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Abstract 28 

 29 

Soil moisture (SM) is a key state variable in understanding the climate system through its 30 

control on the land surface energy, water budget partitioning, and the carbon cycle. 31 

Monitoring SM at regional scale has become possible thanks to microwave remote sensing. 32 

In the past two decades, several satellites were launched carrying on board either radiometer 33 

(passive) or radar (active) or both sensors in different frequency bands with various spatial 34 

and temporal resolutions. Soil moisture algorithms are in rapid development and their 35 

improvements/revisions are ongoing. The latest SM retrieval products and versions of 36 

products that have been recently released are not yet, to our knowledge, comprehensively 37 

evaluated and inter-compared over different ecoregions and climate conditions. The aim of 38 

this paper is to comprehensively evaluate the most recent microwave-based SM retrieval 39 

products available from NASA’s (National Aeronautics and Space Administration) SMAP 40 

(Soil Moisture Active Passive) satellite, ESA’s led mission (European Space Agency) SMOS 41 

(Soil Moisture and Ocean Salinity) satellite, ASCAT (Advanced Scatterometer) sensor on 42 

board the meteorological operational (Metop) platforms Metop-A and Metop-B, and the ESA 43 

Climate Change Initiative (CCI) blended long-term SM time series. More specifically, in this 44 

study we compared SMAPL3 V4, SMOSL3 V300, SMOSL2 V650, ASCAT H111, and CCI 45 

V04.2 and the new SMOS-IC (V105) SM product. This evaluation was achieved using four 46 

statistical scores: Pearson correlation (considering both original observations and anomalies), 47 

RMSE, unbiased RMSE, and Bias between remotely-sensed SM retrievals and ground-based 48 

measurements from more than 1000 stations from 17 monitoring networks, spread over the 49 

globe, disseminated through the International Soil Moisture Network (ISMN). The analysis 50 

reveals that the performance of the remotely-sensed SM retrievals generally varies depending 51 

on ecoregions, land cover types, climate conditions, and between the monitoring networks. It 52 

also reveals that temporal sampling of the data, the frequency of data in time and the spatial 53 

coverage, affect the performance metrics. Overall, the performance of SMAP and SMOS-IC 54 

products compared slightly better with respect to the ISMN in situ observations than the other 55 

remotely-sensed products.  56 

 57 

 58 
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1. Introduction  59 

 60 

Surface soil moisture (i.e. the water content in the first few centimeters of the soil; 61 

referred to as SM in the following) is a key state variable in better understanding the climate 62 

system through controlling land surface energy, water budget partitioning (Chen et al., 2016; 63 

Koster et al., 2004; Miralles et al., 2014a; Miralles et al., 2014b; Pitman, 2003; Seneviratne et 64 

al., 2010; Seneviratne et al., 2013), and its important role in the carbon cycle (Jung et al., 65 

2017). Monitoring SM at the regional scale has become possible thanks to active and passive 66 

microwave remote sensing. In the past two decades, several satellites were launched carrying 67 

either a radiometer (passive) or radar (active) or both, using frequency bands with various 68 

spatial and temporal resolutions. These satellites (or sensors) include, but are not limited to, 69 

SMAP (Soil Moisture Active Passive) launched by the National Aeronautics and Space 70 

Administration (NASA) in 2015 (Entekhabi et al., 2010), SMOS (Soil Moisture and Ocean 71 

Salinity) launched by the European space agency (ESA) in 2009 (Kerr et al., 2001), and ASCAT 72 

(Advanced Scatterometer) (Wagner et al., 2013) on board the meteorological operational (Metop) 73 

platforms Metop-A, Metop-B, and Metop-C. Since then, SM was retrieved from either 74 

brightness temperature (passive) or backscatter coefficient (active) observations relying 75 

mainly on radiative transfer model inversion (passive; Mo et al., 1982), change detection (active; 76 

Wagner et al., 1999), or neural network algorithms (Kolassa et al., 2018; Rodríguez-Fernández et al., 2016). 77 

These remotely sensed SM products are provided separately or blended (such as the one 78 

produced by the ESA project: Climate Change Initiative (CCI) SM long time series (Dorigo et 79 

al., 2017; Liu et al., 2012)).  80 

Performance evaluation of these remotely-sensed SM retrievals is important to help 81 

improving satellite products and evaluating their interest for possible applications in climate, 82 

hydrology, and natural hazards (flood, drought, etc.). Numerous validation/evaluation studies 83 

of satellite-based SM retrievals have been conducted during the last decade (e.g., Al-Yaari et al., 84 



4 
 

2014a; Al-Yaari et al., 2014b; Al-Yaari et al., 2015; Al-Yaari et al., 2017; Albergel et al., 2009; Albergel et al., 2012; Brocca 85 

et al., 2011; Colliander et al., 2017; Dorigo et al., 2015; Draper et al., 2009; Kerr et al., 2016; Pierdicca et al., 2013; Sahoo et 86 

al., 2008; Su et al., 2013) using different approaches (e.g., sparse and dense networks, core 87 

validation sites, field campaigns, inter-comparisons among satellites, model simulations, 88 

etc.). However, SM retrieval algorithms are in rapid development and their 89 

improvements/revisions are ongoing adopting new concepts or conducting new calibrations; 90 

thus improving parameterizations and optimizing parameters in the algorithms (Wigneron et 91 

al., 2017). Therefore, new SM products and new versions of SM products have been released 92 

that are not, to our knowledge, comprehensively evaluated and inter-compared yet. One such 93 

new product is the SMOS-IC SM product, which was recently developed by INRA (Institut 94 

National de la Recherche Agronomique) in collaboration with CESBIO (Centre d'Etudes 95 

Spatiales de la BIOsphere) (Fernandez-Moran et al., 2017b). To our knowledge, the last SMOS-IC 96 

version has only been evaluated against modelled SM data from ECMWF (Fernandez-Moran et al., 97 

2017b), although a previous version was already tested using several in situ datasets from 98 

ISMN (International Soil Moisture Network) for the period 2011-2013 (Fernandez-Moran et al., 99 

2017a). The objective of this study is to evaluate the SMOS-IC SM product along with the 100 

most recent versions, available at the time of writing, of five other satellite-based SM 101 

products, namely: NASA SMAP Level 3 (V4), ESA SMOS Level 3 (V300) and Level 2 102 

(V650), ASCAT (H111), and the CCI long-term record SM (V04.2). This was achieved using 103 

ground-based surface SM measurements from the ISMN (Dorigo et al., 2011; Dorigo et al., 2013). For 104 

the passive sensors, we limited this study to L-band SM retrievals which are more optimal for 105 

monitoring SM. Other key SM observations (AMSR-E/AMSR2) were merged in the CCI 106 

product. This paper is organized as follows. The datasets and scores used are briefly 107 

described in Section 2. Results and discussion are presented in Sections 3 and 4, 108 

respectively. Finally, concluding remarks are given in Section 5. 109 
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2. Materials and Methods 110 

2.1 Datasets 111 

 112 

Table 1 presents an overview of the SM products used in this study. More details are given in 113 

the following subsections. 114 

 115 

Table 1. Overview of all soil moisture data sets under investigation. 116 

 Passive  Active Combined 

(CCI) 

Sensor SMOS SMAP ASCAT SMMR 

SSM/I 

TMI 

AMSRE 

AMSR2  

Windsat  

ERS 

ASCAT  

SMOS 

Satellite SMOS SMAP Metop-A & Metop-B Various 

Time period  Jan 2010–present Mar 2015–present Jan 2007–present Jan 1978–

Dec 2016 

Band frequency 1.4 GHz 1.4 GHz 5.3 GHz 1.4–

19.3 GHz 

Spatial sampling  15 km DGG - 25 km 

EASEv2 

36 km EASEv2 12.5 km 0.25°  

Sensor resolution 27-55 km 43 km 25-34 km various 

Spatial coverage Global Global Global Global 

Acquisition time Descending: 06:00 pm 

Ascending: 06:00 am 

 

Descending: 06:00 am 

Ascending: 06:00 pm 

 

Descending: 09:30 am 

Ascending 9:30 pm 

- 

Product version  SMOSL2 V650 

SMOSL3 V300 

SMOS-IC V105 

SMAPL3 V4 H111 CCI V04.2 

Unit m3/m3
 m3/m3

 Degree of saturation (%) m3/m3
 

 117 

 118 

2.1.1 SMOS 119 

 120 

The SMOS satellite, developed by the ESA with contributions from CNES (Centre 121 

National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnológico Industrial), is 122 

the first polar orbiting L-Band (1.4 GHz) radiometer, with a spatial resolution of (~ 43 km) 123 

and 3-day revisit. The SMOS satellite mission has been providing fully polarized brightness 124 

temperature (TB, level 1) observations since 2010 and over a range of incidence angles (~ 0-125 
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60o) (Kerr et al., 2010). These SMOS TB observations are used to retrieve SM and vegetation 126 

optical depth (VOD) using a forward emission model, namely, the L-band Microwave 127 

Emission of the Biosphere (L-MEB) model (Wigneron et al., 2007). The retrieval approach is 128 

simply based on iterative estimation of SM and VOD values providing the lowest difference 129 

between modelled and observed TB data by minimizing a cost function (sum of the squared 130 

weighted differences between modelled and observed TB) (Wigneron et al., 2000). 131 

Currently, there are three main physically-based SMOS SM retrieval products 132 

available (SMOS-IC, SMOS Level 2 (L2), and SMOS Level 3 (L3)), for which all: (i) use the 133 

L-MEB radiative transfer model (ii) provide SM as volumetric water content (m3/m3) with 134 

global coverage of 3 days; (iv) provide data at both ascending (06:00 am) and descending 135 

(06:00 pm) orbits; (vi) adopt the NETCDF format for the products; and (vii) use the 136 

European Centre for Medium-Range Weather Forecasts (ECMWF) soil temperature products. 137 

However, the products differ by the projection and grid used as well as with the temporal 138 

aggregation for L3 products sampling, as detailed below. It should be noted that SMOS 139 

provides also root zone SM at 0-1 m as Level 4. 140 

2.1.1.1 SMOS-IC 141 

In this study, we used the SMOS-IC V105 SM product. The SMOS-IC SM product is 142 

based on a relatively simple approach that considers homogeneous pixels (unlike SMOSL3 143 

and SMOSL2 where the details of the SMOS footprint at a resolution of 4 km x 4 km are 144 

taken into account), to avoid possible uncertainties and errors associated with the datasets 145 

used to characterize the heterogeneity of the pixel in the SMOSL2 and SMOSL3 algorithms. 146 

The SMOS-IC inversion algorithm aims at a minimal use of auxiliary data through the 147 

optimal use of the multi-angular TB observations. Therefore, SMOS-IC (unlike SMOSL2 and 148 

SMOSL3) does not use ECMWF SM or the Moderate Resolution Imaging Spectroradiometer 149 

(MODIS) LAI (Leaf Area Index) products as first guesses and in the simulation of TB over 150 
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heterogeneous pixels including forested areas. In SMOS-IC, the effective vegetation 151 

scattering albedo (ω) parameter was optimized using the ISMN in-situ observations (Fernandez-152 

Moran et al., 2017a) and the roughness parameters were derived from the global map of Parrens et 153 

al. (2016). The "optimization" process of ω led to a very simple result: ω ~ 0.1 over low 154 

vegetation and bare soils, while ω ~ 0.06 over forested areas. Also, SMOS-IC does not take 155 

into account the corrections associated with the characterization of the antenna patterns as a 156 

function of viewing angle and azimuth. To filter out observations/retrievals strongly impacted 157 

by RFI (the probability of instantaneous radio frequency interferences) effects, SMOS-IC SM 158 

retrievals were excluded when the Root Mean Square Error (RMSE) between SMOSL3 TB 159 

and simulated TB > 10 K in the present study. SMOS-IC is currently delivered as a scientific 160 

product in the Equal-Area Scalable Earth (EASE) grid version 2 at 25 km resolution and 161 

publicly available at CATDS (Centre Aval de Traitement des Données SMOS): 162 

https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC. Note that 163 

although SMOS-IC was recently released, it corresponds to the initial SMOS 2-Parameter 164 

retrieval approach, relying on the relatively low temporal variation of VOD, and fully 165 

described in Wigneron et al. (2000). Also note that SMOS-IC is currently in its first version 166 

and is thus prone to evolve and progress as it is still undergoing refinements and 167 

improvements. 168 

2.1.1.2 SMOSL2 169 

In this study, we used the SMOSL2 SM product in version V650. There are some 170 

changes in this version relative to the previous ones (e.g., V620) such as updating some 171 

processing parameters (e.g., Chi2 rescaling), configuration (that can be used for additional 172 

quality control checks), and auxiliary files. The most important one is replacing the 173 

ECOCLIMAP (218 ecosystems) database (Masson et al., 2003) with the International Geosphere 174 

Biosphere Programme (IGBP; 17 land cover classes) land cover map (Friedl et al., 2010), which is 175 
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also used by the SMAP Level 2 algorithm. This change influences the distribution of the 176 

forested areas (FO) and the nominal vegetated soil and therefore leads to different SM values 177 

from previous versions. 178 

SMOSL2 (and SMOSL3) algorithm considers pixel heterogeneity and inversion is 179 

done on the dominant fraction: low vegetation, bare soil or forest and water surfaces. On the 180 

non-dominant fraction, auxiliary information (e.g., ECMWF SM and MODIS LAIFmax, the 181 

maximum yearly value of LAI) is used to simulate TB and to better constrain the model 182 

inversion. However, these auxiliary data contain errors that can propagate in the inversion 183 

algorithm, which may lead to noise and bias in the SM retrievals. In the latest SMOSL2 184 

version, ECMWF SM is used to simulate TB over heterogeneous pixels including forested 185 

areas after re-scaling. This was done by using cumulative distribution function (CDF) 186 

matching, to better match to the histogram of the SMOS SM retrieved values.  187 

SMOSL2 SM is provided in swath mode in the Icosahedral Equal Area (ISEA) 4H9 188 

Discrete Global Grid (DGG) at 15 km resolution and can be freely obtained from the ESA 189 

website portal https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos. 190 

Readers are referred to Kerr et al. (2012) for more details. SMOSL2 SM retrievals were filtered 191 

excluding the following: Chi2 index (i.e. retrieval fit quality index between the observed 192 

SMOS TBs and the simulated TBs) > 3 and RFI > 20%; where RFI was calculated as 193 

follows: 194 

RFI = ����	
������
�
�  (1) 195 

where: 196 

NRFIx:  is the number of TB flagged for RFI in the X–direction. 197 

NRFIy:  is the number of TB flagged for RFI in the Y–direction. 198 

MAVA0: is the total number of TB observations at this point. 199 

 200 

2.1.1.3 SMOSL3 201 
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The SMOSL3 SM algorithm is based on the same complex approach (i.e. accounting 202 

for heterogeneity) used in the SMOSL2 but enhanced through a multi-orbit algorithm that 203 

uses retrievals from several revisits over a seven day window (Al Bitar et al., 2017; Jacquette et al., 204 

2013). In addition, the objective of SMOSL3 is to provide enhanced products that are easier to 205 

process by the scientific community, given as daily, aggregated in 3-days (moving window 206 

mean), 10-days (median, minimum and maximum values), and monthly (mean) global maps. 207 

Here we used the daily SMOSL3 version 300, which can be freely obtained from the CATDS 208 

website portal in the EASE grid v2 (25 km), which is much easier to process than the grid 209 

used in the SMOSL2 processor. SMOSL3 SM retrievals were excluded when RFI > 20%. 210 

Readers are referred to Al-Bitar et al. (2017) for more details about SMOSL3. 211 

It should be noted here that the soil roughness and effective vegetation scattering 212 

albedo parameters used in SMOSL2 and SMOSL3 are still pre-launch values and thus 213 

different from those currently used in the SMOS-IC algorithm (note that tests made using the 214 

SMOS-IC parameters in SMOSL2 did lead in improvements in the L2 SM retrievals). Also 215 

note that SMOSL3 is based upon an older version of L2 and that a bug was identified in the 216 

current SMOSL3 algorithm (V300) and will be corrected in the next version.  217 

2.1.2 SMAP 218 

SMAP is a NASA satellite mission that was launched in 2015 to monitor global SM 219 

and landscape freeze/thaw state (Entekhabi et al., 2010). The SMAP satellite carries a 220 

radiometer (operational; 1.41 GHz) and radar (stopped working after about three months of 221 

operation; 1.26 GHz) operating in the L-band frequency. The spatial resolution of radar and 222 

radiometer is ~ 3 km and ~40 km, respectively, with a 1000-km swath width and a constant 223 

40-degree incidence angle. The SMAP mission provides surface (~ 5 cm) SM (Chan et al., 2016) 224 

and root zone SM (1 m; Reichle et al., 2017); and also other geophysical variables such as 225 

landscape freeze/thaw (Derksen et al., 2017) and net ecosystem exchange of carbon (NEE) (Jones et 226 
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al., 2017). Like SMOS, different levels of SM products are delivered as half-orbit products 227 

(swath based product; SMAPL2), daily gridded composites (SMAPL3), and model-228 

assimilated products i.e. SMAPL4. In this study, we used the 36-km EASEv2 gridded 229 

L3SMP. V4 SM product (only when the retrieval quality is recommended i.e. unfrozen soils 230 

and a vegetation water content < 5 kg/m2). This version (herein referred to as SMAP) was 231 

preceded by a beta quality version (released in 2015) and Version 3 validated SM data 232 

(released in 2016) (O' Neill et al., 2017).  233 

 234 

2.1.3 ASCAT 235 

 236 

The Advanced Scatterometer (ASCAT) is a real aperture radar carried on-board 237 

Metop-A satellite that was launched in October 2006, followed by Metop-B satellite launched 238 

in September 2012 (PUM, 2016). Both satellites share the same sun-synchronous near-polar 239 

orbit and are half an orbital period apart from each other (~50 min.). The mean local solar 240 

time of the descending node is 9:30 a.m. and 9:30 p.m. for the ascending node. ASCAT 241 

operates in the C-band frequency (VV polarization) and measures the Normalized Radar 242 

Cross Section (NRCS), also known as backscatter coefficient. The two main ASCAT level 1b 243 

backscatter products are provided at a spatial resolution of 25-34 km and 50 km. The Vienna 244 

University of Technology (TU Wien) semi-empirical change detection algorithm exploits the 245 

multi-angle backscatter measurements from ASCAT in order to obtain surface SM expressed 246 

in degree of saturation (Wagner et al., 1999).  247 

In this study, we used Metop ASCAT Surface SM Climate Data Record (CDR) time 248 

series obtained from the Satellite Application Facility on Support to Operational Hydrology 249 

and Water Management (H SAF), namely, H111 - Metop ASCAT SSM CDR2016: Metop 250 

ASCAT SM CDR2016 time series with 12.5 km spatial sampling. Soil moisture values were 251 

only kept when the confidence flag [frozen or snow cover probability > 50% and using the 252 

Surface State Flag (SSF) information] = 0 (Paulik et al., 2014). The relative surface SM given 253 
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in degree of saturation was converted into absolute SM (expressed in �3/�3) using porosity 254 

information (provided with the ASCAT datasets) computed from the Harmonized World Soil 255 

Database (HWSD; (FAO et al., 2012)) using the formulas of Saxton and Rawls. (2006). It should 256 

be noted that, root zone SM index is produced based on ASCAT SM assimilation in the 257 

ECMWF Land Data Assimilation System, namely the H-SAF SM-DAS-2 product. The 258 

reader is referred to the Product User Manual (PUM) for more details (PUM, 2016) about 259 

ASCAT SM.  260 

 261 

2.1.4 ESA CCI Soil Moisture 262 

The ESA CCI combined SM product is produced by merging both passive and active 263 

SM products (Liu et al., 2012) and available over 11/1978 – 12/ 2016 on global scale. These 264 

include scatterometer-based SM data (ERS ½, Metop A/B ASCAT) and radiometer-based 265 

SM data (SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, and SMOS). The merging 266 

between active and passive SM products is done based on a weighted average method with 267 

the weights being proportional to Signal to Noise Ratio (SNR; estimated using triple 268 

collocation analysis) of each product (Dorigo et al., 2017; Gruber et al., 2017). It should be noted that 269 

all these different datasets are scaled to a common model SM climatology, provided by the 270 

Global Land Data Assimilation System (GLDAS) Noah Land Surface Model (Rodell et al., 2004) 271 

using a CDF matching technique. Therefore, this study will show the Bias values but will not 272 

discuss them as they reflect the GLDAS model. 273 

Regions of frozen soils or snow covered soils were already masked in the product 274 

obtained from the level 2 quality flags and no data are provided over rainforest regions 275 

(Dorigo et al., 2017). More details about the theoretical and algorithmic base of this product 276 

and detailed analysis about the uncertainties of the SM datasets can be found in (Dorigo et al., 277 

2017; Gruber et al., 2017; Liu et al., 2012). The reader is also referred to http://www.esa-soilmoisture-278 
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cci.org for more information about the daily CCI volumetric (m3/m3) SM product, which is 279 

provided in a NETCDF format with a spatial resolution of 0.25° x 0.25° (WGS 84); and can 280 

be freely downloaded after registration on the CCI SM Website. 281 

 282 
2.1.5 ISMN in situ data 283 
 284 

The International Soil Moisture Network (ISMN) was initiated in 2009 in order to 285 

support the calibration/validation (cal/val) activities of remotely-sensed SM retrievals (Dorigo 286 

et al., 2011; Dorigo et al., 2013). More specifically, it was supported by ESA in the framework of the 287 

SMOS mission to help in the cal/val activities. Once in situ SM observations are collected 288 

from international networks, they are quality controlled and harmonized to be distributed 289 

through the ISMN website portal: https://ismn.geo.tuwien.ac.at/. Currently, the ISMN 290 

database hosts ground-based SM measurements from about ~ 58 networks located all over 291 

the world. Some of these datasets (e.g., SCAN, the US Climate Reference Network) are 292 

provided in near-real time. The in situ SM networks used in this study during the 2010-2017 293 

period are listed in Table S1 and displayed in Fig. S1, covering a variety of climate and 294 

vegetation conditions (see supplementary materials) but not all ecosystems are equally well 295 

represented. In this study, only SM observations flagged as “Good” were considered in the 296 

evaluations (Dorigo et al., 2013). In addition, OZNET and AMMA networks datasets were 297 

obtained from http://www.oznet.org.au/mdbdata/mdbdata.html and T. Pellarin (personal 298 

communication), respectively. Some networks have their stations distributed over an area that 299 

is smaller than the typical footprint of the space borne instruments considered in this study. 300 

This results in samples that are not independent in the comparisons, but this was not 301 

considered as a problem because the effect is largely the same for each product. 302 

 303 

 304 
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2.2 Methodology 305 

 306 

The satellite SM products were evaluated against ground-based measurements 307 

following two approaches i) using all available SM retrievals for each product within the 308 

period 2010-2017; ii) using common dates (i.e. days where all satellite-based SM 309 

observations are available) between the different datasets, either with or without including 310 

SMAP. Approach (i) is used assuming that the final users of SM products may use these 311 

products separately, and hence limiting the evaluation to common dates may not correspond 312 

to the actual accuracy which will be obtained by the end user. SMAP is available for a shorter 313 

period compared to the other products, and was therefore either included or excluded in 314 

approach (ii) to evaluate the influence of time series length and data sampling in the 315 

evaluation. All products used in this study were provided in “a daily time step”, therefor, in 316 

all these cases the instantaneous overpass times, for each day, were matched with 317 

instantaneous in situ measurements within a time window of 1 hour. Dates with no match 318 

with in situ observations were not considered in the analyses. In addition, stations with a 319 

number of data pairs lower than one month (~31) were excluded from the analyses (e.g., 320 

Kolassa et al., 2018). Finally, stations where all remotely-sensed SM products obtained 321 

Pearson correlation values (R) lower than 0.5 were screened out.  322 

Four scores, widely used by the SM community, were used here to evaluate the 323 

remotely-sensed SM products: Pearson correlation coefficient (R; Eq. 2) to evaluate the 324 

ability of satellite-based retrievals on capturing SM seasonal variations of in situ 325 

measurements, Bias (Eq. 3) to measure the dryness or wetness of the satellite-based retrievals 326 

compared to in situ observations, RMSE (Root mean square error; Eq. 4), and the unbiased 327 

RMSE (ubRMSE; Eq. 5) given as follows: 328 

 329 
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R = �1 −   �SM�� − SM�����
�SM�� − SM��� �                                      �2� 330 

Bias =  �SM�� − SM����                                              �3� 331 

RMSE = %�SM�� − SM�����                                      �4� 332 

ubRMSE = )RMSE� − Bias�                            �5� 333 

 334 

where SM�� is the satellite-based SM, SM��� is the ISMN in situ SM used as a reference, and 335 

the temporal mean of the entire time series is indicated by an overbar.  336 

The ground-based measurements are based on in situ observations at single location. 337 

Therefore, the in situ data have a spatial support that differs largely from the gridded SM 338 

retrieval products, which themselves are derived from elliptical footprints. The problem is all 339 

the more complex for SMOS, as (i) SMOS retrievals are based on multi-angular observations, 340 

and (ii) the available range of the SMOS observations over a given pixel changes from one 341 

date to the other (with a sub-cycle of about 16 days). Consequently, all metrics will be prone 342 

to representativeness error (Gruber et al., in review). These errors have been earlier analyzed, for 343 

example, by Crow et al. (2012) and Famiglietti et al. (2008). These studies showed that the 344 

representativeness errors significantly affect the reliability of the metrics in the absolute 345 

sense. However, the analysis presented here is comparative in nature and while the 346 

representativeness errors also degrade the ability of the comparisons to detect differences 347 

between the products, the results carry information on relative merits of the products. 348 

Alternative approaches that may mitigate this problem for sparse networks include 349 

deployment of triple collocation technique (for example, (Chen et al., 2017a)), but this is outside 350 

of the scope of this study. Moreover, the sampling depth can be different among satellites and 351 

among in situ sensors thus leading to mismatch in soil depth, which can potentially affect the 352 
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evaluation. OZNET network, for instance, measures SM within the 0-5 cm topsoil layer, 353 

while most of the other networks measure SM at 5 cm. 354 

Furthermore, the SM seasonal cycle was removed by computing R using anomalies 355 

(Ranom). This is to evaluate the ability of satellite-based SM retrievals on capturing the day to 356 

day variability (short variations) of in situ SM observations, which is more important than 357 

absolute values for many applications (e.g. data assimilation) and which also reduces part of 358 

the representativeness issue mentioned above. The anomaly was computed using the 359 

following formula (e.g., Parrens et al., 2012; Rodríguez-Fernández et al., 2016): 360 

 361 

+,-./0 = +,1 − +, �2�+3 �+, �2��                                     �6� 362 

 363 

where SM5 is the SM value at day (i) and SM �w� and SD �SM �w�� are the mean and 364 

standard deviation over a sliding window (w) of 35 days (Albergel et al., 2012; Brocca et al., 2011), 365 

respectively. Note that the seasonalities are not averaged across years into a climatology. 366 

SM time series were extracted from the original grids (e.g., 36 km for SMAP, 25 km 367 

for SMOSL3, etc.) from those pixels that correspond to each station separately (based on its 368 

latitude and longitude). This being said, it is likely that some stations from a dense network 369 

(e.g., OZNET) may correspond to the same passive (SMAP, SMOS, and CCI) pixel but for 370 

several active (ASCAT) pixels. Then, the metrics between satellite data and the in situ 371 

observations were computed separately for each station. Finally, the median of each metric 372 

for all stations within a continent was calculated. In addition, the median of each metric for 373 

all stations within a land cover type (derived from MODIS (Friedl et al., 2010)), LAI category, or 374 

Köppen-Geiger climate zone (Rubel et al., 2017), displayed in Fig. S1 (in the supplementary), 375 

was also computed and presented in the following section. Correlation coefficients (R) are 376 



16 
 

not additive measures and thus cannot be simply averaged; therefore, the median was instead 377 

computed. The spatial standard deviation is added to the median skill metrics. 378 

3. Results 379 

 380 

3.1 Using all available observations  381 

 382 

The four scores (R, Bias, RMSE, and ubRMSE) were computed between remotely-383 

sensed SM retrievals (if available) and 17 ISMN in situ observation networks listed in Table 384 

S1 in the supplementary. As mentioned before, all observations available within the 2010-385 

2017 period were considered. This being said, the period used to compute the scores for each 386 

product can be different. 387 

Fig. 1 shows the overall performance (R, Ranom, Bias, RMSE, and ubRMSE scores) of 388 

each product stratified by continent. For stations located in Africa, ASCAT had overall 389 

slightly higher correlation values but also higher Bias, RMSE, and ubRMSE values than all 390 

other SM products. Nonetheless, there are small differences in terms of R between the 391 

remotely-sensed SM products (R ranging from ~0.75 to ~0.80). Therefore, temporal SM 392 

variations from in situ stations over sites in this continent are well reproduced by the 393 

remotely-sensed SM products. However, Ranom dropped for all the remotely-sensed SM 394 

products with higher and similar performances by SMAP and SMOS-IC. Over this region, all 395 

products were wetter than the in situ observations (consistent with Al-Bitar et al. (2017) for 396 

SMOS V300 and Rodríguez-Fernández et al. (2016) for ESA CCI V2.02 SM).  397 

For the U.S. networks (e.g., SCAN, SNOTEL, SOILSCAPE, USCRN, etc.), SMAP 398 

had the highest correlation (followed by SMOS-IC), lowest ubRMSE and RMSE values 399 

(followed by CCI). In terms of Ranom, SMOS-IC had the highest value, whereas the other five 400 
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products had similar performances. All data sets were drier than the ISMN observations with 401 

the highest Bias values obtained by SMOS-IC.  402 

For the Australian network (OZNET), while SMOS-IC and CCI had the lowest 403 

ubRMSE (followed by SMOSL2 SM) and RMSE values, SMAP and SMOS-IC had the 404 

highest correlation (original and anomalies) values along with SMOSL2 and SMOSL3. All 405 

products were wetter than the in situ observations. The results over the OZNET network are 406 

consistent with Colliander et al. (2017) who also showed, for instance, that SMAP is wet 407 

(although the study was based only on data of the Yanco site and used SMAPL2 V2).  408 

In case of the European networks (e.g., REMEDHUS, SMOSMANIA, BIEBRZA_S-409 

1, RSMN, HOBE, etc.), ESA CCI SM had the lowest overall ubRMSE (followed by SMAP) 410 

and RMSE values, while SMAP and SMOS-IC showed the highest values in terms of 411 

correlations. SMOS-IC, again, had the highest Ranom values. There is a strong variability in 412 

terms of Bias for the different products: from an underestimation by all SMOS products to an 413 

overestimation by SMAP, ASCAT and the ESA CCI SM.  414 

Generally, the best performance of all remotely-sensed SM products was found over 415 

Australian and African stations, while the worst and diverse results were found over the U.S. 416 

and Europe. Remarkably, a systematic overestimation or underestimation of the ISMN in situ 417 

observations has been observed by remotely-sensed SM products over stations located over 418 

Africa (and Australia) and America, respectively. Generally, for areas without or with very 419 

few RFI (Australia and Africa) SMOS had positive biases but when there are many (Europe) 420 

it is always negative (Bircher et al., 2012). It should be noted that some areas are much better 421 

represented than others (US vs Africa for instance) in terms of number of points and that for 422 

Africa only one ecosystem is considered when it ranges from temperate to arid via tropical. 423 
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 424 

Figure 1 Median evaluation metric (R, Ranom, Bias, RMSE, and ubRMSE) for the entire period 2010-425 
2017, across all sites for all products (without data cross masking) compared to ISMN in situ SM, 426 
stratified by continent: America (n=448 stations), Australia (n=46 stations), Europe (n=128 stations), 427 
and Africa (n=13 stations). Error bars represent the standard deviation (SD; variability) of the 428 
station metrics (median+SD) and do not represent anything on the temporal sampling frequency. 429 

3.2 Using only temporally collocated data 430 

 431 

3.2.1 For the SMAP period (Jan 2015-Dec 2016) 432 

Here, we limited the analyses to only common dates by doing a temporal collocation 433 

between the different satellite-based SM retrievals (Fig. 2). Due to the short period of SMAP, 434 
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only 9 networks out of 17 were retained: OZNET, PBO_H2o, REMEDHUS, RSMN, SCAN, 435 

SMOSMANIA, SNOTEL, SOILSCAPE, and USCRN. As expected, the rank of the product 436 

performances in Fig. 2 is different to the one shown in Fig. 1 (without temporal collocation).  437 

Over the U.S. networks (North America), SMOS-IC, SMOSL2, and SMAP (ASCAT) 438 

had the highest (lowest) correlations (both original and anomalies). There is almost similar 439 

performance in terms of R and RMSE values between SMOSL2, SMOS-IC and SMAP but 440 

lowest (highest) ubRMSE was obtained by SMAP (SMOSL3 and ASCAT). All products 441 

(except for ESA CCI SM, whose bias is the model bias of GLDAS Noah) are drier than the in 442 

situ observations; with, again, marked underestimation by SMOS-IC as already seen in Fig. 443 

1. Lower Ranom values were obtained by all products but the performance rank of the products 444 

was unchanged. 445 

Over the Australian network (OZNET), all SMOS versions and SMAP had almost 446 

similar performance in capturing the temporal dynamics (both annual cycle and day to day 447 

variations) of the ISMN in situ observations and better compared to in situ observations than 448 

ESA CCI SM and ASCAT SM products. SMOS-IC and SMOSL3 (SMAP) had the lowest 449 

(highest) ubRMSE values. All SMOS products had similar RMSE values and lower than the 450 

other products. All remotely-sensed SM products were wetter than the in situ measurements 451 

(with the exception of SMOS-IC).  452 

 453 

 454 
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 455 

Figure 2 Same as Figure 1, but now only including common data points for each product within the 456 
2015-2016 period, and hence using a reduced number of stations (n) over America (n=174 stations), 457 
Australia (n=30 stations), and Europe (n=27 stations). 458 

 459 

 460 

 461 

 462 

 463 
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In case of Europe, there is generally no big difference in terms of correlations 464 

between the products but strong differences can be noted in terms of UbRMSE and Bias. 465 

SMOS-IC and ASCAT had the highest Ranom values against the ISMN observations. 466 

Similarly to what was already found in Fig. 1, while all SMOS SM products were drier than 467 

the in situ measurements, ESA CCI SM and ASCAT were wetter than the in situ 468 

measurements. 469 

 470 

3.2.2 For the period without SMAP (Jan 2010-Dec 2016) 471 

Excluding SMAP, only SMOS, ESA CCI, and ASCAT SM products were considered. 472 

Here, fourteen in situ SM networks were retained: AMMA, ARM, BIEBRZA_S-1, DAHRA, 473 

HOBE, OZNET, PBO_H2O, REMEDHUS, RSMN, SCAN, SMOSMANIA, SNOTEL, 474 

SOILSCAPE, and USCRN. As done in Figs. 1 and 2, Fig. 3 shows the overall performance of 475 

the remote-sensing SM products stratified per continent.  476 

In the case of sites located over Africa, there are generally strong correlations between 477 

satellite-based SM products and the in situ observations with similar performances in terms 478 

of correlations (R) - with the exception of SMOSL3- and lowest ubRMSE values were 479 

obtained by SMOS-IC and ESA CCI SM products. As over America and Europe, no change 480 

in terms of Bias from Fig. 1 was found. It should be noted that SMOSL2 outperformed 481 

SMOSL3 in most scores, which is in line with the findings of Al Bitar et al. (2017), using 482 

SMOSL2 V620 and SMOSL3 V300. 483 

For the U.S. networks, SMOS-IC (followed by SMOSL2 and ESA CCI) presented 484 

slightly higher correlation values. SMOS-IC and SMOSL2 presented higher Ranom and the 485 

other three products performed similarly. As found in Fig. 1, all data were drier than the in 486 

situ observations except ESA CCI SM which is wetter, with again marked underestimation by 487 
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SMOS-IC. Similar and lower RMSE values were obtained by ESA CCI, SMOSL2, and 488 

SMOS-IC. Similar and lower ubRMSE values were obtained by ESA CCI and SMOS-IC. 489 

Over the Australian network, the highest correlation values (R and Ranom) were 490 

obtained by SMOS-IC, SMOSL2, and SMOSL3. The lowest ubRMSE value was obtained by 491 

SMOSL2. In general, over Australia, the SMOS SM products perform better than the ESA 492 

CCI SM and ASCAT (in line with the findings of Holgate et al. (2016)) products but there are 493 

small (or no) differences between the SMOS products and the ESA CCI SM products in 494 

terms of RMSE and ubRMSE values with SMOSL2 product being the best for UbRMSE and 495 

SMOS-IC for RMSE. No change in terms of sign of Bias from Fig. 1 (although the 496 

magnitudes are different).  497 

In the case of sites located over Europe, SMOS-IC (followed by ESA CCI SM and 498 

ASCAT), again performed slightly better in terms of correlations (R and Ranom) than the other 499 

products but the lowest ubRMSE values were obtained by ESA CCI SM. Lowest RMSE 500 

values were obtained by ESA CCI, SMOSL3, and SMOSL2. No change in terms of sign of 501 

Bias can be noted in comparison to Fig. 1. 502 

 503 

 504 
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 505 

 506 

Figure 3 Same as Figure 2, but now excluding SMAP and extending the evaluation period to common 507 
data points in 2010-2017, over America (n=393 stations), Australia (n=28 stations), Europe (n=94 508 
stations), and Africa (n=13 stations).  509 

 510 

 511 

 512 

 513 

 514 
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3.3 Impact of vegetation and climate 515 

 516 

For the ISMN networks used in this study, climate and land cover can be quite 517 

heterogeneous in some continents (e.g. America, Europe) and relatively homogeneous in 518 

others (e.g. Australia, Africa). So in this section we analyze more in depth the impact of 519 

vegetation and climate on the performances of the satellite-based SM products. 520 

3.3.1 Vegetation 521 

There is consensus among the SM community that vegetation density affects the 522 

remotely-sensed SM quality (Jackson et al., 1982; Wigneron et al., 2017). Earlier studies 523 

(e.g., Al-Yaari et al., 2014a; Al-Yaari et al., 2014b) found that the performance of the 524 

satellite-based SM products varies depending on the vegetation density and land cover type. 525 

This section is devoted to re-evaluate the impact of vegetation on the performance of SM 526 

products using new SM versions/products. Given the fact that all SMOS products (i.e. 527 

SMOS-IC, SMOSL3, and SMOSL2) use SMOS TB observations and ECMWF soil 528 

temperature data, they are not totally independent. Also, there is slightly better performance 529 

of SMOS-IC over the other SMOS products. Therefore, to simplify the inter-comparison, this 530 

section is limited to the SMOS-IC version and other none-SMOS products. The evaluation 531 

scores (for all stations) i.e. R, Ranom, Bias, RMSE, and ubRMSE are stratified based on the 532 

IGBP land cover type (see Fig. S1 in the supplementary). Results, based only on common 533 

dates within the period 2015-2016 (2 years), are displayed in Fig. 4.  534 

 535 

 536 

 537 
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 538 

Figure 4 Median metrics (R, Ranom, Bias, RMSE, and ubRMSE) of all sites stratified by IGBP land 539 
cover type (see Fig. S1) for SMOS-IC, ASCAT, CCI, and SMAP: Mixed forest (5; n=1 station), Open 540 
shrublands (7; n=10 stations), Woody savannas (8; n=8 stations), Savannas (9; n=27 stations), 541 
Grasslands (10; n=132 stations), Croplands (12; n=67 stations) , Cropland/Natural vegetation 542 
mosaic (14; n=22 stations). n denotes the number of stations per land cover type. Error bars 543 
represent the standard deviation (SD; variability) of stations (median+SD). Only data points at 544 
common dates within the period 2015-2017 are included. 545 

 546 

 547 

 548 
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In terms of correlation (R), similar performances between the four products (SMOS-549 

IC, ESA CCI SM, ASCAT, and SMAP) were found over “Open shrublands”, “Croplands”, 550 

and “Mixed forest”. A notable difference between ASCAT (lower performance) and the other 551 

three products was found over “Woody savannas”. SMOS-IC and SMAP had best 552 

correlations with the ISMN observations over “Cropland/Natural vegetation mosaic”. SMAP 553 

and SMOS-IC had the highest anomaly correlations over “Grasslands” and “Croplands”. 554 

ASCAT was correlating better to in situ measurements anomalies over “Savannas”. All the 555 

four products agree in terms of sign of the bias value: while all underestimated the ISMN 556 

observations over “Cropland/Natural vegetation mosaic” and “Savannas”, they all 557 

overestimated the ISMN observations over “Woody savannas”. However, there is no 558 

agreement between products in terms of sign of the bias over all other land cover types. In 559 

terms of RMSE and ubRMSE, while ASCAT had generally the highest values, the other three 560 

SM products performed similarly over most of the land cover types. 561 

A different insight on the impact of vegetation on the performance of satellite-based 562 

SM retrievals with respect to the ISMN in situ observations can be seen in Fig. 5. Fig. 5 563 

displays the median of all the statistics considered in this study stratified based on MODIS 564 

LAI categories: 0-1, 1-2, and 2-3 m2/m2 (see Fig. S1 for the MODIS LAI map). Evidently, 565 

because the prior data masking to locations with less than 5 kg/m2 VWC, only limited data 566 

are available for evaluation in densely vegetated areas. It can be noticed from this figure that 567 

there is an increase in ubRMSE for all remotely-sensed SM products with increasing 568 

vegetation density. For SMAP and ESA CCI there is a high variability of their performances 569 

among stations as indicated by the high standard deviation over the LAI 2-3 category. In 570 

terms of R, similar performances among products can be noticed over the category 0-1 but 571 

better performance was obtained by SMOS-IC going from 0-1 to 2-3 categories, whereas 572 

ASCAT retrievals degraded for denser vegetation. The best Ranom values were obtained by 573 
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SMOS-IC (followed by ASCAT) and SMAP (followed by SMOS-IC) over the 2-3 and 1-2 574 

categories, respectively. SMOS-IC and SMAP performed similarly in terms of Ranom over the 575 

0-1 category. In terms of ubRMSE, none is superior over all LAI categories. For instance, 576 

while SMAP, SMOS-IC, ESA CCI SM products had similar ubRMSE values over regions 577 

with LAI values ranging between 0 and 2 m2/m2, SMOS-IC and SMAP had lowest values 578 

over the LAI 2-3 category. The four products only agree in terms of sign of bias (dry) over 579 

LAI 1-2 category and higher Bias values were obtained by SMOS-IC.  580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 
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 600 

 601 

 602 

 603 

Figure 5 Same as Figure 4, but now grouped by LAI values in 3 classes: 0-1, 1-2, 2-3 m2/m2. Number 604 
of stations per category: 0-1 (n=160 stations), 1-2 (n=99 stations), 2-3 (n= 9 stations).  605 

 606 

 607 

 608 

 609 
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3.3.2 Climate  610 

 611 

Climate is another factor that can impact the performance of the remotely-sensed SM 612 

products. In this study, we assessed the relationship between satellite performance metrics 613 

and the Köppen-Geiger climate classification (Kottek et al., 2006). Fig. 6 displays the median of 614 

all the statistics considered in this study as a function of Köppen-Geiger main climates (see 615 

Fig. S1 for the Köppen-Geiger map): “Equatorial (Savanna) climates: (A)”, “Arid and semi-616 

arid climates (B)”, “Warm temperate climates (C)”, and “Cold climates (D)”. It can be 617 

noticed from this figure that there is a high variability in the performance of the satellite-618 

based products over regions classified as “B”, “C”, and “D” in terms of Bias. All remotely-619 

sensed SM products have comparable performances (with small differences) in terms of 620 

correlations over “A”, “B”, and “D” climates in terms of R. The lowest correlations and 621 

highest RMSE and ubRMSE values for all products were obtained over “cold climates” 622 

climate. SMAP and SMOS-IC correlated better to the ISMN observations over “warm 623 

temperate climates” climates than ESA CCI and ASCAT. ASCAT had higher RMSE and 624 

ubRMSE over all the main climates and lower Ranom over “B”, “C”, and “D”. However, 625 

ASCAT had higher correlations (both original and anomalies) over “Equatorial (Savana) 626 

climates”. The correlations values computed based on anomalies were lower than the original 627 

ones particularly over “Equatorial (Savana) climates” and the performance is more spread 628 

over the stations. SMAP had a higher Ranom over “cold climates” but comparable with 629 

SMOS-IC over “Arid and semi-arid climates” and “warm temperate climates” and with 630 

SMOS-IC and CCI over “Equatorial (Savana) climates”. In terms of anomalies, the rank of 631 

the products did not change over “Arid and semi-arid climates”. With the exception of CCI, 632 

remotely-sensed SM products had underestimated in situ observations over “warm temperate 633 

climates” and “cold climates” and overestimated the ISMN SM observations over “Equatorial 634 

(Savana) climates”. With the exception of ASCAT, all products had comparable ubRMSE 635 
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values over “B”, “C”, and “D” regions. Moreover, “Arid and semi-arid climates” region 636 

exhibits high variability in terms of performance scores. 637 

 638 

 639 

 640 

Figure 6 Same as Figure 4, but now grouped by Köppen-Geiger main climates (see Fig. S1). A: 641 
Equatorial (Savanna; n= 8 stations), B: Arid and semiarid (n=90 stations), C: Warm temperate 642 
climates (n=132 stations), D: Cold climates (n=42 stations). Source of the climate classifications: 643 
(Kottek et al., 2006).  644 

 645 
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4. Discussion 646 

Based on the evaluation results shown above in Figs. 1-3, it was found that comparing 647 

remotely-sensed SM product to the ISMN in-situ measurements individually (i.e. taking all 648 

available observations) or limiting observations to the availability of the other remotely-649 

sensed SM products can impact the evaluation scores and the ranking of the various SM 650 

retrieval products, due to differences in spatial and temporal sampling. On the one hand, 651 

considering all observations, SMAP and SMOS-IC gave the best performance in terms of 652 

correlations (Fig. 1), while on the other hand, they had similar performance to SMOSL2 and 653 

SMOSL3 when considering only common dates over the Australia network (Fig. 2). Another 654 

example concerns stations situated over Africa, where ASCAT provided the highest 655 

correlation value (though the differences were small) when considering all observations (Fig. 656 

1) but when considering only observations collocated with the other products, a similar 657 

performance with CCI, SMOSL2, and SMOS-IC (Fig. 3) was obtained.  658 

In some cases, the performances were unchanged when cross masking data. This may 659 

be coincidence, or it may indicate that the masked data are indeed a representative subsample 660 

of all data. For instance, in terms of ubRMSE, ESA CCI SM was the best in all cases over 661 

Europe. SMOS-IC was the best for ubRMSE and this position was unchanged whether all 662 

observations were considered (Fig. 1) or considering only common dates (Figs. 2 and 3) over 663 

the Australian network. All remotely-sensed SM products were consistently wetter than the 664 

ISMN SM products over the African and Australian networks in all cases considered in this 665 

study i.e. using all observations or only common dates. Similarly, the small bias in dryness 666 

(wetness) of ASCAT, SMAP, and SMOS (ESA CCI SM) with respect to the ISMN 667 

observations over stations located in the U.S. persisted, regardless of the data masking. The 668 

dryness of SMAP is in line with previous studies conducted by Chen et al. (2017b), over the 669 

Tibetan Plateau. The presence of bias is a common problem of the remotely-sensed SM 670 
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products analyzed in this study. Other than the representativeness errors between the point-671 

scale in situ measurements and coarse-resolution space borne products, the absolute value of 672 

Bias is affected by (Al Bitar et al., 2017; Draper et al., 2009; Escorihuela et al., 2010; Jackson et al., 2012): 673 

different sensing depths (and thus observed volume), the use of auxiliary variables from 674 

models (e.g., soil temperature), uncertainties due to the in situ sensor errors, scaling and 675 

conversion of units (mainly for ESA CCI SM and ASCAT), and spatial heterogeneity.  676 

Overall, the ubRMSE is larger than the target uncertainty of 0.04 m3/m3 when doing 677 

an evaluation against sparse networks, which suffer largely from representativeness error. It 678 

is worth noting that the ubRMSE values (particularly for SMAP) found in this study are in 679 

line with those found by El Hajj et al. (2018), but larger than those found by Colliander et al. 680 

(2017) and Chan et al. (2016). These later studies used core validation sites, which have 681 

significantly smaller representation errors through upscaling of the dense SM networks; here 682 

we considered the median value of the scores of individual stations within continents, land 683 

cover types, or climate zones. Furthermore, it was shown that ASCAT generally had the 684 

highest ubRMSE values compared to other products over most of the networks and lower 685 

correlations over arid environments. This could be explained by volume scattering in dry 686 

sands and the fact that the ASCAT product is given as a degree of saturation unit, which was 687 

converted to the volumetric units (i.e. m3/m3) using soil porosity information (Wagner et al., 688 

2013). Soil porosity datasets are often not very accurate (Brocca et al., 2011), and they may 689 

significantly affect the Bias and ubRMSE scores obtained by ASCAT. In addition, it should 690 

be noted that the Bias values obtained for ESA CCI are imposed by the GLDAS Noah model, 691 

as already mentioned above. 692 

The increase in R values when only common data points are used is most likely 693 

because less stations are included, which each now has a more complete time series, allowing 694 

to sample more of the long-term variability. When excluding SMAP from the analyses (Fig. 695 
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3), SMOS-IC generally (followed by SMOSL2 and ESA CCI in most cases) ranked first in 696 

terms of correlations (both original SM values and anomalies) for most of the ISMN stations 697 

considered in this study. However, the differences in R values are rather very small. The 698 

slightly better performance of SMOS-IC is probably due to the improvements introduced into 699 

the algorithm (e.g., limiting the use of auxiliary information, new calibration, etc.). However, 700 

SMOS-IC showed higher Bias values comparing to other products which is expected as Bias 701 

was considered as the least important metric in the SMOS-IC SM algorithm calibration 702 

processes (Fernandez-Moran et al., 2017a). 703 

While the best performances of all remotely-sensed SM products in terms of 704 

correlation was found over the Australian and African networks (due to common low 705 

vegetation density over these networks), the worst and more diverse results were found over 706 

the European networks (particularly SMOS). However, in most cases and particularly for 707 

stations located over Africa, anomaly correlations were lower than for the original 708 

correlations, which means that the correlations of those stations were controlled by the annual 709 

cycle (pronounced dry and wet seasons). In the case of Europe, the SMOS observations are 710 

affected by RFIs plus snow freezing not always well taken into account (partial coverage, 711 

human impacts) that could partially explain the lower performances of SMOSL2 and 712 

SMOSL3 over this continent.  713 

As RFIs signals play a key role in the accuracy of the SM products retrieved from the 714 

passive microwave systems, we further analyzed the impact of this factor in Fig. 7 for the 715 

SMOS sensor, (times series of observations were too short for the SMAP data which are not 716 

included in this analysis). More specifically, the time variation in the quality of the SMOS 717 

SM product since 2010 was investigated over the four continents: America, Australia, Africa, 718 

and Europe. The correlation values shown in Fig. 7 (upper panel) were calculated for each 719 

year separately between the SMOS-IC and ISMN data and then only the median of all sites 720 
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per continent and year was retained. In Fig. 7 (upper panel), it can be seen that the 721 

performance of SMOS-IC over America is stable with no substantial differences between 722 

years. Over Australia and Europe (except for 2015), there is a small tendency of increasing 723 

correlations from 2010 onwards. Over Africa, there is no obvious trend as the performance of 724 

SMOS-IC changes from one year to the other. In order to investigate the effect of RFI on the 725 

SMOS-IC results in Fig. 7 (upper panel), the temporal mean of the RMSE of the fit between 726 

measured and simulated TB (which can be consided as a proxy of RFI impacts on the TB 727 

observations) was computed per year and spatially averaged for the same corresponding 728 

entire continents; displayed in Fig. 7 (lower panel). While a substantial decrease in RFI can 729 

be noticed over America, RFI over Australia keeps stable throught the seven years. Over 730 

Africa and Europe, RFI signals effects changed from one year to the other with no general 731 

trends. Interestingly, the notable decrease in the performance of SMOS-IC over 2013-2014 732 

over Africa and 2015 over Europe correspond to higher RFI levels than in the preceding and 733 

following years. So, these figures tend to confirm that the RFI effects may be a key factor to 734 

explain time variations in the performance of SMOS-IC over these continents. The lowest 735 

RFI signals among continents were found over Australia, which was reflected in the best 736 

performance of SMOS-IC in all years in terms of correlations over the continents. The results 737 

showed that the performance of SMOS datasets is still highly affected by RFI signals, even if 738 

the ESA already put lot of effort in closing down many RFI sources (Oliva et al., 2016). However, 739 

this cannot be generalized as for instance over Europe, the TB RMSE decrease in 2011 740 

(lower RFI conditions) matches with an R-decrease in SM. 741 
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 742 

Figure 7 Correlation between SMOS-IC SM and the ISMN in situ SM observations (upper panel) and 743 

RMSE of the fit between measured and simulated TB (bottom panel) during the 2010-2016 period 744 

over Africa, Europe, America, and Australia. Correlations were calculated per year separately for all 745 

stations located in the same continent and then the median of all stations was computed. 746 
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Other general disturbing factors that impact the performance of the remote sensing 747 

SM products over Europe include climate, dense vegetation, or mountains. The regions of 748 

SM networks over the African and Australia networks are relatively homogenous with less 749 

spatial variability in SM, which led to higher skills of remote sensing retrievals (e.g., Dorigo 750 

et al., 2012). In terms of correlations and ubRMSE: while lowest performances (with more 751 

variability) of most the remotely-send SM products were obtained for “cold climates”, which 752 

is expected due to the effects of snow and frozen conditions that are not well filtered or the 753 

landscape (vegetation, soil) is very different from the other areas where much of the 754 

algorithm development has occurred. Highest performances were obtained over “tropical 755 

savanna climates”, which is, as mentioned above, mainly controlled by the annual cycle. This 756 

indicates that climate and the time series length is a significant factor when comparing 757 

satellite-based SM products. 758 

The better performance, particularly in terms of temporal dynamics, of SMAP and 759 

SMOS-IC over active (ASCAT) products, using only common dates, over regions where LAI 760 

range between 2 and 3 m2/m2 is probably due to the fact that SMAP and SMOS (and ESA 761 

CCI which contains SMOS) operate at L-band which is optimal for SM monitoring: L-band 762 

observations have higher penetration capabilities through dense vegetation and lower 763 

sensitivity to atmospheric effects such as heavy rainfall events than higher frequencies (C- 764 

and X- bands). However, over these regions, ASCAT showed similar Ranom as SMAP. Over 765 

some land cover types/regions, the ESA CCI SM product was performing similarly to SMOS-766 

IC and SMAP, which is probably due to the fact that it contains SMOS L-band observations. 767 

The small difference in correlation values (both R and Ranom) between SMOS-IC (higher) and 768 

SMAP (lower) over regions where LAI values range between 2 and 3 could be due to the 769 

capability of SMOS satellite to measure TB at multi-angular incidence angles and thus better 770 

decouple between the soil and vegetation effects. Conversely, the better performance, mainly 771 
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in terms of ubRMSE of SMAP over the SMOS products is generally due to the improved 772 

technology used in SMAP (SMAP has a much better RFI filtering).  773 

4  Conclusion 774 

 775 

In this study, the assessment and inter-comparison of six recently 776 

developed/reprocessed satellite SM products (i.e. SMOS-IC, SMOSL2, SMOSL3, SMAP, 777 

ASCAT, and ESA CCI SM) against the ISMN ground-based measurements across different 778 

climate and vegetation conditions were conducted. This was accomplished using the Pearson 779 

correlation coefficient (R), anomalies (Ranom), Bias, RMSE, and ubRMSE metrics. Several 780 

conclusions can be drawn from the evaluation presented above:  781 

(i) The performance of the six datasets in terms of correlations (temporal dynamics) 782 

was rather similar over contrasted biomes and climate conditions, but with a 783 

slightly higher skill of both SMAP and SMOS-IC products especially when the 784 

data were temporally collocated; 785 

(ii) The performances of SM products related to systematic and random errors (i.e. 786 

Bias and ubRMSE) varied strongly between products and locations, but with a 787 

slightly higher skill of ESA CCI SM, SMOS-IC, and SMAP products. More 788 

specifically, similar performances in terms of dryness or wetness with respect to 789 

in situ observations were obtained over Australia and America, with the exception 790 

of ESA CCI SM, regardless of the period or temporal collocation. The six 791 

products did not agree in the sign of the Bias over Europe in all of the analyses 792 

presented above. Bias strongly depends on the reference data sets and/or model 793 

parameters used to determine the absolute SM conditions such as porosity data for 794 

ASCAT or GLDAS Noah model for the ESA CCI SM products. Further research 795 
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on teasing out and quantifying systematic errors in satellite-based SM retrievals 796 

should be recommended for the future; 797 

(iii) When excluding SMAP from the analyses, SMOS-IC was correlating best to the 798 

ISMN in situ observations and both ESA CCI SM and SMOS-IC presented the 799 

lowest ubRMSE values; 800 

(iv) The performance of SMOS-IC, in particular, seems highly impacted by RFI 801 

(which is not the case for SMAP or to lesser extent) as indicated by the decrease 802 

in correlations values for higher continent-averaged RFI values. RFIs may also to 803 

some extent influence the ESA CCI product which integrates both SMOS and 804 

AMSR-E/2;  805 

(v) While the best performance (i.e. a better range of correlation values) of all 806 

remotely-sensed products was found for stations located in Australia and Africa 807 

(semi-arid environments), the worst and more diverse performances were found 808 

over Europe (particularly SMOS) and cold climates; and 809 

(vi) A complementarity between ASCAT, SMOS, ESA CCI SM, and SMAP satellite-810 

based SM products was demonstrated in this study given the none superiority of 811 

any of them and the different performances of each product over different land 812 

cover classes and climate conditions across the globe. 813 

One should be very careful when trying to select the most skillful product, as the 814 

performance of each product varies based on the period of evaluation, the evaluation 815 

protocol, the data quality control, the number of data points and the study region. These 816 

factors could favor one of the products over the others, as it was demonstrated in this study, 817 

which makes it a challenge to draw firm conclusions. The SM community is actively working 818 

on establishing common guidelines (Gruber et al., in review) for evaluating satellite-based SM 819 
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products, which should help future studies in the ranking of various SM products for various 820 

applications. 821 
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