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A mathematical model is derived for acoustic streaming in a microfluidic channel confined 

between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal 

ultrasound standing waves of the same frequency that are created by two pairs of counter-

propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the 

standing waves are assumed to be different. Full analytical solutions are found for the equations 

of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the 

structure of the acoustic streaming. It is shown that the interaction of two standing waves leads 

to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between 

the standing waves is nonzero, the cross term brings about circular vortices with rotation axes 

perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move 

alternately up and down between the solid wall and the reflector. The obtained results are of 

immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of 

fluids and the manipulation of microparticles. 

 

 

 

Keywords: acoustic streaming; leaky surface wave; microfluidic channel; fluid rotation  

  



3 
 

1. Introduction  
The operation of microfluidic systems is based on the use of physical effects produced 

by ultrasound waves in a microscale environment. Characteristic dimensions of microfluidic 

devices lie in the range of several micrometers to several hundred micrometers. The sizes of 

objects whose behavior and properties are investigated in microfluidics are from several 

nanometers to several micrometers. These conditions require the application of acoustic wave 

fields with frequencies from the upper kHz range up to several tens of MHz, so processes that 

occur in microfluidic devices are of ultrasonic nature.  

The present work studies theoretically acoustic streaming in an ultrasonically actuated 

microfluidic channel. Acoustic streaming, along with acoustic radiation forces [1], is one of the 

main tools that are used in microscale acoustofluidics for contactless manipulation of various 

objects, such as functionalized microparticles and biological cells [2–4]. Another challenging 

problem of microfluidics, where acoustic streaming plays a key role, is ultrasonic micromixing 

of liquid solutions in microfluidic devices. The use of acoustic streaming allows one to enhance 

this process [5–7]. A detailed special-purpose review on applications of acoustic streaming in 

microfluidic systems has been provided by Wiklund et al. [8]. 

In acoustofluidic devices, acoustic streaming is generally boundary layer driven 

streaming, which is caused by boundary layer effects between an acoustically excited fluid and 

solid boundaries [8]. A first mathematical description of boundary layer driven streaming was 

given by Rayleigh [9]. Based on a number of assumptions, he derived a solution for the case of 

a plane standing wave propagating between two planar rigid walls. His solution predicts 

acoustic streaming outside the viscous boundary layer and is commonly referred to as “Rayleigh 

streaming” or “outer streaming”. Further development of Rayleigh’s theory has been performed 

by Schlichting [10], Westervelt [11], and Nyborg [12–14]. These studies are reviewed by 

Boluriaan and Morris [15] and Wiklund et al. [8]. Hamilton et al. [16] have obtained an 

analytical solution for acoustic streaming generated by a standing wave between two planar 

rigid walls that allows one to calculate the streaming field both outside and inside the boundary 

viscous layer. Recently, Doinikov et al. [17] have generalized the solution of Hamilton et al. 

[16] to the case of two orthogonal standing waves of the same frequency and shown that the 

interaction between the waves generates acoustic streaming that makes the fluid rotate in planes 

parallel to the walls. There are also a number of numerical simulations of boundary layer driven 

streaming, which are reviewed by Boluriaan and Morris [15], see also [18] and [19].  
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The theoretical studies described above assume that the boundaries, in which an 

ultrasonically activated fluid is confined, are fixed. In other words, they assume that it is not 

the vibrational motion of the boundaries that drives the fluid. However, in acoustofluidic 

devices, the fluid is commonly excited through the vibration of microchannel walls. Muller et 

al. [18] and Lei et al. [19,20] performed numerical simulations of boundary layer driven 

acoustic streaming in bulk acoustic wave (BAW) based systems; see also [21] for additional 

theoretical and experimental data. BAW-based systems are actuated by a piezo transducer 

attached to the wall of a liquid-filled microchannel. As a result, an acoustic wave is generated 

in the fluid, which propagates perpendicularly to the vibrating wall. Lei et al. [19,20] showed 

that, in addition to the classical boundary-driven acoustic streaming, such as Rayleigh streaming 

whose vortex plane is perpendicular to the transducer face, streaming flows can arise in a plane 

parallel to the transducer face. Such streaming patterns, named transducer-plane streaming, are 

typically generated in planar microfluidic resonators, where the acoustic energy gradients in the 

lateral directions parallel to the transducer face are significant in addition to the gradients 

perpendicular to the transducer face. The existence of this kind of acoustic streaming is 

confirmed experimentally [8,19,22].  

In recent years, surface acoustic wave (SAW) based systems have gained wide 

application in microfluidics [23–26]. SAW-based systems are actuated by leaky surface waves 

that are excited in a solid substrate. These waves propagate along the solid-fluid interface of a 

microfluidic channel and emit acoustic energy into the fluid layer. As a result, acoustic waves, 

and hence acoustic streaming, are generated in the fluid. In the context of our theoretical study, 

relevant works to be mentioned are as follows. Vanneste and Bühler [27] have calculated 

acoustic streaming produced by a leaky surface wave in a fluid layer with a free boundary. 

Based on a number of assumptions, they derived linear analytical solutions and then solved 

numerically the equations of acoustic streaming. Nama et al. [28] applied a finite element 

scheme to model numerically the acoustophoretic motion of particles inside a liquid-filled 

PDMS microchannel due to acoustic radiation forces and acoustic streaming. They used 

impedance boundary conditions to model the channel walls and assumed that the system was 

actuated by two counter-propagating surface acoustic waves that formed a standing wave in a 

piezoelectric material interfacing the liquid channel. Their results showed that excited acoustic 

fields were significantly different from those observed in BAW-based systems. Recently, 

Doinikov et al. [29] have derived analytical solutions for acoustic streaming in a microfluidic 

channel confined between an elastic solid wall and a rigid reflector, assuming that the acoustic 

streaming is generated by a standing wave that is created by two counter-propagating leaky 
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surface waves induced in the solid wall. A discussion of rotational motion that can be induced 

by acoustic streaming in SAW-driven systems is provided by Bernard et al. [30]. 

The aim of our study is to develop a theory that describes acoustic streaming in a 

microfluidic channel confined between an elastic solid wall and a rigid reflector. We assume 

that the ultrasonic actuation of the above system is produced by two orthogonal ultrasound 

standing waves of the same frequency that are created by two pairs of counter-propagating 

leaky surface waves induced in the solid wall. It should be emphasized that the standing waves 

are assumed to have, in general, different magnitudes and phases. In Section 2, analytical 

solutions to the equations of acoustic streaming are derived. In Section 3, numerical examples 

are provided that demonstrate the structure of the acoustic streaming under study. To anticipate, 

we show that, if the phase lag between the driving standing waves is nonzero, the acoustic 

streaming produces circular vortices in which fluid particles rotate about axes perpendicular to 

the solid wall of the channel and move alternately up and down between the solid wall and the 

reflector.  

 

2. Theoretical model  
2.1. Problem formulation  

Let us consider a fluid layer that is confined between an elastic solid wall and a rigid 

reflector, as shown in Fig. 1. The solid wall occupies the half-space with 0z ! , the fluid is 

within the spatial layer with 0h z� � � , and the reflector is located at z h � . We assume that 

two pairs of counter-propagating leaky surface waves are excited in the solid wall. The waves 

are emitted in the fluid, reflected at the channel top and produce two orthogonal ultrasound 

standing waves in the channel, which propagate along the x and y axes. The standing waves are 

assumed to have the same frequency but, in general, different magnitudes and phases.  

 

2.2. Linear solutions 

The linear fluid velocity can be represented as  

 ( , , ) ( , , )x yx z t y z t �v v v , (1) 

where  

 [ ( , ) ( , ) ] i t
x xx x xz zv x z v x z e Z� �v e e  (2) 

is the velocity produced by the standing wave propagating along the x axis and  

 [ ( , ) ( , ) ] i t
y yy y yz zv y z v y z e Z� �v e e  (3) 
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Fig. 1. A fluid layer of height h is located between an elastic solid wall and a rigid reflector. 

Two orthogonal surface acoustic waves are excited in the solid wall. The waves are emitted in 

the fluid, reflected at the channel top and produce two orthogonal ultrasound standing waves in 

the channel, which propagate along the x and y axes.  

 

is the velocity produced by the standing wave propagating along the y axis. The expression for 

xv  was derived in our previous paper [29]. An expression for yv  can be written by analogy, just 

replacing x with y. As a result, expressions for the velocity components can be represented as  

 > @1 2( , ) 2 ( ) ( ) sin( )vv z i iks z q s z kWW W WW W � , (4) 

 3 4( , ) 2 ( ) ( ) cos( )z fv z q s z iks z kW W WW Wª º �¬ ¼ . (5) 

Here, W  denotes x or y and the following definitions are used:  

 1 1 2( ) f fq z q zs z A e A eW W W
� � , (6) 

 2 1 2( ) v vq z q zs z B e B eW W W
� � , (7) 

 3 1 2( ) f fq z q zs z A e A eW W W
� � , (8) 

 4 1 2( ) v vq z q zs z B e B eW W W
� � , (9) 

 2 2 2 2,      f f v vq k k q k k �  � , (10) 

 
1 2

2

41
3f

f f f

ik
c c
Z Z [ K

U

�
ª º§ · � �« »¨ ¸

© ¹« »¬ ¼
, (11) 

 1 2,    ,    v v
v f

ik Q KG Q
G Z U
�

   , (12) 
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k  is the wavenumber of the leaky surface waves, given by (44) (or (57)) in [29] (note that k  is 

a complex number and hence includes attenuation), fc  is the speed of sound in the fluid, fU  is 

the fluid density at rest, K  is the shear viscosity, [  is the bulk viscosity, vG  is the viscous 

penetration depth and Q  is the kinematic viscosity. To obtain the components of the x wave, 

one should set xW   in the above equations, and for the y wave, yW  . 1AW , 2A W , 1B W , and 2B W  

are complex constants that describe the magnitudes and the phases of the standing waves. It is 

shown in [29] that these constants are expressed in terms of the complex amplitudes of the 

driving surface waves, which are activated in the solid wall. Thus, setting the magnitudes and 

the phases of the driving x and y surface waves, one can set relative magnitudes and phases of 

the induced x and y standing waves, which produce acoustic streaming in the fluid.  

For detailed information on the linear solutions, the reader is referred to our previous 

paper [29], where these solutions are derived.  

 

2.3. Acoustic streaming 

2.3.1. Equations of acoustic streaming 

Let us denote the Eulerian mean velocity by V . We will follow the approximation 

proposed by Nyborg [13], which assumes that the Eulerian mean velocity behaves as a velocity 

of an incompressible flow so that one can write  

 0�  � V . (13) 

This approximation makes the problem amenable to analytical consideration. Arguments in 

support of this approximation are that compressibility effects usually play an important role at 

large Mach numbers or when wave propagation over large distances is considered. Both these 

situations are not characteristic of acoustic streaming.  

From [13], it also follows that in the second-order approximation with respect to the 

linear solutions, V  obeys the following equation:  

 
1 ( ) ( )

f

PQ
U

' �  ¢ � � � ²V v v v v� � � , (14) 

where P  is the time averaged second-order pressure and  ¢ ²  means time averaging.  

Eq. (13) is satisfied if we set  

  uV � < . (15) 

Substituting (15) into (14) and applying the curl operator, one obtains 

 2 1
Q

'  � u< � W , (16) 
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where with accuracy up to leading terms W  is given by [29]  

 ( )( )x y x y ¢ � � � � ²W v v v v� � . (17) 

Eq. (17) shows that W  can be represented as  

 ( , ) ( , ) ( , , )x yx z y z x y z � �W W W U , (18) 

where  

 ( , ) ( ) ,     ( , ) ( )x x x y y yx z y z ¢ � ²  ¢ � ²W v v W v v� � , (19) 

and  

 ( , , ) ( ) ( )x y y xx y z  ¢ � � � ²U v v v v� � . (20) 

The terms xW  and yW  describe the acoustic streaming produced by the x and y waves, 

respectively, as if the second wave were absent. The expression for the streaming velocity xV  

that is produced by xW  was derived in our paper [29]. An expression for the streaming velocity 

yV  produced by yW  can be written by analogy, replacing x with y in the expression for xV . 

Therefore, we can consider these two contributions as known.  

Eq. (20) gives a cross term that arises because the right-hand side of (14) includes 

products that are dependent on both x and y simultaneously. The aim of the calculation that 

follows is to derive a streaming velocity that is produced by the cross term. Let us denote this 

velocity by �V . It can be represented as  

 � � uV � < , (21) 

where �<  denotes the vector potential. We will see in Section 3 that it is the contribution of 
�V  that gives rise to fluid rotation in the xy planes.  

 

2.3.2. Calculation of �V  

Since xv  does not depend on y and yv  does not depend on x, the components of U  along 

the coordinate axes are written as follows:  

 
1 Re
2

xx
x yz

vU v
z

 w ½ ® ¾w¯ ¿
, (22) 

 1 Re
2

yy
y xz

v
U v

z

 ½w° ° ® ¾w° °¯ ¿
, (23) 

 
1 Re ( )
2z xz yzU v v

z
w ½ ® ¾w¯ ¿

, (24) 
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where the asterisk denotes the complex conjugate. We have used (2) and (3) here.  

Let us represent �<  as  

 1 2 3x y z
�  < �< �<< e e e . (25) 

Then it follows from (16) that  

 2
1

1 y zU U
z yQ

w§ ·w
' <  �¨ ¸w w© ¹

, (26) 

 2
2

1 z xU U
x zQ

w w§ ·' <  �¨ ¸w w© ¹
, (27) 

 2
3

1 yx UU
y xQ

w§ ·w
' <  �¨ ¸w w© ¹

. (28) 

Substituting (4) and (5) into (22)–(24), then substituting the results into (26)–(28) and using the 

fact that 2 2
v vk k  �  , one obtains  

 ^ `2 2
1 1

1 Re ( ) sin( ) sin( )vik F z kx k y kx k y
Q

 ª º' <  � � �¬ ¼ , (29) 

 ^ `2 2
2 2

1 Re ( ) sin( ) sin( )vik F z kx k y kx k y
Q

 ª º' <  � � �¬ ¼ , (30) 

 ^ `2 2
3 3

1 Re ( ) cos( ) cos( )vik F z kx k y kx k y
Q

 ª º' <  � � �¬ ¼ , (31) 

where the functions ( )nF z  are calculated by 

 2
1 1 4 3 2 2 4 4 2( ) f x y f v x y v x y v x yF z q s s q q s s ikq s s ikq s s      � � � , (32) 

 2
2 2 4 4 2 2 3 4 1( ) v x y v x y f v x y f x yF z ik q s s ik q s s q q s s q s s         � � � , (33) 

 2 2
3 4 3 3 4 4 4( ) ( )f x y f x y x yF z k q s s kq s s i k k s s      � � � . (34) 

When deriving these equations, we have used the following identities:  

 / / / /
1 3 2 4 3 1 4 2,     ,     ,     f v f vs q s s q s s q s s q sW W W W W W W W    , (35) 

which follow from (6)–(9), the prime denoting the derivative with respect to z.  

Solutions to (29)–(31) can be sought in the following from: 

 ^ `2
1 1

1 Re ( ) sin( ) sin( )vik G z kx k y kx k y
Q

 ª º<  � � �¬ ¼ , (36) 

 ^ `2
2 2

1 Re ( ) sin( ) sin( )vik G z kx k y kx k y
Q

 ª º<  � � �¬ ¼ , (37) 

 ^ `2
3 3

1 Re ( ) cos( ) cos( )vik G z kx k y kx k y
Q

 ª º<  � � �¬ ¼ , (38) 
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where ( )nG z  are sought-for functions. Substitution of (36)–(38) into (29)–(31) yields  

 
4 2

2 4
4 22 ( )n n

n n
d G d G G F z
dz dz

D D� �  , (39) 

where ^ `22Re kD   and n = 1,2,3. Solutions to (39) are given by  

 1 2 3 4( ) ( ) ( ) ( )z z
n n n n n nG z z c c z e c c z eD D\ � � � � � , (40) 

where ( )n z\  is the particular solution, which arises from the function ( )nF z  on the right-hand 

side of (39) and the other two terms are the homogeneous solutions, in which nmc  are constants 

to be found.  

Let us calculate the particular solution 1( )z\  to (39) with n = 1. The structure of 1( )F z  

and the properties of the products nx mys s  (see Appendix A) suggest that 1( )z\  can be sought in 

the following form:  

 1 11 1 4 12 3 2 13 2 4 14 4 2( ) x y x y x y x yz a s s a s s a s s a s s\     � � � , (41) 

where 1ma  are constants to be found. The derivatives of the products nx mys s  necessary for the 

calculation of 1( )z\  are given in Appendix A. Using them, substituting (41) into (39), and 

equating terms at the same products nx mys s  on the left- and right-hand sides, one obtains  

 
2 2 2 2 2 2

11 2 2 2 2 2 2

[( ) 4 ]
[( ) 4 ]

f f v v v

f v f v

q k k q q
a

k k q q





� �
 

� �
, (42) 

 
2 2 2 2 2 2

12 2 2 2 2 2 2

[( ) 4 ( )]
[( ) 4 ]

f v f v f f

f v f v

q q k k q k k
a

k k q q

 



� � �
 

� �
, (43) 

 13 24 v v

ika
q q  , (44) 

 14 24 v v

ika
q q . (45) 

Expressions for 2 ( )z\  and 3( )z\  are calculated by the same method. The result is as 

follows: 

 2 21 4 1 22 2 3 23 4 2 24 2 4( ) x y x y x y x yz a s s a s s a s s a s s\     � � � , (46) 

 3 31 1 2 32 3 4 33 2 1 34 4 3 35 4 4( ) x y x y x y x y x yz a s s a s s a s s a s s a s s\      � � � � , (47) 

where  

 21 11 22 12 23 13 24 14,   ,   ,   a a a a a a a a    �  �  �  � , (48) 
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2 2 2

31 2 2 2 2 2 2

4 ( )
[( ) 4 ]

f v f v

f v f v

kq q k k
a

k k q q





�
 �

� �
, (49) 

 
2 2 2 2 2

32 2 2 2 2 2 2

[( ) 4 ]
[( ) 4 ]

f f v f v

f v f v

kq k k q q
a

k k q q





� �
 �

� �
, (50) 

 33 31 34 32,     a a a a  �  � , (51) 

 
2 2

35 2 2
( )
4 v v

i k ka
q q





�
 � . (52) 

That (46)–(52) satisfy (39) at n = 2,3 can be checked by direct substitution, using the derivatives 

of nx mys s  given in Appendix A.  

The functions ( )nG z  contain 12 unknown constants. We can reduce their number using 

the fact that ( ) 0u ) {� � , where )  is an arbitrary scalar function. In view of this fact, the 

velocity field �V  will not change if we replace �<  with � � � )< < � . Let us take )  in 

the following form: 

 
2

31 32 32 33 34 342

1 Re ( ) ( )z zvik c c c z e c c c z eD DD D D D
Q D

�
ª º)  � � � � �® ¬ ¼

¯
  

 `cos( ) cos( )kx k y kx k y ª º� � �¬ ¼ . (53) 

Substitution of (53) into �<  gives modified expressions for ( )nG z , 

 1 2 3 4( ) ( ) ( ) ( ) ,   1,2z z
n n n n n nG z z c c z e c c z e nD D\ � � � � �  , (54) 

 3 3( ) ( )G z z\ , (55) 

where nmc  are new constants. As one can see, we have eliminated the constants 3mc , while the 

form of 1G  and 2G  has remained the same. Therefore, we can drop the tilde and denote the 

constants by 1mc  and 2mc  as before. Another way of putting it is that (40) remains valid on 

condition that 3 0mc  . 

Calculation of the components of �V  gives  

 ^ `2 /
2 3

1 Re ( ) ( ) sin( ) sin( )x vV ik G z k z kx k y kx k y\
Q

�   ª º ª º � � � � �¬ ¼ ¬ ¼ , (56) 

 ^ `2 /
1 3

1 Re ( ) ( ) sin( ) sin( )y vV ik G z k z kx k y kx k y\
Q

�  ª º ª º � � � �¬ ¼ ¬ ¼ , (57) 

 ^ `2
2 1

1 Re ( ) ( ) cos( ) cos( )z vV ik kG z k G z kx k y kx k y
Q

�   ª º ª º � � � �¬ ¼ ¬ ¼ , (58) 
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where the prime denotes the derivative with respect to z. With the help of the equations in 

Appendix A, /
1,2G  are calculated as  

 > @ > @/ /
1 2 3 4( ) ( ) (1 ) (1 ) ,     1,2z z

n n n n n nG z z c c z e c c z e nD D\ D D D D � � � � � � �  , (59) 

 /
1 11 12 1 2 11 12 3 4( ) ( ) ( )v f x y f v x yz a q a q s s a q a q s s\     � � �   

 13 14 2 2 13 14 4 4( ) ( )v v x y v v x ya q a q s s a q a q s s   � � � � , (60) 

 /
2 21 22 2 1 21 22 4 3( ) ( ) ( )v f x y f v x yz a q a q s s a q a q s s\     � � �   

 23 24 2 2 23 24 4 4( ) ( )v v x y v v x ya q a q s s a q a q s s   � � � � . (61) 

To find the constants 1mc  and 2mc , we can use no-slip boundary conditions for the 

streaming velocity at the solid wall and at the reflector. However, these conditions must be 

applied to the Lagrangian streaming velocity [27,31], which is the velocity of fluid particles 

specified in the particle coordinates [11]. By definition, the Lagrangian streaming velocity is 

the sum of the Eulerian streaming velocity �V  and the Stokes drift velocity [27,31,32]. 

Therefore, we have first to calculate the Stokes drift velocity.  

 

2.3.3. Stokes drift velocity 

The full Stokes drift velocity is calculated by [11,32]  

 
1 ( )S dt i
Z

  ³V v v v v�� �� . (62) 

The terms produced by the x wave when the y wave is absent are provided in [29]. The terms 

produced by the y wave can be calculated by replacing x with y in the x terms. The cross terms, 

which we will use along with �V , are given by  

 
1 Re

2
xx

Sx yz
vV iv
zZ

�  w ½ � ® ¾w¯ ¿
, (63) 

 1 Re
2

yy
Sy xz

v
V iv

zZ


�  ½w° ° ® ¾w° °¯ ¿

, (64) 

 1 Re
2

yz xz
Sz xz yz

v vV iv iv
z zZ


�  ½w w° ° �® ¾w w° °¯ ¿

, (65) 

Substitution of (4) and (5) yields  

 ^ `1
1 Re ( ) sin( ) sin( )SxV H z kx k y kx k y
Z

�  ª º � � �¬ ¼ , (66) 
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 ^ `2
1 Re ( ) sin( ) sin( )SyV H z kx k y kx k y
Z

�  ª º � � � �¬ ¼ , (67) 

 ^ `3
1 Re ( ) cos( ) cos( )SzV H z kx k y kx k y
Z

�  ª º � � �¬ ¼ , (68) 

where  

 2
1 3 4 3 4( ) ( )( )f x v x f y yH z ikq s q s q s iks  � � , (69) 

 2
2 3 4 4 3( ) ( )( )f x x v y f yH z q s iks q s ikq s  � � , (70) 

 2 2
3 2 1 3 4 3 4 1 2( ) ( )( ) ( )( )v x f x f y y f x x f y v yH z kq s iq s q s iks iq s ks q s ikq s  � � � � � . (71) 

 

2.3.4. Calculation of cnm 

In order to find the unknown constants 1mc  and 2mc  appearing in (40), we use the 

boundary conditions at the solid wall and at the reflector. These conditions require that the 

Lagrangian streaming velocity L S
� � � �V V V  be equal to zero at z = 0 and z = – h [27,31]. As 

a result, we obtain the following equations:  

 /
2 1 32( ) ( ) ( )  at  0,

v

G z H z k z z h
ik
Q \
Z

 �  � , (72) 

 /
1 2 32( ) ( ) ( )  at  0,

v

G z H z k z z h
ik
Q \
Z

 �  � , (73) 

 1 2 32( ) ( ) ( )  at  0,
v

k G z kG z H z z h
ik
Q
Z

 �   � . (74) 

Eq. (72) contains only 2mc , (73) contains only 1mc , while (74) contains both 1mc  and 2mc . We 

can separate 1mc  and 2mc  by splitting (74) into two equations, taking into account the symmetry 

of the problem with respect to x and y. As a result, we obtain two independent systems of 

equations, one of which is for the unknowns 1mc , 

 /
1 2 32( ) ( ) ( )  at  0,

v

G z H z k z z h
ik
Q \
Z

 �  � , (75a) 

 1 32( ) ( )  at  0,
2 v

G z H z z h
ik k
Q

Z  � , (75b) 

and the other is for the unknowns 2mc , 

 /
2 1 32( ) ( ) ( )  at  0,

v

G z H z k z z h
ik
Q \
Z

 �  � , (76a) 
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 2 32( ) ( )  at  0,
2 v

G z H z z h
ikk
Q
Z

 �  � . (76b) 

Substitution of (40) and (59) into (75a) and (75b) yields the following system of 

algebraic equations:  
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. (77) 

The unknowns 1mc  are calculated by  

 1
1

m
m

Dc
D

 , (78) 

where D  is the determinant of the coefficient matrix of (77) and 1mD  is the determinant of the 

coefficient matrix in which the mth column is replaced with the column of the free terms. 

Substitution of (40) and (59) into (76a) and (76b) shows that the coefficient matrix 

remains the same as in (77), while the free terms are given by 

 

/
1 2 32

/
1 2 32

3 22

3 22

(0) (0) (0)

( ) ( ) ( )

(0) (0)
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v

v
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ikk
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§ ·� �¨ ¸
¨ ¸
¨ ¸

� � � � �¨ ¸
¨ ¸
¨ ¸

� �¨ ¸
¨ ¸
¨ ¸

� � � �¨ ¸
© ¹

. (79) 

Therefore, the unknowns 2mc  are calculated by 

 2
2

m
m

Dc
D

 , (80) 
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where 2mD  is the determinant of the coefficient matrix of (77) in which the mth column is 

replaced with the column of the free terms from (79). 

Now that all the constants are calculated, our derivation is complete. To sum up, we 

have calculated the streaming velocity L S
� � � �V V V , which is induced by the cross term in 

the equations of acoustic streaming; see the end of Section 2.3.1. It should be remembered that 

L
�V  is only a part of the total Lagrangian streaming velocity, LV , which is produced by two 

standing waves in the channel. In addition to L
�V , LV  includes the Lagrangian streaming 

velocity produced by the x wave when the y wave is absent, LxV , and the Lagrangian streaming 

velocity produced by the y wave when the x wave is absent, LyV . In other words, the total 

acoustic streaming is given by LV , which is calculated by  

 L Lx Ly L
� � �V V V V , (81) 

where LxV  was calculated in our previous paper [29], LyV  is calculated by replacing x with y in 

the expression for LxV  and L
�V  was calculated in the present study.  

 

3. Numerical simulations  
In order to reveal the structure of the acoustic streaming, numerical examples have been 

considered. The simulations were made at the following physical parameters: 1000fU   kg/m3, 

1500fc   m/s, 0.001K   Pa s, 0.003[   Pa s, 4640sU   kg/m3, 68O   GPa, 68P   GPa 

and 2 36f Z S   MHz. Here, sU  is the density of the solid wall and O  and P  are the Lamé 

coefficients. The above parameters were chosen to correspond to typical parameters of 

microfluidic devices involving a lithium niobate (LiNbO3) substrate to generate acoustic waves 

by interdigitated transducers (IDTs) [30]. For these parameters, at the channel height 50h   

µm, the dispersion equation in [29] gives the wavenumber of the leaky surface wave 

62860 5.64k i �  m-1, which corresponds to the wave speed / Re 3 98[ 5]c kZ   m/s, the 

wavelength 99.96swO   µm, and the attenuation coefficient Im[ ] 5.64sw kD    m-1. The 

viscous penetration depth in the fluid is 94 nm 0.002v hG  | . It should be emphasized that the 

streaming velocity that is calculated in our numerical examples is the Lagrangian streaming 

velocity. Doing so, we follow Westervelt [11] who pointed out that the velocity of fluid particles 
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involved in acoustic streaming should be specified in the particle coordinates, i.e., that should 

be the Lagrangian streaming velocity.  

Fig. 2 shows streamline patterns that are obtained by projecting the Lagrangian 

streaming velocity on xy planes at different values of z. The channel height is 50h   µm. The 

phase lag between the x and y waves is 2I S . As one can see, the fluid is rotating about 

vertical axes (z axes) perpendicular to the channel boundaries. The direction of the rotation 

changes with varying z. For example, if we compare the left top quarter of Fig. 2a with that of 

Fig. 2b, we see that the rotation changes from clockwise to counterclockwise.  

Calculations reveal that rotation arises not only at 2I S , but in all cases that the phase 

lag is nonzero. This fact is illustrated by Fig. 3, which shows projections of streamlines on the 

xy plane at 0.75z h �  for different values of I , the other parameters being the same as in Fig. 

2.  

At 0I  , the fluid rotation vanishes. This situation is exemplified by Fig. 4, which 

shows the same case as in Fig. 2 at 0I  . Calculations also reveal that the rotation is caused by 

the cross terms of the streaming, i.e., the components of the velocity field �V . As an example, 

Fig. 5 shows what happens to Figs. 2a and b if the cross terms are eliminated from the 

calculation. We see that rotation is absent.  

The projections of streamlines in Figs. 2 and 3 look like spirals. This form is explained 

by the fact that fluid particles move over spiral-like trajectories. We will see this below in Figs. 

7–9, which give examples of 3D trajectories of fluid particles. 

In connection with the fluid rotation described above it is pertinent to mention the 

following point. There are studies that consider the rotation of a spherical microparticle in the 

field of two orthogonal standing waves [33,34,30]. They show that, when there is a nonzero 

phase shift I  between the standing waves, an acoustic streaming arises around the particle and 

produces a nonzero viscous torque on the particle, driving it to rotate around its axis of 

symmetry. The streaming magnitude is found to be dependent on sinI . In our study, a different 

physical problem is considered. We consider a boundary layer driven streaming, which is 

caused by boundary layer effects between an acoustically excited fluid and the bounding walls 

of a microfluidic channel. This streaming gives rise to the rotation of the fluid flow as such. 

The complicated mathematical form of the streaming solutions does not allow one to see the 

explicit mathematical form of the dependence on I : if it is sinI  or something different. 
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Therefore, it is difficult to conclude if or not there is an analogy with the results reported in 

[33,34].  

Fig. 6 shows projections of streamlines on the xz plane at 4swy O  for different values 

of the channel height h. The phase lag between the x and y waves is 2I S . Note that the label 

1.0 on the vertical axes corresponds to the position of the reflector. As one can see, the 

streaming consists of upper and lower parts. The position of the division plane and the form of 

streamlines change with h but the division into upper and lower parts remains at all h.  

Figs. 7–9 are examples of 3D trajectories of fluid particles. The calculations were 

performed at the channel height 50h   µm. Figs. 7 and 8 exemplify the motion of fluid 

particles in the upper part of the channel. They show that fluid particles are rotating and moving 

alternately up and down between the reflector and a horizontal plane that divides the channel at 

0.6z h| � . As one can see, when a fluid particle is moving up, its rotation radius first decreases. 

The ascent of the particle occurs mainly along the axis of the vortex. Then the rotation radius 

increases, and when the particle reaches the edge of the vortex, its motion turns abruptly down. 

Fig. 7b explains why the projections of streamlines in Figs. 2 and 3 look like spirals. Figs. 7 

and 8 also show that there are relatively simple trajectories, such as that in Fig. 7, and more 

complicated trajectories, such as that in Fig. 8. The trajectory shown in Fig. 7 becomes closed 

in one up-down pass, while the trajectory in Fig. 8 does not become closed even after many up-

down passes. We call a trajectory closed if, after a certain number of time steps, the numerical 

simulation shows that the fluid particle comes to the initial point and then moves along the same 

path. The calculation of trajectories is sensitive to small deviations in space. If the accuracy of 

the calculation is not sufficient (too large time step), the observed fluid particle can “jump” to 

another trajectory in the process of the calculation. Therefore, the calculation of trajectories 

requires a particular accuracy and is time-consuming. Animations of the trajectory shown in 

Fig. 7 and a part of the trajectory shown in Fig. 8 are provided as supplementary material.  

Fig. 9 is an example of the fluid particle trajectory in the lower part of the channel. Just 

as in the upper part, the fluid particle is rotating and moving up and down. The difference is 

that the upward motion occurs at the edge of the vortex and the downward motion is executed 

along the axis of the vortex. The trajectory shown in Fig. 9 is not closed.  

Our theory allows one to consider the case that the driving standing waves are of 

different magnitudes. This case is illustrated by Figs. 10 – 12. Fig. 10 shows how the xy 

streamline pattern depicted in Fig. 2a is transformed with varying H , where H  denotes the ratio 

of the magnitude of the y wave to that of the x wave. Fig. 11 shows the transformation of the xz 



18 
 

streamline pattern calculated at 4swy O , the parameters being the same as in Fig. 10. Fig. 11a 

corresponds to Fig. 6b. A moderate difference between the magnitudes of the waves does not 

give rise to noticeable changes in the xy streamline pattern; cf. Figs. 10a and b. However, 

changes in the xz streamline pattern are quite visible; cf. Figs. 11a and b. As one can see, the 

fluid rotation does not disappear even if the difference between the wave magnitudes is quite 

considerable. Fig. 12 shows how the 3D trajectory of a fluid particle depicted in Fig. 7 is 

transformed at 0.25H  .  

Fig. 13 gives an idea of the amplitude of the streaming velocity. Let us imagine that we 

cross the left top vortex in Fig. 2a, going along the x direction through the vortex center. That 

is, 0.25swy O  , 0.5 0swx O� d d  and 0.05z h � . The solid curve in Fig. 13 shows how the 

amplitude of the Lagrangian streaming velocity varies in this case. The other curves show the 

same for the other values of z indicated in Fig. 2. The amplitude of the streaming velocity is 

proportional to the square of the amplitude of excitation. In our case, excitation is the vibration 

of the solid wall, which is caused by counter-propagating leaky surface waves. It is shown in 

our previous paper [29] that the amplitudes of the surface waves can be specified in such a way 

that one can get a desired magnitude of the vertical displacement of the solid-fluid interface. 

Let us denote this quantity by z' . It is pointed out in literature that it is difficult to measure 

experimentally the vibration of a solid substrate in a microfluidic setup [27]. Fig. 13 was 

calculated at 0.1z'   nm. We have chosen this value following Vanneste and Bühler [27] who 

used this value in their numerical simulations. As follows from what was said above, the values 

of the streaming velocity shown in Fig. 13 can be easily recalculated for any amplitude of 

excitation. The form of the curves will remain unchanged. As Fig. 13 shows, at 0.1z'   nm, 

the maximum amplitude of the streaming velocity is of the order of 0.5 µm/s.  

 

4. Conclusions  
A theory has been developed for the modelling of acoustic streaming in a microfluidic 

channel confined between an elastic solid wall and a rigid reflector. The theory assumes that 

the acoustic streaming is generated by two orthogonal ultrasound standing waves of the same 

frequency that are created by two pairs of counter-propagating leaky surface waves induced in 

the solid wall. The magnitudes and phases of the standing waves are assumed to be, in general, 

different. Full analytical solutions were obtained for the equations of acoustic streaming in the 

situation under study. Particular numerical examples were considered to reveal the structure of 

the acoustic streaming. It has been shown that the interaction of the driving standing waves 
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leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag 

between the standing waves is nonzero, the cross term gives rise to circular vortices with 

rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles 

rotate and move alternately up and down between the solid wall and the reflector. 

The obtained results are of immediate interest for applications concerning the ultrasonic 

micromixing of fluids and the manipulation of microparticles in microfluidic devices. 

Furthermore, the possibility to induce a preferred direction in the fluid vorticity with periodic 

alternate orientation can be of importance for exploiting properties of anisotropic fluids such as 

liquid crystals.  
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Appendix A. Derivatives of nx mys s   

The superscripts // and IV denote the second and the forth derivatives with respect to z.  

 / / 2 2
1 4 1 4 3 2( ) ( ) 2x y f v x y f v x ys s q q s s q q s s     � � ,  

 4 4 2 2 2 2
1 4 1 4 3 2( ) ( 6 ) 4 ( )IV

x y f v f v x y f v f v x ys s q q q q s s q q q q s s       � � � � ,  

 / / 2 2
3 2 3 2 1 4( ) ( ) 2x y f v x y f v x ys s q q s s q q s s     � � ,  

 4 4 2 2 2 2
3 2 3 2 1 4( ) ( 6 ) 4 ( )IV

x y f v f v x y f v f v x ys s q q q q s s q q q q s s       � � � � ,  

 / / 2 2
2 4 2 4 4 2( ) ( ) 2x y v v x y v v x ys s q q s s q q s s     � � ,  

 4 4 2 2 2 2
2 4 2 4 4 2( ) ( 6 ) 4 ( )IV

x y v v v v x y v v v v x ys s q q q q s s q q q q s s       � � � � ,  

 / / 2 2
4 2 4 2 2 4( ) ( ) 2x y v v x y v v x ys s q q s s q q s s     � � ,  

 4 4 2 2 2 2
4 2 4 2 2 4( ) ( 6 ) 4 ( )IV

x y v v v v x y v v v v x ys s q q q q s s q q q q s s       � � � � , 

 / / 2 2
4 1 4 1 2 3( ) ( ) 2x y v f x y f v x ys s q q s s q q s s     � � ,  

 4 4 2 2 2 2
4 1 4 1 2 3( ) ( 6 ) 4 ( )IV

x y v f f v x y f v v f x ys s q q q q s s q q q q s s       � � � � ,  

 / / 2 2
2 3 2 3 4 1( ) ( ) 2x y v f x y f v x ys s q q s s q q s s     � � ,  

 4 4 2 2 2 2
2 3 2 3 4 1( ) ( 6 ) 4 ( )IV

x y v f f v x y f v v f x ys s q q q q s s q q q q s s       � � � � ,  
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 // 2 2
1 2 1 2 3 4( ) ( ) 2x y f v x y f v x ys s q q s s q q s s     � � ,  

 2 2 2 2 2 2 2
1 2 1 2 3 4( ) [( ) 4 ] 4 ( )IV

x y f v f v x y f v f v x ys s q q q q s s q q q q s s       � � � � ,  

 // 2 2
3 4 3 4 1 2( ) ( ) 2x y f v x y f v x ys s q q s s q q s s     � � ,  

 2 2 2 2 2 2 2
3 4 3 4 1 2( ) [( ) 4 ] 4 ( )IV

x y f v f v x y f v f v x ys s q q q q s s q q q q s s       � � � � ,  

 // 2 2
2 1 2 1 4 3( ) ( ) 2x y v f x y f v x ys s q q s s q q s s     � � ,  

 2 2 2 2 2 2 2
2 1 2 1 4 3( ) [( ) 4 ] 4 ( )IV

x y v f f v x y f v v f x ys s q q q q s s q q q q s s       � � � � ,  

 // 2 2
4 3 4 3 2 1( ) ( ) 2x y v f x y f v x ys s q q s s q q s s     � � ,  

 2 2 2 2 2 2 2
4 3 4 3 2 1( ) [( ) 4 ] 4 ( )IV

x y v f f v x y f v v f x ys s q q q q s s q q q q s s       � � � � ,  

 // 2 2
4 4 4 4 2 2( ) ( ) 2x y v v x y v v x ys s q q s s q q s s     � � ,  

 2 2 2 2 2 2 2
4 4 4 4 2 2( ) [( ) 4 ] 4 ( )IV

x y v v v v x y v v v v x ys s q q q q s s q q q q s s       � � � � .  
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Fig. 2. Projections of streamlines of the Lagrangian streaming velocity on xy planes at different 

values of z. The channel height h is 50 µm. The phase lag between the x and y waves is 2I S 

. The fluid is rotating about the z axes perpendicular to the channel boundaries.  

  



24 
 

 

 
 

Fig. 3. Projections of streamlines of the Lagrangian streaming velocity on the xy plane at 

0.75z h �  for different values of the phase lag I . The other parameters are as in Fig. 2. The 

channel height h is 50 µm. Rotation occurs at all nonzero values of I . 
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Fig. 4. The same case as in Fig. 2 at the phase lag 0I  . The channel height h is 50 µm. Rotation 

vanishes. 
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Fig. 5. Examples of calculation without the streaming cross terms. The parameters are as in 

Figs. 2a and b. The channel height h is 50 µm. Rotation is absent.  
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Fig. 6. Projections of streamlines of the Lagrangian streaming velocity on the xz plane at 

4swy O  for different values of the channel height h. The phase lag between the x and y waves 

is 2I S . Division into upper and lower parts is observed.  
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Fig. 7. Example of the 3D trajectory of a fluid particle rotating in a vortex in the upper part of 

the microfluidic channel. The channel height h is 50 µm. The trajectory becomes closed in one 

up-down pass. 

  



29 
 

 

 

 

Fig. 8. Example of the 3D trajectory of a fluid particle rotating in a vortex in the upper part of 

the microfluidic channel. The channel height h is 50 µm. The trajectory does not become closed 

even after several up-down passes.  
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Fig. 9. Example of the 3D trajectory of a fluid particle rotating in a vortex in the lower part of 

the microfluidic channel. The trajectory is not closed. The channel height h is 50 µm.  
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Fig. 10. Projections of streamlines of the Lagrangian streaming velocity on the xy plane at 

0.05z h �  for different values of H . H  is the ratio of the magnitude of the y wave to that of 

the x wave. 50h   µm, 2I S .  

 

 

  



32 
 

 

 
 

Fig. 11. Projections of streamlines of the Lagrangian streaming velocity on the xz plane at 

4swy O  for different values of H . H  is the ratio of the magnitude of the y wave to that of the 

x wave. 50h   µm, 2I S .  
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Fig. 12. Example of the 3D trajectory of a fluid particle at 0.25H  . The other parameters are 

as in Fig. 7.  
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Fig. 13. Amplitude of the Lagrangian streaming velocity as a function of x at 4swy O  for 

different values of z. 50h   µm, 2I S . The amplitude of the vertical displacement of the 

solid-fluid interface z'  is 0.1 nm.  

 


