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Summary  

(1) Wood production in fast-growing Eucalyptus grandis trees is highly dependent on 

both potassium (K) fertilization and water availability but the molecular processes 

underlying wood formation in response to the combined effects of these two limiting 

factors are still unknown  

(2) E. grandis trees were submitted to four combinations of K-fertilization and water 

supply. Weighted gene co-expression network analysis (WGCNA) and MixOmics-

based co-regulation networks were used to integrate xylem transcriptome, 

metabolome and complex wood traits. Functional characterization of a candidate gene 

was performed in transgenic E. grandis hairy roots.  

(3) This integrated network-based approach enabled us to identify meaningful biological 

processes and regulators impacted by K-fertilization and/or water limitation. It 

revealed that modules of co-regulated genes and metabolites strongly correlated to 

wood complex traits are in the heart of a complex trade-off between biomass 

production and stress responses. Nested in these modules, potential new cell wall 

regulators were identified as further confirmed by the functional characterization of 

EgMYB137.  

(4) These findings provide new insights into the regulatory mechanisms of wood 

formation under stress conditions pointing out both known and new regulators co-

opted by K-fertilization and/or water limitation that may potentially promote adaptive 

wood traits. 

 

Keywords: Systems biology, Co-regulation networks, Omics integration, Drought, 

Potassium, Xylem, Transcription factors, Eucalyptus. 

 

1. Introduction 

 Wood, or secondary xylem, is formed by the activity of an internal meristem called 

the vascular cambium, through a complex differentiation process leading to highly 

specialized xylem cells characterized by thick, lignified secondary cell walls (SCWs) 

(Plomion et al., 2001). Besides being a renewable source of material for mankind, providing 

raw material for timber, paper, energy, second generation biofuels as well as for added–value 

biomaterials (Mizrachi et al., 2012), wood represents a major carbon sink important for 

climate regulation (Bonan, 2008). The physicochemical properties of wood, which depend 

mainly on the chemical composition and the structure of secondary cell walls (SCWs), 

determine wood industrial end-uses (Mansfield, 2009). In xylem, SCWs are made of 
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approximately 75% of polysaccharides (cellulose and hemicelluloses) and 25% of lignin, a 

complex hydrophobic phenolic polymer.  

 The fast-growing eucalypts characterized by their outstanding growth performance, 

short-rotation time and wide adaptability are the most planted trees worldwide (Hinchee et 

al., 2009). Eucalypts plantations are mostly established in tropical and subtropical regions 

where the main environmental constraints are soil nutrients starvation and drought episodes 

(Gonçalves et al., 1997). In highly weathered tropical soils, potassium (K) is a major limiting 

factor of tree growth (Laclau et al., 2009; Wright, 2011; Epron et al., 2012). Besides its 

essential role in a variety of cellular processes, reviewed in Sardans & Peñuelas (2015), K is 

considered as a key osmolyte for wood formation (Fromm, 2010). K fertilization in K-

deficient soils can lead to a dramatic increase in wood biomass production in tree species 

such as pine (Smethurst et al., 2007), poplar (Wind et al., 2004; Arend et al., 2004) and 

eucalypts (Laclau et al., 2009). In these conditions, a higher cambial activity is correlated 

with a peak of K in the cambial zone (Kuhn et al., 1997; Arend et al., 2002; Wind et al., 

2004; Langer et al., 2004; Fromm, 2010). K also influences xylem structure likely through its 

role in turgor-driven elongation of new xylem cells. It has an impact on SCW deposition 

dynamics as K-starved trees show earlier initiation of SCW deposition than controls (Dunisch 

et al., 1998; Langer et al., 2002). 

 In a context of climate change, the intensity and frequency of future drought episodes 

are likely to increase in tropical and subtropical regions, affecting Eucalyptus plantations 

productivity (Hawkins & Sutton, 2012; IPCC, 2013). Potassium contributes to plant 

resistance to abiotic stresses, including drought by improving processes like osmotic 

adjustment, stomatal aperture control, photosynthesis activation, ROS detoxification and 

phloem loading of photoassimilates (reviewed in Wang et al., 2013). Some studies suggested 

that K modulates xylem hydraulic conductance, possibly by interacting with pectins in 

intervessel pits, enhancing tree resistance to drought (Nardini et al., 2010; Jansen et al., 

2011). Recently, using a large-scale through-fall exclusion experiment, Battie-Laclau et al. 

(2016) showed that K fertilization improved water use efficiency and biomass production in 

Eucalyptus. However, during drought episodes, these authors noticed that the beneficial 

effect of K may not be sufficient to counterbalance the detrimental effect of increased water 

demand caused by higher growth rates of K-fertilized trees (Battie-Laclau et al., 2014a,b). 

Tree response to drought in interaction with K-fertilization starts to be well documented in 

organs such as leaves and roots (Cakmak, 2005; Anschütz et al., 2014), but xylem has 

received much less attention. Most of the studies performed in this tissue focused on the 
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drought-induced structural modifications and their impact on water transport properties 

(Arend & Fromm, 2007; Zwieniecki & Secchi, 2015). Up to now, the changes occurring at 

the transcriptomic and metabolomic levels in xylem in response to drought and K-fertilization 

remain unstudied.  

Wood formation is a highly regulated process mainly controlled at the transcriptional 

level and the expression of SCW-associated genes is tightly spatiotemporally regulated 

(Hertzberg et al., 2001; Demura & Fukuda, 2007) through a complex hierarchical regulatory 

network (reviewed in Hussey et al., 2013; Yang & Wang, 2016). Recent studies have 

highlighted the importance of a dynamic cross-talk between the regulation of SCW during 

development and in response to stresses, which is likely necessary to promote adaptation to 

environmental changes (Zinkgraf et al., 2017). For instance, changes in thickness, 

composition and/or structure of SCW have been observed in response to several stresses such 

as nitrogen excess or depletion (Camargo et al., 2014; Euring et al., 2014), mechanic stress 

(Mellerowicz & Gorshkova, 2012) or cold temperature (Ployet et al., 2018). Transcription 

factors (TFs) involved in the regulation of SCW formation as well as SCW biosynthesis 

genes were reported to be induced by environmental constraints such as high salinity or iron 

deprivation in Arabidopsis (Taylor-Teeples et al., 2015) or cold stress in Eucalyptus (Ployet 

et al., 2018). Some of these TFs were shown to be involved in stress tolerance (Ramírez et 

al., 2011; Guo et al., 2017).  

 To get a comprehensive view of a complex process such as the regulation of wood 

formation in response to environmental cues, system biology approaches seem the most 

adapted (Cramer et al., 2011). Indeed, the integration of transcriptomic and metabolomic 

approaches has allowed gaining very valuable insights into the understanding of tension 

wood formation (Andersson-Gunnerås et al., 2006) and in the lignin biosynthetic pathway 

(Vanholme et al., 2012; Chen et al., 2014) as well as in the primary wall transition to SCW 

(Li et al., 2016b,a). Taylor-Teeples et al. (2015) constructed co-regulation networks inferred 

from protein-DNA interactions to refine the SCW regulatory network under abiotic stresses 

in Arabidopsis and highlighted new key regulators. In poplar, co-expression networks were 

used to identify cell-type specific TFs involved in the regulation of SCW biosynthesis in 

xylem (Shi et al., 2017), and modules of genes involved in xylem formation under abiotic 

stresses (Cai et al., 2014; Zinkgraf et al., 2017; Wildhagen et al., 2018). Mizrachi et al. 

(2017) have applied a network-based data integration method to reveal pathways underlying 

biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. Very 

recently, Wang et al., (2018) developed a multi-omics integrative analysis of lignin 
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biosynthesis in poplar to quantify the effects of the expression of monolignol biosynthetic 

pathway genes on wood properties. 

In order to get an integrated view of the regulation of wood formation in response to a 

combination of K and water regimes, we collected differentiating xylem from four-years E. 

grandis trees grown in four contrasting treatments. We performed both transcriptomic and 

metabolomic profiling to detect differentially expressed genes (DEGs) and differentially 

accumulated mass signatures (DAMs), respectively. We also evaluated trunk growth, xylem 

structure and saccharification yield as a proxy of changes in the SCW composition. We then 

constructed WGCNA (Weighted Gene Co-expression Network Analysis) and MixOmics-

based co-regulation networks to correlate changes in transcriptome, metabolome and wood 

traits. This system biology approach enabled us to identify biological processes and 

meaningful subset of genes impacted by K-fertilization and/or water limitation. Among the 

latter, TFs highly connected to SCW biosynthetic genes and wood traits were highlighted as 

potentially involved in SCW regulation. We functionally characterized the most promising 

candidate and confirmed its ability to regulate SCW deposition in E. grandis.  

 

2. Materials and Methods 

2.1. Plant material and sampling  

 We took advantage of the experimental field trial set up in 2010 using a E. grandis 

commercial clone (Suzano Company, São Paulo) at the Itatinga Experimental Station of the 

University of São Paulo in Brazil (23°020S; 48°380W, for a detailed description see Battie-

laclau et al. (2014a). Our study focused on four conditions combining potassium fertilization 

and water availability: (1) [+W-K] (No potassium (K) fertilization and no throughfall 

exclusion), (2) [–W-K] (No K-fertilization and 37% of throughfall excluded), (3) [+W+K] 

(0.45 mol K.m
-2

 applied as KCl and no throughfall exclusion) and (4) [-W+K] (0.45 mol 

K.m
-2

 applied as KCl and 37% throughfall exclusion). For each condition, phenotyping and 

xylem sampling were performed on four independent trees (Fig. S1).  

Tree circumference (CBH) was measured at breast height (BH; 1,3m above ground) every 15 

days. Trunk biomass was quantified after cutting down the trees as described in (Battie-

Laclau et al., 2016). An allometric equation allowing calculation of trunk biomass from CBH 

(González-García et al., 2016) was applied to predict biomass production per day (kg of dry 

matter.d
-1

.tree
-1

) for each tree, over the 3 months preceding sampling. The daily average gross 
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primary productivity (GPP, gC.m
-2

.day
-1

) was estimated using the model established by 

Christina et al. (2015). The proportion of carbon allocated to trunk secondary growth 

(%GPPstem), was obtained for each tree by dividing the trunk biomass increment (kgDM.d
-

1
.tree

-1
), by the simulated tree gross primary productivity (gC.d

-1
.tree

-1
).  

Wood samplings were performed on four independent trees per condition (at BH) in May 

2014, during a severe dry season (Fig. S2). Wood disks were collected for wood micro-

density measurements and micro-core samples (length: 15mm; diameter: 2mm) were fixed 

and stored in 80% ethanol for histology analyses. Developing xylem (including cambium) 

was collected by scraping after removing the bark and immediately frozen in liquid nitrogen 

for transcriptomic and metabolomic analyses. Metabolome and wood properties were 

analysed on the four biological replicates for each condition and three replicates were used to 

perform transcriptomic analyses (Fig. S3).  

 

2.2. RNA extraction and analyses of the transcriptome 

 RNA extraction and integrity controls were performed as previously described (Ployet 

et al., 2018). Three sequencing libraries per treatment were generated and sequenced 

(Illumina, 150 bp paired-end reads) by the Genotoul GeT platform 

(https://get.genotoul.fr/en/; France) using the HiSeq3000 (Illumina). An average of 46 million 

reads per library was generated, >90% were mapped to E. grandis reference genome (v1.1, 

https://phytozome.jgi.doe.gov/) using TopHat2 (Kim et al., 2013). Sequencing data were 

registered at NCBI SRA databases (PRJNA514408). For a subset of selected genes, RNAseq 

expression levels were confirmed by RT-qPCR (Fig. S4, Table S1) as described in (Ployet et 

al., 2018). 

 

2.3. Metabolites extraction and biochemical analyses  

 Soluble metabolites were extracted from 4 independent biological replicates and 

analyzed according to the methods described by De Vos et al., 2007 and (Hoffmann et al., 

2017) for GC-MS and LC-MS, respectively including minor changes detailed in Method S2. 

Biochemical analyses of SCWs were done in triplicate from extractive-free xylem residues 

(EXR) obtained as previously described in Ployet et al. (2018) and detailed in Method S1. 

Saccharification was estimated with or without alkali pre-treatment, mainly as described in 

Van Acker et al. (2016). Reducing sugar concentration was assessed with dinitrosalicylic acid 
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(DNS) reagent using a 10µl aliquot of the supernatant after 6h, 24h and 48h of reaction. 

Enzyme activity was assessed at 0.25 FPU/ml in our conditions.   

 

2.4. Vector construction and plant transformation 

 The coding region (1050bp) of EgMYB137 (Eucgr.K02806), and a fragment of 2kb 

upstream of the start codon (promoter) were amplified from E. grandis xylem cDNA and 

genomic DNA, respectively using specific primers (Table S1). The DNA fragments were 

then cloned into Gateway-adapted binary vectors pGWAY-0 and pGWAY-1, for 

overexpression and promoter activity analyses respectively and transformed into Eucalyptus 

hairy roots as described in Plasencia et al. (2016). Eucalyptus composite plants harboring 

transgenic hairy roots were grown in OIL DRI substrate US-Special Substrate (Type III/R; 

Damolin, Fur, Denmark) in 200-mL pots for a period of 5 months (16 h photoperiod, 

25/22°C). Fluorescent roots expressing DsRed were collected on 7 to 9 independent lines for 

further analyses. Histochemical GUS assays were performed as described in Plasencia et al. 

(2016). 

 

2.5. Microscopy and histochemistry  

 Wood density was measured as described in Dobner et al. (2018). The average density 

(g.cm
-3

) was measured by X-ray every 40 µm along the first 4 mm of differentiating xylem 

zone using a QTRS-01X Tree Ring Analyzer according to manufacturer procedure (Quintek 

Measurement Systems, Knoxville, TN. 1999). For xylem structure analysis, transverse 

sections were made from micro-cores samples (3 biological replicates per condition) and 

transgenic roots (six p35S:EgMYB137 lines and four controls), and embedded in LR White 

resin (London Resin Company Ltd). Semi-automatic image analyses of semi-thin sections 

(1µm) were performed as previously described (Ployet et al., 2018) to estimate SCW 

thickness (Method S1). Average vessel diameter was measured by image analyses on >400 

vessels (diameter cut-off >35 µm) using Image J software (v1.5).  
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2.6. Statistical analyses and data integration 

 For transcriptomic analyses, we combined CuffDiff v2.2.1 (Trapnell et al., 2012) and 

DEseq2 R package v1.10 (Love et al., 2014) to detect, a total of 5,573 differentially 

expressed genes (fold change ≥ 2, adjusted P-value (FDR) < 0.01, Table S1). For 

metabolomic analyses, 2,250 mass signatures were obtained by LC-MS (850) and GC-MS 

(1400). Mass signatures detected in less than 2 technical repetitions and 2 conditions were 

discarded. We identified 516 differentially accumulated mass signatures (DAMs), 231 and 

285 for LC-MS and GC-MS respectively (fold change ≥ 2, FDR < 0.01, Table S2). Missing 

values were substituted by random forest imputation (Gromski et al., 2014), using missForest 

R package (Stekhoven & Buhlmann, 2012). In total 6,089 DEGs and DAMs were used to 

perform datamining. Discrimination of the different treatments and biological replicates was 

done using Partial Least Square - Discriminant Analysis (PLS-DA), from R package 

mixOmics (Lê Cao et al., 2016). 

We used BiNGO package (Cytoscape© software, Maere et al., 2005) and g:Profiler 

(Reimand et al., 2016) to perform gene ontology enrichment based on Arabidopsis thaliana 

GO classification on the first blast hit of Eucalyptus DEGs in Arabidopsis genome 

(Phytozome V12). Two networks of GO enrichment were obtained for genes regulated by 

either water availability (+W treatments versus –W treatments) or K supply (+K treatments 

versus –K treatments). They were merged and manually curated to remove redundant GO 

terms (Fig. 2). 

 

Network analyses based on Pearson pairwise correlations, calculated from three values per 

condition, were performed as described previously (Ployet et al., 2018). We used WGCNA 

method (Langfelder & Horvath, 2008) to detect modules (softPower=10, deepSplit=3 and 

minModuleSize=100) and compute correlations between average module profiles and 

phenotypic variables. Correlations between standardized profiles of DAMs and DEGs of 

modules M1 to 6, were further investigated using mixDIABLO (Data Integration Analysis for 

Biomarker discovery using a Latent component method for Omics studies, Singh et al., 

2016). In the sparse Partial Least Square Discriminant Analysis (sPLS-DA), a full design was 

chosen in which all datasets are connected, all variables were kept and number of 

components set to 3. Correlation values (Table S3) were used to graphically represent 

networks using Cytoscape© software. For WGCNA, significant Pearson correlations were 

used (FDR < 5.10e-5) to select 4305 nodes. For MixOmics, a correlation threshold of 0.8 
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within mixDIABLO similarity matrix was chosen to optimize modularity and allow 

comparison with WGCNA network (Fig. S5). 

 

3. Results 

3.1. Remodelling of the xylem transcriptome and metabolome in response to K-

supply and water availability  

 The analyses of the transcriptome and the metabolome of differentiating xylem tissues 

collected from field-grown E. grandis trees submitted to four different treatments combining 

rainfall water availability and K fertilization (Fig. 1a,b), revealed a total of 5,573 

differentially expressed genes (DEGs) and 516 differentially accumulated mass signatures 

(DAMs, Fig. 1c,d, Table S1 and S2), respectively. The four treatments were clearly 

separated by the first three principal components (PC) of the Partial Least Squares - 

Discriminant Analysis (PLS-DA), explaining 82% and 76% of the total variance of the DEG 

expression profiles and of the abundance profiles of DAMs, respectively (Fig. 1c,d, Fig. S3). 

The first component (PC1) explained the highest percentage of variance (61% for DEGs and 

39% for DAMs) clearly separating K-fertilized [+K] from non-fertilized [-K] samples. 

Indeed, most of the DEGs (>60%, Fig. 1c) and a large proportion of the DAMs (42%, Fig. 

1d) were exclusively regulated by K-fertilization. In sharp contrast, 4% of the DEGs and 12% 

of the DAMs were regulated by water availability only. Interestingly, a substantial percentage 

of the DAMs (45%) and of the DEGs (34,7%) was regulated by both water and K. The vast 

majority of the DEGs (90%) and DAMs (79%) regulated by water were also regulated by K 

whereas only 36% of the DEGs and 52% of the DAMs regulated by K were also regulated by 

water.  

 

 Using a Gene Ontology (GO) enrichment approach, we found that 159 biological 

processes (Fig. 2, Table S1) were significantly enriched among the DEGs. We made a 

hierarchical classification of these GO categories from the most general to the most 

specialized level (level 9, 45 GOs) and represented by green, blue and grey dots, the 

categories enriched in K-regulated, W-regulated and [K and/or W]-regulated DEGs, 

respectively. Considering level 9-GO categories, 23 were enriched in K-regulated DEGs, 

mainly related to development, primary metabolism, cell wall formation, regulatory 

processes, transport and abiotic stresses. The fifteen GOs enriched in K and/or W-regulated 

DEGs, were related to secondary metabolism, biotic and abiotic stress responses and 
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biological regulation. Only 7 GOs were enriched in W-regulated DEGs and included abiotic 

stresses responses and transport. 

 

3.2. Integration of transcriptomic and metabolomic data through correlations 

network analyses 

 In order to get insights into the regulation of xylem transcriptome and metabolome, 

we analysed the correlations between 6,089 variables representing 5,573 DEGs and 516 

DAMs (Table S3). We performed a correlations network analysis based on Pearson pairwise 

correlations to detect gene-gene or gene-metabolite profiles similarities. We selected the most 

robust correlations (FDR adjusted p value < 5.10e-5) to build a network in which 4,305 nodes 

(representing either DEGs or DAMs) were connected by 170,629 edges whose lengths were 

proportional to the absolute values of the corresponding correlations (Fig. 3). We obtained a 

dense, strongly correlated core network linked to six small subnetworks (Fig. 3). Sixty 

percent of the 155 DAMs were spread across the network and correlated to DEGs but the 

remaining 40% were clustered in a specific subnetwork poorly connected with DEGs (i.e. 

only 6 DAMs were connected to DEGs). 

 Using the WGCNA method, we detected 12 modules containing highly correlated 

variables and therefore potentially involved in the same biological process (Fig. 3). For each 

module, we performed a GO enrichment analysis (Table S1) and represented by heatmaps 

DEGs’ profiles in the four treatments (Fig. 3). The expression profiles of the genes in all 

modules, except module 12, were more dependent on K-fertilization than on water status 

(Fig. S6). 

 The modules M1 to M5 located in the core of the network, were enriched in cell wall-

related genes, especially in genes involved in the synthesis and in the regulation of the three 

main SCW polymers (cellulose, xylan, lignin) (Fig. 3, Table S4). Most of these genes (80%) 

were down-regulated in response to K-fertilization while the remaining 20% mostly involved 

in cell primary metabolism, were up-regulated and thus negatively correlated with the first 

ones. (Table S2). This included EgrNAC12, a putative ortholog of the drought inducible 

ANAC002 in Arabidopsis (Table S4). Among the K-down-regulated genes, 109 TFs were 

identified including regulators acting in the early phase of xylem differentiation like 

AtWRKY12, AtWRKY13, AtIFL1/REV, ATHB8 and ATHB15 (Table S4). Twenty-three TFs 

were orthologs of the regulators belonging to SCW hierarchical transcriptional network in 

Arabidopsis (Table S4) such as EgrNAC61 and EgrNAC26, orthologs of first level master 
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switches AtSND1 and AtVND6, respectively. The second level positive (EgMYB2) and 

negative (EgMYB1) master switches functionally characterized in Eucalyptus were also 

present (Goicoechea et al., 2005; Legay et al., 2007). Fifty-two DAMs (33%) were correlated 

with the M1 to M5 modules with M2 presenting the highest number of connected DAMs. 

 Nested in the core of the network, the M6 module was highly connected with M1 to 

M5 and significantly enriched with genes involved in cytoskeleton remodeling No DAMs 

was linked to M6. Noteworthy, the Rac-like small GTPase EgROP1, Table S4), previously 

shown to be involved in the control of cell morphology and SCW formation in Eucalyptus 

xylem (Foucart et al., 2009), was among the most connected genes. M6 also contained 

orthologs of genes involved in vesicle trafficking of CW polymers and CW modifying 

enzymes, through interaction with microtubules like AtAAA1, AtRABA5a, AtRABA4a and 

AtROPGAP3 (Table S4).  

 The modules M10 and M11 were enriched in genes related to cell activity (RNA and 

protein metabolisms) and to abiotic stresses responses such as genes encoding heat shock 

proteins, ROS detoxification enzymes, secondary metabolism enzymes, stachyose and 

polyamine biosynthesis enzymes (Table S4). These modules contained orthologs of most of 

the key components of the ABA signaling pathway (Table S4), including receptors 

(AtRCAR1/AtPYL9, AtRCAR3/AtPYL8), receptor-associated kinase (AtSnRK2.6/AtOST1) and 

kinase’s direct substrate (AtAREB3). ABA-inducible TFs, like ATHB7, ANAC081 and 

ANAC102 (Table S4) were also present, as well as AtRAE1 (ABA signaling) and AtXERICO 

(ABA metabolism). All these genes were strongly up-regulated in response to K-fertilization 

and especially when water was available [+W+K]. M10-M11 DEGs were connected with 19 

DAMs. 

 M7 and M12 were enriched in genes strongly regulated by water in addition to be 

regulated by K (Fig. S6). Most of the genes of M7, related to “DNA replication and cell 

cycle”, were down-regulated by water exclusion in K-deficient trees, but up-regulated by 

water exclusion in K-fertilized trees. Among these DEGs, 29 out of 126 belong to cell 

division machinery, chromosome segregation and cytokinesis (Table S4) including cyclin 

dependent kinases, like Eucgr.A00867, a putative ortholog of AtCDKB2;2 required for 

meristem integrity in Arabidopsis. EgrAP2-11, the only detected TF in M7 is a putative 

ortholog of AtANT, associated to cell division regulation in Arabidopsis shoot meristem 

(Table S4). M12 was enriched in genes related to transport of molecules that were up-

regulated in [-W-K] treatment. Nine encode proteins similar to transporters essential for 

xylem development or sap transport in Arabidopsis such as possible orthologs of 
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AtABCG11and AtABCB15 required for vascular development, and a close ortholog of 

AtWAT1, a tonoplast-localized transporter involved in SCW biosynthesis of xylem fibers in 

Arabidopsis (Table S4). Only one DAM was connected with M12 DEGs. 

 The M8 and M9 modules both contained genes up-regulated by water exclusion in K-

fertilized trees (Fig. S6). M8 enclosed genes related to cambial activity, like several 

components of the CLAVATA peptide signaling pathways, as well as genes close to AtMOL1 

receptor and its ligand AtCLE44/TDIF (Table S4). Among the putative TFs detected in M8, 

we found orthologs of AtDof5.6 and AtARF4 which are involved in the formation of 

interfascicular cambium and vascular patterning in Arabidopsis roots, and in promoting 

cambium activity respectively (Table S4). Orthologs of genes related to K-homeostasis 

(AtSKOR and AtZIFL2) and to calcium sensing and transport (AtSOS3, AtCAX1, AtCAX3 and 

AtCAX7) were also found in M8. The M9 module was enriched in genes related to phloem 

development (Table S4), like putative orthologs of AtSEOR1 required for phloem filament 

formation and orthologs of AtAPL required for phloem identity in Arabidopsis. Sixteen 

DAMs were associated to M8-M9. 

 

3.3. Correlations between identified DAMs and network modules 

 In an attempt to optimize the integration of the metabolomic and transcriptomic 

datasets, we decided to use the mixDIABLO method of MixOmics R package, a method 

designed for testing correlations between heterogeneous “Omics” datasets. As shown in Fig. 

4a, where the correlations between DAMs and modules are represented, the number of highly 

connected DAMs (282) was substantially increased as compared to the first method where 

only 93 were correlated with DEGs (Fig. 3). None of the DAMs was connected to the M7 

and M12 modules in agreement with the first correlation analysis. The vast majority of the 

highly connected DAMs (213, 76% of the DAMs) were associated with the modules M1 to 

M6 related to cell wall formation and cytoskeleton. Most of these DAMs accumulated in 

[+K] conditions and were negatively correlated to expression profiles of SCW-related genes. 

Among the most connected DAMs (red diamonds, Fig. 4a), 37 were selected for LC-MS-MS 

analyses and 14 provided robust identification. They belong mostly to the flavonoids, 

coumarins and terpens categories, but also to lipid and amino acids derivatives (Fig. 4b). 

Twelve were clearly accumulated in [+K] conditions and two in [-W] conditions.  
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3.4. Correlations between wood properties and network modules 

 The quantification of phenotypic traits related to wood formation in the four 

treatments (Fig. 5) revealed that the saccharification yield, vessel density and vessel diameter 

were almost exclusively regulated by K-fertilization whereas stem biomass increments and 

wood density were affected by both water exclusion and K-fertilization. Saccharification 

yield and vessel density significantly decreased (-14% and -16% respectively) in K-deficient 

trees relative to K-fertilized trees. In contrast, vessel diameter increased significantly in K-

fertilized trees and slightly more when water was excluded (+15%, Fig. 5). Stem biomass 

increments were the highest in K-fertilized trees but were significantly reduced by water 

exclusion. Wood density tended to increase in response to water exclusion, but only 

significantly for K-fertilized trees (Fig. 5). The lowest carbon allocation for trunk growth 

(GPPstem) was found in [-W-K] treatment whereas unexpectedly the highest value was found 

in the [-W+K] treatment. 

 We then used the WGCNA method to compute the correlations between the module 

profiles (mean profiles of all the variables contained in a module) of M1 to M12 and the 

phenotypic traits. In the network represented Fig. 5, the phenotypic traits were correlated 

with the 12 modules profiles as well as with 2,184 variables contained in these modules 

(2,148 DEGs and 36 DAMs). The core-network modules M1 to M6 were positively 

correlated with vessel density and saccharification yield (Fig. 5). In contrast, these modules, 

except M2, were negatively correlated to vessel diameter (Fig. 5). The correlations obtained 

between traits and module profiles reflected well the correlations between traits and variables 

(Fig. S7, Table S3). Indeed, most of the 1,554 variables in modules M1 to M6 were 

positively correlated (1,187 variables) with saccharification and vessel density, whereas 720 

variables were negatively correlated with vessel diameter. Stem biomass increments were 

positively correlated with modules M10 and M11 but negatively with modules M4 and M5. 

Wood density was positively correlated with modules M8 and M9 that were negatively 

correlated to saccharification yield. Module M8 was also positively correlated to vessel 

diameter. GPPstem was positively correlated with module M7 and negatively with M12.  

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

3.5. Identification of TFs related to wood formation in response to water exclusion 

and K-fertilization 

 With the aim of identifying new transcription factors (TFs) involved in wood 

formation and regulated by K-fertilization and/or W status, we extracted from modules M1 to 

M6 (Fig. 3,4), a subnetwork containing 113 genes known to be involved in SCW 

biosynthesis (Fig. 6). All the genes present in this subnetwork were tightly co-expressed and 

strongly down-regulated by K-fertilization. Their expression profiles were positively 

correlated to saccharification yield, and vessel density but negatively correlated to vessel 

diameter. Among the SCW-associated DEGs, 65 were correlated to wood phenotypic traits 

and to identified DAMs (Fig. 6, Table S3). Sixteen of them were orthologs of TFs known to 

regulate SCW biosynthesis (Table S4) while 32 TFs were not yet functionally characterized 

in Arabidopsis nor Populus. We examined their connectivity in networks, their expression 

profiles in EucGenIE (https://eucgenie.org/) and their presence in previous data integration 

studies in Arabidopsis, Populus and Eucalyptus (Fig. 6, Table S5). EgMYB137 obtained the 

best score in the ranking of the 32 TFs. It was correlated to 22 SCW biosynthesis genes and 5 

SCW-TFs which were the closest orthologs of AtSND1, AtNST1, AtMYB46, AtMYB83 and 

AtC3H14 (Table S4). Noteworthy, we found that this EgMYB137‘s subnetwork was 

conserved in both P. trichocarpa and A. thaliana (Fig. S8). 

 

3.6. EgMYB137 is a regulator of xylem formation in Eucalyptus 

 In order to functionally characterize this promising new candidate, we investigated its 

spatial expression using E. grandis transgenic hairy roots transformed with a promoter-GUS 

fusion and overexpressed its coding sequence under the control of the CamV35S promoter. 

Histochemical analyses revealed that EgMYB137 promoter drives GUS activity in the 

vascular cylinder of young roots (Fig.7a) and in parenchyma cells surrounding developing 

vessels close to the cambial zone in older roots (Fig. 7b-d). Cross sections of transgenic roots 

ongoing secondary growth revealed an enhanced deposition of SCW in xylem (Fig. 7e,f). The 

SCW of fibers of the p35S:EgMYB137 lines were significantly thicker (+12%) as compared 

to control lines. In contrast, the SCW of vessels were significantly thinner in 

p35S:EgMYB137 (-4%), as compared to control lines (Fig. 7g). The vessel density was 

significantly reduced (-35%) in p35S:EgMYB137 as compared to control lines (Fig. 7h) but 

no significant change in vessel nor fibre lumen diameter was observed (data not shown). We 
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further investigated the consequences of EgMYB137 overexpression on the saccharification 

yield (Table 1). With or without pre-treatment, the saccharification yield was reduced of 

approximately 16% in 35S::EgMYB137 lines as compared to control lines.  

 

4. Discussion 

4.1. K-fertilization and water availability trigger interconnected regulations in 

xylem 

 We developed a system biology approach that enabled us to get a comprehensive view 

of the regulations involved in wood formation of field-grown E. grandis trees submitted to 

four treatments combining K-fertilization and rainfall water availability. In our conditions, K-

fertilization was responsible for (i) the highest proportion of DEGs and DAMs, (ii) the 

highest proportion of variance explained by PLS-DA and (iii) the highest proportion of 

enriched GO categories. Most of these GO categories were related to development, primary 

metabolism and cell wall biosynthesis. Most of the genes of the co-expression network 

(modules M1 to M12), were strongly regulated by K-fertilization with no or minor impact of 

water exclusion. These findings, demonstrating the prevailing impact of K on the remodeling 

of the transcriptome and the metabolome, are in line with our previous physiological studies 

on three-year old trees showing that regardless water supply, K-fertilization increased 

dramatically gross primary productivity and above-ground biomass production (Battie-Laclau 

et al., 2014a,b ; Christina et al., 2015). Similarly, we observed an increase of stem biomass 

increments in K-fertilized trees. 

In response to water exclusion, enriched GO categories were mainly related to stress response 

and molecule transport but a high proportion of the stress-related genes were also 

differentially regulated by K-supply. The separation between [-W] from [+W] treatments by 

PLS-DA was highly dependent on K-fertilization suggesting that trees' response to water 

shortage is highly dependent on K-availability. On the other hand, genes in module M10 and 

M11, involved in abiotic stress response and containing numerous genes of ABA signaling 

pathway, were highly up-regulated in either [-W+K] or [+W+K] treatments suggesting that 

K-fertilized trees were stressed independently of water availability. This finding is consistent 

with previous physiological studies showing that at end of dry season, K-fertilized trees 

reached a higher level of water stress than K-deficient trees (Battie-Laclau et al., 2014a,b; 

2016). This drought-induced effect of K-fertilization was linked to the enhancement of tree 

growth rate causing a faster decrease in soil water stocks during dry periods (Christina et al., 
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2018). This was particularly true in our study because of the exceptionally low amount of 

rainfall during the months preceding sampling (Fig. S2). Trees grown in [-W+K] underwent 

continuous drought episodes and developed adaptive traits to survive (Battie-Laclau et al., 

2014a,b; 2016). In comparison, trees grown in [+W+K] were less acclimated to severe 

drought event. In agreement with this hypothesis, [-W+K] trees exhibited a highest GPP stem 

than [+W+K] and the highest expression level of stress responsive genes (modules M10 and 

M11), such as the drought responsive TF EgDREB2.5 (Fig. S4), was observed in [+W+K] 

treatment relative to [-W+K]. DEGs involved in secondary metabolism (M9 module) and 

most of the (LC-MS) DAMs were also strongly induced in K-fertilized trees. Among the 

latter, the 14 identified could be related to drought stress response as signaling lipids (Hou et 

al., 2016) or anti-oxidant compounds like flavonoids, terpenoids and coumarins 

(Karabourniotis et al., 2014).  

 

4.2. SCW formation in the heart of xylem response to K-fertilization and water 

supply 

 The SCW modules (M1 to M6) constitute the core of the network and the vast 

majority of the SCW-associated genes were drastically down-regulated in response to K-

fertilization suggesting a reduction or a delayed SCW deposition in developing xylem cells. 

These six modules were strongly correlated with saccharification yield which reflects the 

accessibility of cell wall polysaccharides to enzymatic degradation, and is a crucial parameter 

for second-generation biofuel production (Van Acker et al., 2014). A subset of genes in M1 

to M6, associated to primary metabolism, were negatively correlated with the SCW-

associated genes and up-regulated in K-fertilized trees. Among them, we found EgrNAC12, a 

putative ortholog of ANAC002, an ABA-inducible key TF strongly up-regulated in response 

to cellular carbon depletion in Arabidopsis and responsive to stress including drought 

(Garapati et al., 2015). Considering the fact that K-fertilization triggers drought stress 

signaling in our conditions, one possible hypothesis could be that K-fertilized trees develop 

strategies to mitigate drought stress like stomatal closure to reduce transpiration, resulting in 

a reduction of carbon fixation by photosynthesis. Prolonged episodes of drought are known to 

lead to a lower carbon uptake and consequently to carbon starvation for all tree organs 

(Mitchell et al., 2014). K-fertilized trees could therefore modify carbon allocation at the 

detriment of SCW biosynthesis as suggested by the repression of genes related to nucleotide-

sugars (like UDP-Galactose transporters), often included within SCW modules (Li et al., 

2016b). Similarly, the accumulation of 80% of DAMs, negatively correlated with SCW-
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DEGs, could be at least partially a consequence of the repression of a phenylpropanoid 

pathway ‘s branch (Vanholme et al., 2012).  

 Another hypothesis not exclusive of the first one is that like in poplar, SCW 

deposition could be delayed in K-fertilized trees as a result of a stimulation of cambial 

activity (Langer et al., 2002). In support of this hypothesis, we detected two groups of 

modules (M8-9 and M10-11) associated to cambial activity, cell activity and metabolism that 

were induced in response to K-fertilization. The expression profiles of these genes which 

were also positively correlated with trunk biomass increments and wood density, pointed to a 

positive effect of K-fertilization on cambial activity and cell metabolism. This agrees with the 

essential role of K in cambial activity maintenance (Fromm, 2010). According to Langer et 

al. (2002), the osmotic role of K is also essential for vessel expansion. Modules M1 to M6 

were correlated negatively with vessel diameters and positively with vessel density that 

increased, and decreased respectively in response to K-fertilization. Besides enhancing 

transport efficiency, wider vessels can increase the vulnerability of xylem to cavitation, 

making trees more sensitive to drought episodes although other parameters like vessel SCW 

composition and structure also influence xylem cavitation (Hacke et al., 2001). 

 Up to date, most of the systems biology studies performed on woody tissues, focused 

on SCW, only few uncovered genes involved in cambial activity (Zinkgraf et al., 2017; 

Ployet et al., 2018). In the present study, the fine sampling of immature cells between bark 

and differentiating xylem, allowed the identification of 18 TFs as promising candidates for 

the control of cambial activity in response to K-fertilization and water exclusion. 

 

4.3. Integrative approach linked meaningful genes to complex traits  

 Within the core SCW modules (M1 to M6), 56 TFs correlated to SCW genes and 

wood traits. These known and potential SCW-related TFs, down-regulated in response to K 

fertilization and to a lesser extent by water shortage, likely play a role in the adaptation of 

trees to these environmental cues through modification of SCW properties and/or xylem 

anatomy. For instance, the strong down-regulation of the SCW positive master switch such as 

EgMYB2 suggests that SCW deposition in fibers cells is dramatically reduced in K-fertilized 

trees. Similar profiles were observed for a suite of TFs (EgMYB31, EgMYB60, EgMYB80, 

EgMYB122, Eucgr.F02796, Eucgr.D01219 and Eucgr.D01935) which are the orthologs of 

TFs regulating SCW deposition in Arabidopsis AtMYB83, AtMYB103, AtMYB69, AtMYB43, 

AtC3H14, AtWRKY12 and AtKNAT7 respectively. TFs described in the literature as positive 

and negative regulators of SCW deposition (Hussey et al., 2013) were both poorly expressed 
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in K-treatments suggesting that xylem differentiation is slowed down at the benefit of 

cambial cell proliferation. In fully elongated immature xylem cells of Arabidopsis, SCW 

deposition is activated by either AtSND1 and AtNST1/2 in fibres or AtVND6 and AtVND7 in 

vessels (Zhong et al., 2006; Mitsuda et al., 2007; Yamaguchi et al., 2010). SCW modules 

contain EgNAC61 and EgNAC49, the closest orthologs of AtSND1 and AtNST1/2, but no 

putative orthologs of the VND TFs (Vascular NAC Domain). The absence of significant 

down-regulation of VND master switches suggests that the deposition of SCW in vessels is 

moderately impacted by fertilization, possibly to preserve the integrity of vessels SCW, 

essential for water transport. Similarly, we observed an opposite pattern of SCW deposition 

in fibers and vessels of 35S::MYB137 transgenic roots (Fig. 7). EgMYB137 appeared as the 

best candidate from a list of 32 TFs of unknown function, tightly correlated with a high 

number of known SCW biosynthesis genes as well as with wood properties (saccharification 

yield and vessel properties). To our knowledge, these TFs highly expressed in xylem, or their 

close orthologs, have never been characterized although they have been detected in other 

system biology studies (Table S5). Some of them were co-expressed with SCW related genes 

or direct targets of SCW regulators in Arabidopsis and Eucalyptus (Table S5). In poplar, 

putative orthologs for 22 of them were clustered in wood related modules together with SCW 

genes (Table S5). EgMYB137, a member of the large R2R3MYB family (Soler et al., 2015), 

showed the highest-ranking score among all candidates (Table S5).  

 

4.4. The highly connected xylem specific TF EgMYB137 can regulate SCW 

deposition  

 The functional characterization of EgMYB137 strongly support that this TF regulates 

SCW formation as inferred from the network where it was correlated with saccharification 

yield, vessel density, vessel diameter: i) EgMYB137 promoter is specifically active in 

developing vessels and surrounding axial parenchyma, ii) in EgMYB137 overexpressing lines, 

cell wall thickness increases whereas vessel density and saccharification markedly decrease. 

Based on the positive correlations between EgMYB137 expression profiles and both 

saccharification and vessel density, it was unexpected to observe a decrease of both in the 

transgenic overexpressing hairy roots. This apparent discrepancy might reflect the complex 

mode of regulation of some TFs that can have a dual function depending on their expression 

level (dose-dependent effect) and the abundance of additional regulator proteins. This was 

clearly illustrated for SND2 a well-known SCW TF, whose overexpression could increase 

SW deposition within a limited range of overexpression levels (Hussey et al., 2011). Above a 
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certain level, AtSND2 overexpression, had a negative effect on interfascicular fibers SCW 

deposition in Arabidopsis (Hussey et al., 2011). More investigations are required to define 

the mode of action of EgMYB137 but our data clearly demonstrated that it has an important 

role in the regulation of wood formation. These result also strongly support SCW- regulatory 

roles for the 31 other TFs that deserve to be functionally characterized and further highlight 

the powerfulness of the network approach developed here. 

 

 In conclusion, our network-based approach revealed that co-regulated genes and 

metabolites modules related to wood formation are at the heart of a complex trade-off 

between secondary growth and stress response. Nested in these modules, new 

uncharacterized TFs were pointed out, potentially involved in SCW remodeling in stress 

conditions, leading to adaptive wood traits. We demonstrated that the most promising of 

them, the TF EgMYB137, was involved in the regulation of xylem structure and composition. 

All together, this study represents an original attempt to correlate molecular regulations and 

complex wood traits in xylem.  
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6. Figure legends 

Figure 1: Water exclusion and K-fertilization induce changes in xylem transcriptome 

and metabolome. (a) and (b) Field picture of the four years old Eucalyptus grandis trees 

submitted to four treatments: [+W-K], [-W-K], [+W+K] and [-W+K]. In conditions [+W] and 

[-W], trees received respectively 100% and 63% of rainfall water (Battie-Laclau et al., 

2014b). In conditions +K and -K, trees were supplemented or not with K. (c) PLS-DA 

analyses of 5573 genes (DEGs) differentially expressed (fold change ≥ 2 or ≤ 0.5 and PFDR< 

0.01, n = 3) in response to water exclusion and K fertilization (Table S1). The first three 

principal components (PC) separates the four treatments and explain 82% of total variability. 

PC1 (61% of total variability) explains the separation between [+K] and [-K] treatments. PC2 

and PC3 (respectively 12% and 8% of total variability) explain the separation between +W 

and -W treatments. Venn diagram describes the proportion of DEGs regulated by water 

exclusion (+W versus –W), potassium supply (+K versus –K) or both. (d) PLS-DA analyses 

of 516 mass signatures (DAMs) differentially accumulated (PFDR< 0.05, n=4, peak intensity 

fold change ≥ 2 or ≤ 0.5) in response to water exclusion and K fertilization (Table S2). The 

first three principal components (PC) explain 76% of total variability and separate the four 

treatments. PC1 (39% of total variability) explains the separation between [+K] and [-K] 

treatments. PC2 and PC3 (21% and 16% of total variability respectively) explain the 

separation between [+W] and [-W] treatments. Venn diagram describes the proportion of 

DAMs regulated by water exclusion, potassium supply or both. 
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Figure 2: The changes in transcriptome occur in a broad range of biological processes. 

Gene Ontology (GO) enrichment analysis on differentially expressed genes (DEGs), in 

response to K fertilization (5358 DEGs, 96%) or water exclusion (2151 DEGs, 38.5%), in 

Eucalyptus grandis trees. Network created from BiNGO (Maere et al., 2005) results, 

manually reorganized and curated to remove non-informative GO terms. A total of 159 

significantly enriched GO terms (PFDR<0.01) were kept. Node size is proportional to the 

number of genes found within GO categories. We made a hierarchical classification of these 

categories from the most general (level 1) to the most specialized level (level 9). Complete 

list of GO terms of levels 1 to 9 is provided in Table S1. The 45 level 9 GOs are linked to 

development (13 GOs), biotic and abiotic stress responses (4 and 10 GOs respectively), 

primary metabolism (7 GOs), biological regulation (4 GOs), cell wall biosynthesis (3 GOs), 

secondary metabolism (2 GOs) and transport (2 GOs). We represented in green dots the GOs 

enriched in DEGs regulated only by K (23 GOs), in blue dots the GOs enriched in DEGs 

regulated only by W (7 GOs) and in grey dots the GOs enriched in DEGs regulated by W&K 

(15 GOs). 

 

Figure 3: Co-regulation network highlights modules of highly correlated genes involved 

in biological processes associated to cell wall formation. Weighted co-expression network 

obtained by computing Pearson correlations between standardized profiles of 5,573 DEGs 

and 516 DAMs. Edge lengths are proportional to correlations. The network was visualized 

using Cytoscape software (force directed layout), it is composed of 170,629 significant 

correlations (PFDR<5e-5) between 4,305 nodes. Grey and red edges represented positive and 

negative correlations respectively. Only 2,135 correlations were negative (Table S3). Two 

small isolated subnetworks (<10 variables) were not considered in the analyses. Twelve 

modules, detected by WGCNA analyses (Langfelder & Horvath, 2008), were represented by 

different node colors. For each module, gene expression profiles in the four treatments 

(Table S1) were represented by heatmaps. [+K], [-K], with and without potassium; [-W], 

[+W], with and without water exclusion respectively. We performed a Gene Ontology (GO) 

enrichment approach using functional annotation of the first BLAST hit of Eucalyptus 

grandis genes in A. thaliana genome (Table S4) to detect biological processes associated to 

DEGs enclosed in each module. 
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Figure 4: DAMs – Modules correlation network using MixOmics integrative approach. 

(a) Network representing correlations (edges, >0.8) detected between DAMs, DEGs and the 

average profiles of the 12 modules. Modules profiles were calculated from the average 

expression profiles of DEGs within each module and we used the same color code as in Fig. 

3. Diamond nodes represent mass signatures with size proportional to their connectivity. 

Poorly connected nodes were removed for graphical representation (connectivity < 3). Red 

diamonds represent DAMs selected for identification by LC-MS-MS (all connected to M1 to 

M6 modules). Edges are proportional to the absolute value of correlation (Table S3). DAMs 

– DAMs correlations were removed to improve graphical representation. DAMs 

accumulation profiles in the four treatments are represented by heat map. [+K], [-K], 

Eucalyptus grandis trees with and without potassium; [-W], [+W], Eucalyptus grandis trees 

with and without water exclusion.(b) Heat map representing accumulation profiles of the 14 

identified DAMs. Most of them are negatively correlated to modules M1 to M6. 

 

Figure 5: Cell wall related modules are correlated with wood phenotypic traits. Average 

stem biomass increment (∆ stem biomass), average gross primary productivity allocated to 

stem growth (GPP stem), saccharification yield, wood density, vessels size and vessel density 

were measured on developing xylem of Eucalyptus grandis trees submitted to potassium 

supply (+K and -K) and water exclusion (+W and –W). The phenotypic traits profiles are 

correlated to (i) the average profile of the 12 modules (Fig. 3) and (ii) 2,184 variables (36 

DAMs and 2,148 DEGs) presenting the highest correlation values (<0.9) with at least one 

phenotypic traits (P< 0.05, Table S3). Edges (5,726) are proportional to the absolute value of 

correlations. Positive and negative correlations are represented respectively by solid lines and 

dash lines. DEGs, differentially expressed genes; DAMs, differentially accumulated 

metabolites. Dots color correspond to modules color according to Fig. 3. Letters represent 

significant differences between treatments (ANOVA HSD Tuckey test, n=4) and error bars 

represent SD.  

 

Figure 6: Transcription factors highly co-regulated with secondary cell wall 

biosynthesis in stress conditions. This subnetwork of 162 nodes was extracted from 

modules M1 to M6 (Fig. 3) and included significant correlations (edges, PFDR< 5.10
e-5

) 

between 145 DEGs. In addition to DEGs - DEGs correlations we added the correlations with 

(1) the 14 identified DAMs (DEGs - DAMs correlations from MixOmics analyses, Fig. 4), 
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and (2) the correlations with saccharification yield, vessel density and vessel size (DEGs - 

phenotypic traits correlations from WGCNA analyses, Fig. 5). Among the DEGs, 113 were 

related to SCW formation: 97 were related to CW or SCW biosynthesis (22 related to 

cellulose, 56 to hemicelluloses, 19 to lignin, bottom panel) and 16 were putative orthologs of 

TFs involved in SCW formation (left panel). In the right panel, 32 uncharacterized TFs 

represent new candidates potentially involved in SCW remodeling. Only the most connected 

TFs (connectivity > 4) correlated to at least one phenotypic trait were kept (9 were not 

represented). They were all correlated positively to saccharification yield and vessel density, 

and negatively to vessel diameter and identified DAMs accumulation profiles. The edges 

connected to the best candidate EgMYB137 (Table S5) were represented in bold. Node size is 

proportional to the degree of connectivity (Fig. 3, Table S3). Letters represent significant 

differences between treatments (ANOVA HSD Tuckey test, n=4) and error bars represent 

SD. Normalized DEGs and DAMs profiles are represented by heatmaps and graphs in the 

four treatments: [+K], [-K], Eucalyptus grandis trees with and without potassium; [-W], 

[+W], Eucalyptus grandis trees with and without water exclusion. 

 

Figure 7: EgMYB137 is involved in xylem formation in Eucalyptus roots. GUS expression 

driven by EgMYB137 promoter was observed in the main root of Eucalyptus grandis 

transgenic lines, (a) in vascular tissues (in vitro, young root tip), (b) in xylem vessels 

(differentiation zone) and (c) in axial parenchyma cells surrounding the youngest vessels 

immediately below cambium (5 months old roots). Observations were made in brightfield on 

free-hand cut sections. White arrowheads represent vessels. Co, cortex, Cz, cambial zone, Ph, 

phloem; Xy, xylem. (d) Five months old Eucalyptus roots observed in epifluorescence. The 

highest auto-fluorescence intensity is observed in cell wall (CW) of vessels and axial 

parenchyma cells immediately below cambium (white arrowhead). (e) Bright field 

observations of semi thin section of 5 months old control root (empty vector) stained with 

toluidine blue. Cz, cambial zone; Xy, xylem. (f) Bright field observations of semi thin section 

of 5 months old p35S:EgMYB137 roots, showing fibers CW thickness increase. (g) Changes 

in CW thickness of vessels and fibers in p35S:EgMYB137 root xylem. Vessels SCW was 

significantly thinner in p35S:EgMYB137 lines (1.99 ± 0.04 µm) as compared to control lines 

(2.07 ± 0.06 µm). Fibers SCW was significantly thicker in p35S:EgMYB137 lines (2.60 ± 

0.05 µm) as compared to control lines (2.29 ±0.04 µm). ***, P < 0.0001 (Student's T test). 

(h) Decrease of vessel density in p35S:EgMYB137 root xylem (10.4 ± 1.4 mm
-2

) as compared 

to control (16.1 ± 3.1 mm
-2

). *, P<0.05 (Student's T test). Error bars represent SD (n=6 for 
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transgenic lines, n=4 for controls). Vessels CW thickness was measured on >70 vessels and 

>1200 fibers. Vessel density and lumen diameter were measured on >440 vessels and >1200 

fibers. Scale bars, a, 200µm; b, 500µm; c-d, 150µm; e-f, 50µm. 

 

Table 1: Over-expression of EgMYB137 in Eucalyptus grandis roots changed 

saccharification yield 

 

  p35S::EgMYB137 Control Ø 

Saccharification yield 

without pretreatment (% 

of DW) 

16.0 ± 1.8 * 19.1 ± 2.2 

Saccharification yield with 

pretreatment (% of DW) 
53.6 ± 5.8 ** 63.6 ± 6.8 

 

Analyses of saccharification yield was performed in triplicates for 9 lines of 

p35S::EgMYB137 and 6 lines of controls (Ø, empty vectors). Values were significantly lower 

in p35S::EgMYB137 lines compared to controls, in both pre-treated and non-pre-treated 

samples (± represents SD; *, P< 0.05; **, P< 0.001; Student's T test). Values are given as 

percentage of dry weight (DW) of extracted xylem residues (EXR). 

 

7. Supporting information 

Figure S1: Description of biological replicates and experimental methodology. 

Figure S2: Monthly measurements of rainfall amount on experimental system from 2010 to 2018. 

Figure S3: Principal Component Analyses (PCA) of metabolomic data illustrates the reproducibility 

of the 4 independent replicates. 

Figure S4: Comparison of expression profiles obtained by RT-qPCR and RNAseq for a subset of 

selected genes 

Figure S5: MixOmics network threshold selection. 

Figure S6: Venn diagrams describing the effect of water availability and potassium supply on DEGs 

and DAMs repartition within each of the twelve modules detected by WGCNA analyses. 

Figure S7: Heatmaps representing correlation values between average gene modules profiles and 

wood phenotypic traits. 

Figure S8: Conservation of EgMYB137 sub-network in E. grandis, P. trichocarpa and A. Thaliana. 

Table S1: Transcriptomic data and gene ontology enrichment analyses.  

Table S2: Metabolomic data analyses and DAMs identification.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table S3: WGCNA networks construction and analyses. 

Table S4: Expert annotation of DEGs related to SCW formation based on a comprehensive survey of 

the literature and a fine research of the closest orthologs in Arabidopsis genome.  

Table S5: Identification of transcription factors (TFs) potentially involved in SCW remodeling in 

response to water exclusion and K-supply.  

Methods S1: Biomass estimation, biochemical analyses, microscopy and histochemistry 

Methods S2: GC and LC-MS analyses 
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