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The Generalized Non-Linear Schrödinger Equation

8 In a model of light-wave propagation in an optical fibre, the evolution of
the slowly varying pulse envelope A obeys the Generalized Non-Linear
Schrödinger Equation (GNLSE)
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taking into account phenomena such as
I linear attenuation
I linear dispersion
I non linear effects: non linear dispersion, instantaneous Kerr effect,

delayed Raman effect

8 The GNLSE is solved for the initial condition at z = 0

∀t ∈ R A(0, t) = a0(t) (2)

where a0 is a given function and for all t ∈ R and all z ∈ [0,L] where L
denotes the length of the fiber.

Theory behind the IP method : a change of unknown

8 We introduce the linear operator
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and a subdivision zk , k ∈ {0, . . . ,K} of [0,L]. We set hk = zk+1 − zk and
zk+1

2
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8 Solving (1)–(2) is equivalent to solving the sequence of connected
problems (Pk)k=0,...,K−1 where (we set A−1 = a0)

(Pk)
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Ak(zk) = Ak−1(zk)

8 We introduce as new unknown the mapping

Aip
k : (z, t) ∈ [zk , zk+1]× R 7−→ exp(−(z − zk+1
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where exp((z − zk+1
2
)D) refers to the continuous group of bounded

operators on L2(R,C) defined by D [1].

8 The unknown Aip
k is solution to the following ODE problem over each

subinterval [zk , zk−1] where t acts as a parameter [1]
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Implementation of the IP method

8 Solving pb (Pk) through pb (Qk) is done in 3 steps:
1. Compute the initial data Aip

k (zk) = exp(−(zk − zk+1
2
)D)Ak(zk)

corresponding to the change of unknown (3)
2. Solve problem (Qk) for Aip

k (zk)

3. Compute Ak(zk+1) = exp((zk − zk+1
2
)D)Aip

k (zk+1) by the inverse of
mapping (3)

8 This is equivalent to solving the following three nested problems
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where Aip
k (zk+1) represents the solution to (5) at nodezk+1.

Ü The solution of (1) at grid point zk+1 is given by Ak(zk+1) = A−k (zk+1).

8 Problems (4) and (6) are solved by Fourier Transforms whereas
problem (5) is solved by the 4th order Runge-Kutta (RK4) method.

Theoretical comparison to the Symmetric Split-Step Fourier method

8 The Symmetric Split-Step method consists in solving over each
subinterval [zk , zk+1] for k ∈ {0, . . . ,K − 1}, the following 3 nested
problems:
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where Bk(zk+1, t) is the solution to problem (8) at node zk+1.

Ü The solution of (1) at grid node zk+1 is approx. by Ak(zk+1) = A−k (zk+1).

8 In the IP method are solved the nested problems (4)–(5)–(6) instead of
(7)–(8)–(9). The only difference is (5) replaced by (8).

å It’s very easy to modify a program implementing the S3F method to
solve the GNLSE into a program implementing the IP method.
It suffices to change N into G in the RK4 solver for problem (8).

Experimental Results and Comparison

8 Comparison of convergence order : we have shown in [1] that the
IP-RK4 method is 4th order accurate (RK4 error) whereas the S3F-RK4
method is 2nd order accurate (due to the use of Strang splitting formula).

Figure : Experimental convergence curves for the IP-RK4 and S3F-RK4 methods.
Quadratic relative error versus step size in logarithmic scale (see [1] for simulation details).

8 Comparison of CPU time and relative quadratic error
‖A(L)− AK−1(L)‖L2/‖A(L)‖L2 on a test example chosen to match with a
typical case of high speed data propagation through a L = 20 km single
mode fibre in optical telecommunication (see [1] for simulation
details).Tests were achieved on a Intel Core i5-4200M with 8Go RAM.

Method Step-size (m) CPU time (s) Relative quadratic error
S3F-RK4 100 1.48 2.5582 10−6

IP-RK4 100 1.42 1.4957 10−9

S3F-RK4 2.5 70.17 1.5968 10−9

S3F-RK4 10 14.49 2.555 10−8

IP-RK4 10 13.85 4.6192 10−13

Conclusion : Main features of the method

8 Accuracy : the IP-RK4 method is 4th order accurate whereas the
S3F-RK4 method is second order accurate (due to the use of Strang
splitting formula).
8 With the IP method, the use of an adaptive step-size control is
straightforward [2] which is not the case for the S3F-RK4 method [3].
8 The IP-RK4 method can be easily implemented by minor changes on a
S3F-RK4 program.
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Interaction Picture method for solving the NLSE in optics, M2AN, 2015.
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