Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Ultrasonics Année : 2018

Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel

Résumé

A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles.
Fichier principal
Vignette du fichier
Doinikov2018-UltrasonicsStreamingStandingWaves-preprint.pdf (3.32 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02402132 , version 1 (12-12-2019)

Identifiants

Citer

Alexander A. Doinikov, Pierre Thibault, Philippe Marmottant. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel. Ultrasonics, 2018, 87, pp.7-19. ⟨10.1016/j.ultras.2018.02.002⟩. ⟨hal-02402132⟩

Collections

UGA CNRS LIPHY
40 Consultations
79 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More