurons?

Immune-mediated disorders targeting neurons can be triggered by

local infection, for instance by neurotropic viruses [72,75,96]. These

diseases can also be triggered by distant infection (e.g., Sydenham’s

chorea), vaccination (post-infectious/-vaccinal encephalomyelitis),

and a variety of malignancies (paraneoplastic encephalomyelitis)

[64–67]. They also can occur without an as yet identifiable cause

(autoimmune encephalomyelitis). Indeed, many neurological dis-

eases are associated with autoantibodies specifically targeting

neurotransmitter receptors involved in excitatory (AMPA-, NMDA-,

mGluR1, and mGluR5 receptors) and inhibitory (GABAB and glycine

receptors) synaptic transmission, or in the regulation of neuronal

excitability (voltage-gated potassium channels) [64,65,67]. Recently,

diseases in which a given subset of neurons is damaged or

destroyed, such as idiopathic central diabetes insipidus or narco-

lepsy, have also been shown to have an immune-mediated origin,

with plausible involvement of CD8 T cells [97–99]. CD8 T cell-

mediated pathology is also highly suspected in encephalitis

associated with autoantibodies specific for intracellular neuronal

antigens (Hu, Ma2, glutamic acid decarboxylase) [67]. Immune

targeting of CNS neurons/axons in MS has recently emerged as a

likely mechanism [44,87]. Intriguingly, neurodegenerative diseases

such as PD are also associated with focal T cell inflammation [78]. T

cells are also postulated to play a role in amyotrophic lateral

sclerosis [100].
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distribution [81]. CD8 T cells are frequently found in close
apposition to oligodendrocytes, and destructed myelin and
axonal damage in white matter lesions correlates with the
number of CD8+ T cells [82]. Further, CD8 but not CD4 T
cells show oligoclonal expansion within the CNS, suggest-
ing local activation by antigens [83]. Along with the clear
MHC class I expression by neurons and all other CNS cell
types in inflammatory MS lesions [23], these findings
suggest that CD8 T cells could contribute as effector cells
to the damage of both oligodendrocytes/myelin and axons
in white matter and possibly gray matter lesions.

Gray matter MS lesions display much lower T cell
infiltration compared to white matter [84]. However, gray
matter lesions show a pronounced preponderance of CD8 T
cells [85]. In these lesions, demyelination and oligodendro-
cyte death is accompanied by axonal and dendritic tran-
section, reduced synaptic density, and apoptotic changes
within neuronal perikarya [84].

It should be reminded, however, that CD4 T cells are
still considered as important pathogenic effectors in MS.
Indeed, the predominance of CD4 T cells in active MS
lesions [86] and a predominance of CD4 T cells in chronic
active lesions in the spinal cord gray matter when com-
pared to chronic inactive disease have been described [44].
Recently, perivascular CD3 T cell infiltration was seen in
82% of cortical plaques [87]. CD8 T cells were present in
77% of these plaques. Owing to limited tissue availability,
CD4 T cells were not investigated. Thus, it is most likely
that CD4 together with CD8 T cells contribute to neuron/
axon injury in MS.

To date, the underlying mechanisms of tissue injury can
only be postulated from rather indirect evidence. In MS
tissue, axons undergo pathology eventually leading to
transection and neuronal cell bodies are reduced in num-
bers [88]. Evidence for apoptotic neuronal death was pro-
vided [84], possibly resulting from retrograde degeneration
or direct injury. It should, however, be noted that axonal
injury does not necessarily lead to subsequent death of the
parent cell body [89]. A primary role for T cell-mediated
neuronal cell death is also conceivable. In fact, progressive
gray but not white matter atrophy, observed within 3
months of the first relapse in people with MS [90], suggests
a direct insult to neurons rather than a retrograde mecha-
nism subsequent to axonal pathology. Whole brain MR
spectroscopy studies also indicate gray matter involve-
ment early in the disease [91].

Therapeutic implications
From all we have described, it is perspicuous that blockade
of T cell entry and T cell effector function appears as a highly
effective approach to limit CNS damage. In fact, one strate-
gy based on blocking the a4 integrin [10] has already led to
the therapeutic development of Natalizumab, a monoclonal
antibody that inhibits transmigration via the blood–brain
barrier. Future strategies aimed at blocking leucocyte traf-
ficking should take into account the T cell subsets involved
in the disease process, which differ in their molecular and
topographical requirements [14]. It has also to be kept in
mind that the pathologic processes are already ongoing
when the patients consult for the first time, thereby limiting
the potential efficacy of T cell transmigration blocking

strategies. Thus, a focus of inflammation in the CNS may
increase in size as a result of a ‘driving force’ for pathology
arising from the lesion itself and no longer from outside the
CNS.

Another alternative therapeutic approach lies in trying
to disrupt local neuron/T cell interactions. The first step of
direct neuron/T cell crosstalk is adhesion of the cells, for
which lymphocyte function-associated antigen-1 (LFA-1)
seems to play a major role [33]. However, Efalizumab, an
LFA-1 blocking antibody, was withdrawn from the market
due to increased risk of viral opportunistic infections.
Importantly, any intervention directed towards processes
within the CNS will require sufficient levels of the modu-
lating agent on site. Despite relative leakiness of the
blood–brain barrier in chronic neuroinflammation, size
and lipophilic properties will be important parameters
to consider for local availability.

Downstream events in inflammatory neuronal injury
involve NMDA/AMPA and ion channels, mitochondrial
alterations, nitrogen or oxygen species, excitotoxicity, cy-
totoxicity, calcium upregulation, and apoptotis [88,92].
Therapeutic interventions targeting these pathways range
from AMPA and sodium channel/release blockers to anti-
oxidative strategies or anti-apoptotic concepts.

Due to their proinflammatory and cell death-inducing
properties, TNF/TNF receptor family members were also
considered as therapeutic targets. Indeed, TNF-a blocking
agents are already used in clinical practice to treat several
autoimmune diseases. However, a phase II trial applying a
neutralizing soluble TNF receptor to MS patients had to be
stopped because of disease exacerbations [93]. This appar-
ent discrepancy may be explained by the nerve growth
promoting properties of TNF-a in the CNS. Interestingly, a
genetic polymorphism associated with MS [94], but not
with other autoimmune diseases, leads to expression of a
soluble form of TNF receptor-1 that can block TNF-a and
thus mimics the effect of TNF-blocking drugs [95]. Other
members of the TNF family, such as TRAIL and Fas
ligand, were also investigated as potential therapeutic
targets. It became clear, however, that these death path-
ways are double-edged swords, making them unsuitable
for treatment purposes in neuroinflammatory diseases
such as MS.

Concluding remarks
Given its major pathological consequences, the impact of T
cells on neuronal biology has been very actively investigat-
ed in recent years. However, much remains to be under-
stood about how the various T cell subsets affect neuronal
function and survival (Box 3). The other side of the equa-
tion, how neurons modify T cell functions and viability, has
been much less investigated but is equally important to
consider.

We have focused on diseases for which recent data have
documented the often deleterious effects of CD4 and/or CD8
T cells on neurons. These examples likely represent only a
fraction of the pathological conditions in which T cells
contribute to functional or structural neuronal CNS tissue
alteration. It is our contention that an increasing number of
neurological and psychiatric illnesses will turn out to be, at
least in part, immune mediated. Understanding the specific
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contribution of T cells in these ailments could provide
drastic shifts in therapeutic care.

Currently, the most efficient approach to inhibit T cell-
mediated damage within the CNS is to block T cell entry.
Very efficient drugs approved for MS patients, such as
Natalizumab and Fingolimod, are based on this concept.
The use of these molecules may well be extended to other
inflammatory diseases of the CNS, provided that the ther-
apeutic benefits outweigh the rare but severe infectious
side effects. However, more targeted approaches aimed at
blocking specific T cell functions in the CNS or their
consequences in neurons/axons are still needed.
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