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A theory is developed to model the nonlinear dynamics of two coupled bubbles inside a spherical 

liquid-filled cavity surrounded by an elastic medium. The aim is to study how the conditions of 

full confinement affect the coupled oscillations of the bubbles. To make the problem amenable to 

analytical consideration, the bubbles are assumed to be located on a diameter of the cavity, which 

makes the problem axisymmetric. Equations for the pulsation and translation motion of the bubbles 

are derived by the Lagrangian formalism. The derived equations are used in numerical simulations. 

The behavior of two bubbles in a cavity is compared with the behavior of the same bubbles in an 

unbounded liquid. It is found that both forced and free oscillations of two bubbles in a cavity occur 

differently than those in an unbounded liquid. In particular, it is shown that the eigenfrequencies 

of a two-bubble system in a cavity are different from those in an unbounded liquid.  
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I. INTRODUCTION  

Interest in bubble dynamics that occurs inside a liquid microinclusion enclosed in a solid 

medium is motivated by applications in geology [1,2], dynamics of porous media [3–5], biology 

[6–10], etc.  

There are a number of theoretical studies on the dynamics of a single bubble in a spherical 

liquid-filled cavity surrounded by an infinite elastic solid [11–16]. In particular, it has been shown 

in Refs. [13], [14], and [16] that the finite-amplitude pulsation of a single bubble in a spherical 

cavity is governed by a Rayleigh-Plesset-like equation. There are differences in equations derived 

in these works, which result from different approximations that were used to model the behavior 

of the elastic surrounding medium. The most rigorous derivation was performed in Ref. [16]. The 

effect of confinement in all the equations is expressed in terms of the time-varying radius of the 

cavity. Therefore, all the equations reduce to the Rayleigh-Plesset equation when the cavity radius 

tends to infinity. It has been shown in Refs. [15] and [16] that the resonance frequency of the 

system (a cavity with a bubble inside) decreases with decreasing bubble radius, in contrast to what 

occurs in an unbounded liquid, where the resonance frequency of a bubble increases with 

decreasing bubble radius. This result is explained by the fact that the dynamics of the system is 

governed by the solid environment rather than by the bubble. This theoretical prediction is in 

agreement with experimental observations of Vincent et al. [12]. The dependence of the resonance 

frequency on the material parameters of the system, such as the modulus of rigidity of the solid, is 

not trivial and therefore cannot be described in brief. A detailed analysis of the behavior of the 

resonance frequency in various limiting cases was performed by Drysdale et al. [15]. As an 

interesting result, it should be mentioned that the resonance frequency does not become zero when 

the modulus of rigidity tends to infinity.  

In nature and technology, the presence of more than one bubble in a cavity is a more general 

case than the presence of a single bubble. Therefore, a theoretical model that would describe the 

behavior of two coupled bubbles inside a cavity could be the next step in studying cavitation 

phenomena that occur under the conditions of microscopic confinement.  

The dynamics of two interacting bubbles is a classical problem whose history goes back to 

the works of C. A. Bjerknes and his son V. F. K. Bjerknes [17]. Reviews on this problem can be 

found in Refs. [18–26]. The influence of two bubbles on the oscillations of each other is pointed 

out in the literature to lead to two main effects. First, the bubbles undergo attraction or repulsion 
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depending on the value of the driving frequency with the respect to the natural frequencies of the 

bubbles. Second, the natural frequencies of the bubbles change in comparison with the natural 

frequencies that the bubbles have when they are separated in space. As a result, the acoustic 

response of two interacting bubbles is not just a sum of their individual responses even if the 

bubbles oscillate in the linear regime.  

However, available theoretical studies on the dynamics of two interacting bubbles are 

devoted to bubbles in an unbounded liquid. To the best of our knowledge, there are no theoretical 

works on the dynamics of two interacting bubbles under the conditions of full confinement. Thus, 

the effect of full confinement on the behavior of interacting bubbles is presently unknown. This 

fact has served as a motivation for our study presented here.  

Our study proposes a theory that describes the nonlinear dynamics of two interacting 

bubbles inside a spherical liquid-filled cavity surrounded by an elastic medium. The developed 

theory allows one to study the effect of full confinement on the coupled oscillations of the bubbles. 

In Sec. II, equations for the pulsation and translation motion of the bubbles are derived by the 

Lagrangian formalism. In Sec. III, the derived equations are used to perform numerical simulations 

and to compare results with the behavior of two interacting bubbles in an unbounded liquid.  

 

II. THEORY  

We assume that two spherical gas bubbles are inside a spherical liquid-filled cavity 

surrounded by an elastic solid layer; see Fig. 1. The bubble centers are assumed to be located on a 

diameter of the cavity. In this case, the problem possesses axial symmetry, which simplifies its 

analytical consideration. If this assumption is abandoned, the problem turns into a 3D problem and 

its solution becomes extremely complicated. We assume that, if the bubbles are not located along 

the diameter of the cavity, their behavior should demonstrate the same qualitative features, even 

though quantitative characteristics of this process will be different. Because, as we expect, the 

main physical factor that affects the bubble behavior in a cavity is the presence of full confinement 

as such. Therefore, we believe that our theoretical analysis, despite the fact that it is based on the 

simplified mathematical formulation, should give a correct insight into the dynamics of bubbles 

enclosed in a cavity.  

We introduce a spherical coordinate system whose origin is at the center of the cavity and 

the z axis goes through the bubble centers. The position vector r  in this coordinate system has the 
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coordinates ( , , )r T H . Each bubble has its own local spherical coordinate system whose origin is at 

the moving center of the bubble. The position vector jr  in the coordinate system of the jth bubble 

has coordinates ( , , )j j jr T H . The position of the center of the jth bubble with respect to the center 

of the cavity is denoted as jz . In view of symmetry, the translational motion of the bubbles can 

only occur along the z axis. The liquid in the cavity is assumed incompressible and inviscid so its 

motion is described by a scalar velocity potential that obeys the Laplace equation 0M'  .  

The mathematical derivation consists of the following main stages. We first find solutions 

for the liquid motion inside the cavity. Doing so, we use transformations between the coordinate 

systems described above in order to satisfy boundary conditions at the bubble surfaces and at the 

cavity surface. We then find solutions for the motion of the solid medium, assuming that the cavity 

shape keeps spherical at all times. As a result, four quantities remain unknown: the time-varying 

bubble radii and the positions of the bubble centers. To derive equations for these quantities, we 

apply the method of the Lagrangian formalism.  

 
 

FIG. 1. Two bubbles inside a liquid-filled cavity.  

 

A. Solutions inside the cavity  

The total velocity potential in the liquid can be written as  
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 1 2 cM M M M � � , (1) 

where jM  is the velocity potential of the jth bubble and cM  is the velocity potential produced by 

the motion of the cavity surface. The expressions for jM  and cM , satisfying the Laplace equation, 

are given by  
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where ( )jR t  is the instantaneous radius of the jth bubble, 0cR  is the radius of the cavity at rest, 

and nP  is the Legendre polynomial of order n.  

The unknown functions ( )j
na  and nA  are calculated in Appendix A. To this end, boundary 

conditions at the bubble surfaces and at the cavity surface are used. As a result, recurrence formulas 

are derived that allow one to evaluate ( )j
na  and nA  with any desired accuracy; see Eqs. (A21) – 

(A23) in Appendix A.  

 

B. Solutions in the solid  

The motion of the solid is described by the Navier equation [27],  
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where u is the displacement vector, tw wu  is the velocity in the solid, sU  is the density of the 

solid, and O  and P  are the Lamé coefficients. In view of the spherical shape of the cavity, u has 

only a radial component, ( , )u r t , which can be written in terms of a potential sM  as  

 ( , ) su r t
r
Mw

 
w

. (5) 

An expression for sM , satisfying Eq. (4), is written as  

 1 2( ) ( )s s
s

s t r c s t r c
r r

M � �
 � � , (6) 

where ( 2 )s sc O P U �  is the longitudinal wave speed [27].  
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Substitution of Eq. (6) into Eq. (5) yields  
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It is shown in Appendix B that, with an accuracy up to 21 sc , Eq. (7) gives  
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where ( )cR t  is the instantaneous radius of the cavity. From Eq. (8), it follows that the velocity in 

the solid is calculated by  
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C. Equations for Rj and zj  

The solutions obtained above are used to derive equations for the bubble radii ( )jR t  and 

the positions of the bubble centers ( )jz t . To this end, the Lagrangian formalism is applied. The 

derivation is performed in Appendix C. As a result, we are led to the following equations:  
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where lU  is the liquid density, P  is the shear modulus of the solid, 2 1( ) ( ) ( )d t z t z t �  is the 

distance between the bubble centers, jP  is the scattered pressure at the surface of the jth bubble, 

which is given by Eq. (C5), DjF  is the viscous drag force on the jth bubble, which is given by Eq. 

(C6), and the functions F , G , and H  are defined by Eqs. (C33), (C34), and (C44), respectively.  

Equations (10) and (11) govern the coupled pulsations of the bubbles and Eqs. (12) and 

(13) govern their translational motion. All these equations are ordinary differential equations of 

second order with respect to time derivatives. They form a combined system and should be solved 

simultaneously.  

 

D. Linearized equations  

The aim of this subsection is to simplify Eqs. (10) and (11) in order to make them amenable 

to analytical consideration. To this end, we linearize them, neglecting the translational motion and 

the compressibility corrections in the liquid and in the solid. We also assume that 0s cR R!! , where 

sR  denotes the external radius of the solid layer (see Appendix C).  

We set  

 0 0( ),     ( )j j j c c cR R x t R R x t �  � , (14) 
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where 0jR  denotes the equilibrium radius of the jth bubble, and we assume that 0| |j jx R��  and 

0| |c cx R�� .  

Substituting Eq. (14) into Eqs. (10) and (11), using the results of Appendix C, and keeping 

up to terms of first order in jx  and cx , one obtains  
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Definitions of all the quantities that appear in these equations are given in Appendix C. Note that 

for 0cR of , the first term in Eq. (17) gives the natural frequency of the jth bubble in an 

unbounded liquid.  

In order to calculate the eigenfrequencies of the system of Eqs. (15) and (16), we set the 

external acoustic excitation equal to zero ( 0acP  ) and exp( )j jx a i tZ � . As a result, Eqs. (15) 

and (16) reduce to  
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An equation for calculating the eigenfrequencies is derived setting the determinant of Eqs. (22) 

and (23) equal to zero. This operation results in  

 2 2 2 2 2 2 2 2
10 1 20 2 1 1 1 2 2 2

1 2

1( )( ) ( )( ) 0i iZ Z ZG Z Z ZG E Z D E Z D
D D
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As one can see, Eq. (24) is an equation of the forth order in Z . In the general case, a 

numerical solution of this equation is only possible. Yet, for two identical bubbles, 10 20R R , an 

analytical solution can be obtained. In this case, neglecting the viscous dissipation ( 0jG  ), Eq. 

(24) reduces to 
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The roots of this equation are given by  
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If 10 0 0, j cR z R��  and 10R d�� , Eq. (26) is simplified to  

 2 2 2 2 2
1,2 10 1 1 1 1 10| |Z Z E E Z � : r : � . (27) 

If 1E , given by Eq. (21), is sufficiently small, one can write  
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From Eq. (17) it follows that  
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Equation (30) is the natural frequency of a single bubble in an unbounded liquid. This frequency 

is known as the Minnaert frequency, although, strictly speaking, the original Minnaert formula 

ignores surface tension [28].  

Analysis reveals that the bubbles pulsate with the frequency 1Z  in phase and with the 

frequency 2Z  in antiphase. In many cases of interest, 1MZ ��: . In such cases, the natural 

frequency of a single bubble in a cavity is approximately equal to 1:  given by Eq. (18) [13,15]. 
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This means that the in-phase free oscillation of two bubbles in a cavity is 2  times faster than 

that of a single bubble. The antiphase free oscillation of two bubbles in a cavity occurs at the 

Minnaert frequency.  

In the limit 0cR of , Eq. (27) gives  

 10
1,2 1

2M
R

d
Z Z § · r¨ ¸

© ¹
. (31) 

This is the well-known equation for the eigenfrequencies of two identical bubbles separated by 

distance d in an unbounded liquid [29].  

 

III. NUMERICAL SIMULATIONS  

Numerical simulations have been carried out by means of the program package 

MATHEMATICA (Wolfram Research, Champaign, IL). The following values of the physical 

parameters were used: 1000lU   kg/m3, 1500lc   m/s, 0.001lK   Pa s, 0.072lV   N/m, 

800sU   kg/m3, 4000sc   m/s, 0.75P   GPa, 0 101.3P   kPa, and 1.4J  . The parameters of 

the liquid correspond to water and the parameters of the solid correspond to wood (oak). We have 

chosen wood as a surrounding medium because one of the most interesting applications where one 

has to deal with bubbles in a cavity is the investigation of cavitation events inside tree trunks 

[6,7,9,10].  

The main subject of interest in our numerical simulations is the acoustic response 

(resonance frequencies) of a two-bubble system in a cavity in comparison with the same case in 

an unbounded liquid. Because it is the acoustic response that is of prime interest in most 

applications.  

Excitation is produced by an acoustic pressure pulse shown in Fig. 2. That is a Gaussian 

pulse given by  

 � �42( ) sin(2 ) ft N
ac aP t P ft eS � , (32) 

where aP  is the amplitude, f is the frequency, and N is the number of cycles. In Fig. 2, 50aP   

kPa, 1.5f   MHz, and 5N  .  

Figures 3(a) – 3(c) show the response of two bubbles confined in a cavity to the acoustic 

pulse depicted in Fig. 2. It is assumed that 10 7.5R   µm, 20 5R   µm, 1(0) 50z  �  µm, 2(0) 50z   
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µm, 0 100cR   µm, and 500sR   µm. For comparison, Figs. 3(d) – 3(f) show the response of the 

same bubbles in an unbounded liquid. Figures 3(a) and 3(b) show the radial oscillation of bubbles 

1 and 2, respectively. Figure 3(c) shows the spectra of the oscillation curves. Comparison with the 

curves presented in Figs. 3(d) – 3(f) reveals considerable differences from the behavior of the 

bubbles in an unbounded liquid. As one can see, in an unbounded liquid, the forced oscillation in 

response to the imposed pulse ceases almost right after the termination of the pulse and the bubbles 

begin to execute free oscillations with proper natural frequencies. This is confirmed by two sharp 

spectral peaks at the left in Fig. 3(f). The Minnaert frequencies of the bubbles, i.e., the linear natural 

frequencies of the bubbles when they are far apart in an unbounded liquid, are 468 kHz for bubble 

1 and 724 kHz for bubble 2. In the cavity, as is seen in Fig. 3(c), the forced oscillation turns into a 

free oscillation with a frequency of about 1 MHz, which is experienced by both bubbles. 

Calculations show that this oscillation gradually disappears with increasing 0cR .  

Figure 4 illustrates the translational motion of the bubbles, the parameters being the same 

as in Fig. 3, except that the number of cycles in the excitation pulse was set equal to N = 500 in 

order to increase the translational shift. The solid line shows the motion of the bubbles in the cavity, 

whereas the dashed line shows their motion in an unbounded liquid. The bubbles are moving 

toward each other. As one can see, the approach of the bubbles in the cavity occurs faster.  

As said above, the Minnaert frequencies of the bubbles shown in Figs. 3 and 4 are 468 kHz 

for bubble 1 and 724 kHz for bubble 2. This means that the bubbles in Figs. 3 and 4 are excited 

above resonance. Figures 5 and 6 illustrate the case that the driving frequency, 600f   kHz, is in 

between the natural frequencies of the bubbles, the other parameters being the same as in Figs. 3 

and 4, except that N = 50 in Fig. 6. We again observe a considerable difference between the 

pulsations of the bubbles in the cavity and in an unbounded liquid. The difference is especially 

visible when we compare the spectra shown in Figs. 5(c) and 5(f). It is interesting to note that in 

the cavity, the natural frequencies of the bubbles do not manifest themselves even after the acoustic 

pulse is over. Figure 6 shows the translational motion of the bubbles. As one can see, the bubbles 

are moving away from each other, the terminal separation between the bubbles in the cavity being 

greater than that in an unbounded liquid.  

Figures 7 and 8 show the behavior of the bubbles at 300f   kHz, the other parameters 

being the same as in Figs. 3 and 4, except that N = 1000 in Fig. 8. In this case, the bubbles are 
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excited below their natural frequencies. Figure 7(f) predicts strong second and third harmonics in 

an unbounded liquid. In the cavity, according to Fig. 7(c), the second harmonic only develops. 

Note also that the oscillation amplitude in the cavity is much smaller than that in an unbounded 

liquid. The translational motion, presented in Fig. 8, demonstrates that in an unbounded liquid, the 

acoustic pulse makes the bubbles approach, whereas in the cavity, the bubbles in fact stay where 

they are, showing a weak tendency to move away from each other.  

Figures 9 and 10 exemplify free oscillations, which are excited at 0aP   by a small initial 

deviation from the equilibrium bubble radii. Figure 9 demonstrates the case of equal bubbles with 

10 20 5R R   µm. The Minnaert frequency corresponding to this size is 724 kHz. Other parameters 

are 1(0) 50z  �  µm, 2(0) 50z   µm, 0 100cR   µm, and 500sR   µm. Figure 9(d) shows that in 

an unbounded liquid, the bubbles pulsate at a frequency of 706 kHz. As would be expected, this 

value corresponds to Eq. (31). In the cavity, as follows from Fig. 9(b), the bubbles pulsate at 1.025 

MHz. This value is well approximated by Eq. (26). Note that in the case under study, MZ  is not 

small compared to 1: , so the approximate expressions derived in the last but one paragraph of 

Sec. II D are not valid.  

Figure 10 illustrates the case of unequal bubbles with 10 7.5R   µm and 20 5R   µm, the 

other parameters being the same as in Fig. 9. As one can see, in an unbounded liquid, the bubbles 

pulsate at frequencies close to their Minnaert frequencies, whereas in the cavity, they pulsate at 

different frequencies. This result confirms the analytical predictions made in Sec. II D that the 

confinement in a cavity fundamentally changes the eigenfrequencies of a two-bubble system.  

 

IV. EXPERIMENTS IN CLOSED RECTANGULAR CHANNELS  

In this section, we present experiments for two confined bubbles freely oscillating after 

nucleation. The geometry of the confinement is different from that considered in our theory. 

However, we suppose that the main physical factor in the problem under study is the presence of 

full confinement as such rather than its concrete form. In other words, in the experiments just as 

in our theory, bubbles are coupled by a finite liquid volume enclosed in an elastic medium. We 

believe that the qualitative similarity of physical conditions should give rise to a similarity in the 

qualitative behavior of the bubbles.  
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The microchannels are fabricated in pHEMA hydrogel using the method by Wheeler and 

Stroock [30]. The channels are filled with water after soaking in degassed water over one night. 

The channels are then placed in a dry atmosphere for 12 hours with a humidity level imposed by 

the method of salt solutions. Under drying, the hydrogel becomes extremely stiff, resisting an 

intense negative pressure (about – 5 MPa) that progressively builds up in the liquid contained in 

the channel when it per-evaporates through the channel. Bubble nucleation is triggered by a laser 

pulse shot in the hydrogel near the channel, using the same set-up as that described in works of 

Vincent et al. [11] and Vincent and Marmottant [13]. A high-speed camera, synchronized with the 

laser pulse, records four images before the bubble nucleation and then the growth of the bubbles, 

see Fig. 11.  

The data acquired in the above experiments can be compared to our theory. Note that in 

the experiments, the hydrostatic liquid pressure was not constant. It was initially negative and then 

it was relaxing following the bubble growth and the stress relaxation in the solid. Based on the 

results of Vincent and Marmottant [13], the relaxation of the hydrostatic liquid pressure can be 

approximated by the following expression:  

 
3 3

1 2
0

0 0

( )l
c c

R RP t P K K
R R

§ · § ·
 � �¨ ¸ ¨ ¸

© ¹ © ¹
, (33) 

where K  is an effective solid modulus.  

In our theory, the driving pressure is set by 0 ( )acP P t� ; see Eq. (C5). In order to model the 

relaxation of the hydrostatic pressure, we replace 0 ( )acP P t�  with Eq. (33). Based on the 

experimental measurements, the physical parameters used in our simulation were set as follows: 

1000lU   kg/m3, 1500lc   m/s, 0.01lK   Pa s, 0.027lV   N/m, 1233sU   kg/m3, 2111sc   

m/s, 1J  , 0 10P  �  kPa, 8K   MPa, (3 4)KP  , 0 450cR   µm, 310sR   µm, 1(0) 225z  �  

µm, 2(0) 225z   µm, 10 6R   µm, 20 5.95R   µm, and 0 02gj g l jP p RV �  with 0 1gp   kPa. The 

values of 0P , K , 10R , and 20 ,R  which could not be exactly measured, were used as fitting 

parameters.  

The comparison of the experimental results, shown by circles and squares, with theoretical 

predictions, shown by solid and dashed curves, is presented in Fig. 12. In a cavity, regardless of 

its shape, there is a strong coupling between the volumes of bubbles because the sum of the bubble 

volumes must remain constant if the compressibility of the liquid is negligible. This effect is 
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demonstrated by Fig. 12. We see that, if the equilibrium volume of one bubble increases, that of 

the other bubble decreases. Such a coupling is absent for bubbles in an unbounded liquid and 

therefore the acoustic interaction of bubbles in an unbounded liquid does not change their 

equilibrium radii. As Fig. 12 shows, in spite of the different form of the confinement, the behavior 

of the bubbles in the experiment demonstrates the same qualitative features as those predicted by 

the theory for a spherical confinement.  

 

V. CONCLUSIONS  

In the present study, a theory has been developed that allows one to model the nonlinear 

dynamics of two coupled gas bubbles inside a spherical liquid-filled cavity surrounded by an 

elastic medium. The aim of the study was to reveal how the conditions of full confinement affected 

the coupled oscillations of the bubbles. To make the problem amenable to analytical consideration, 

the bubbles were assumed to be located on a diameter of the cavity. This assumption makes the 

problem axisymmetric, which simplifies calculations. Combined equations for the pulsation and 

translation motion of the bubbles were derived. The derivation was carried out by the Lagrangian 

formalism. The derived equations were then used in numerical simulations. The behavior of two 

bubbles in a cavity was compared with the behavior of the same bubbles in an unbounded liquid. 

The comparison has revealed that both forced and free oscillations of two bubbles in a cavity occur 

differently than those in an unbounded liquid. In particular, the eigenfrequencies of a two-bubble 

system in a cavity are found to be different from those in an unbounded liquid.  
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APPENDIX A: CALCULATION OF ( ) ( )j
na t  AND ( )nA t   

In this Appendix, we calculate the functions ( ) ( )j
na t  and ( )nA t  that appear in Eqs. (2) and 

(3). To this end, we apply boundary conditions at the bubble surfaces and at the cavity surface.  
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To satisfy the boundary conditions at the bubble surfaces, we need an expression for 1M  in 

terms of the coordinates of bubble 2 and vice versa. These expressions can be written as  

 (1) 2
1 2

0
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n n
n

rb t P
d

M T
f

 

§ · ¨ ¸
© ¹

¦ , (A1) 
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where ( )j
nb  is a time function to be determined and 2 1( ) ( ) ( )d t z t z t �  is the distance between the 

bubble centers. Note that 2z  is taken to be greater than 1z  in order to keep d  positive.  

To find ( )j
nb , we apply the following mathematical identities [31]:  
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Substituting Eq. (A3) into Eq. (2) at j = 1 and comparing with Eq. (A1), one obtains  
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where 1 1R d[  . 

Substituting Eq. (A4) into Eq. (2) at j = 2 and comparing with Eq. (A2), one obtains  
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where 2 2R d[  . 

To satisfy the boundary condition at the cavity surface, we need an expression for jM  in 

terms of the global coordinates. It can be written as  

 
1

( ) 0

0
( ) (cos )

n
j c

j n n
n

Rc t P
r

M T
�f

 

§ · ¨ ¸
© ¹

¦ . (A7) 

To find ( )j
nc , we use the following identity [31]:  
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Substituting Eq. (A8) into Eq. (2) and comparing with Eq. (A7), one obtains  

 
1

( ) ( )
1

0 0

!
!( )!

n m mn
j jj j

n mn
m c

n z R
c a

m n m R

� �

�
 

 
�¦ . (A9) 

We also need an expression for cM  in terms of the coordinates of the jth bubble. This 

expression is given by  
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To find ( )j
nA , we use the following identity [31]:  
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Substituting Eq. (A11) into Eq. (3) and comparing with Eq. (A10), one obtains  
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We can now apply the boundary conditions. The boundary condition for the normal 

velocity at the surface of the jth bubble is given by  

 cos   at  j j j j j
j

R z r R
r
M Tw
 �  

w
, (A13) 

where the overdot means the time derivative. On substitution of Eqs. (2), (A1), (A2), and (A10), 

Eq. (A13) gives  
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where nmG  is the Kronecker delta. 

The boundary condition for the normal velocity at the inner cavity surface is given by  

 0  at  c cR r R
r
Mw
  

w
, (A16) 

where ( )cR t  is the instantaneous radius of the cavity. As is the convention in the linear theory of 

elasticity, we assume that the deformation of the solid is small and therefore the boundary 

condition is applied to the cavity surface at rest.  
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Substituting Eqs. (3) and (A7) into Eq. (A16), one finds  
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Substitution of Eq. (A9) into Eq. (A17) yields  
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From Eq. (A18) for n = 0, using Eqs. (A14) and (A15), one obtains  

 2 2 2
0 1 1 2 2c cR R R R R R � . (A19) 

It is worth noting that Eq. (A19) expresses the conservation of the liquid volume, which follows 

from the assumption of liquid incompressibility.  

From Eq. (A18) for 1n t  follows  
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Substitution of Eq. (A20) into Eq. (A12) gives an expression for ( )j
nA  in terms of ( )j

na ,  
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Substituting Eqs. (A6) and (A21) into Eq. (A14), one obtains  
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Substituting Eqs. (A5) and (A21) into Eq. (A15), one obtains  
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Equations (A22) and (A23) allow one to calculate ( )j
na  with any desired accuracy, 

considering j[ , 0j cR R , and 0j cz R  as expansion parameters and using a recurrence procedure.  
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APPENDIX B: CALCULATION OF THE DISPLACEMENT IN THE SOLID  

We apply the boundary condition for the displacement at the cavity surface,  

 0 0( , ) ( )   at  c c cu r t R t R r R �  , (B1) 

where ( )cR t  is the instantaneous radius of the cavity. Substitution of Eq. (7) into Eq. (B1) yields  
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where the prime denotes the derivative with respect to the argument in brackets. From Eq. (B2), it 

follows that  
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Equations (B2) and (B3) allow one to calculate ( , )u r t  with an accuracy up to 21 sc . 

Let us expand ( , )u r t  into a Taylor series at 0cr R  as follows:  
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With the help of Eqs. (B2) and (B3), we finally obtain  
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Note that the compressibility corrections are of the order of 21 sc . Terms of the order 1 sc  

are absent. This means that with an accuracy up to the order 1 sc , the solid can be approximated 
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as an incompressible medium because there is no difference between solutions given by the 

compressible and incompressible equations of motion within the aforesaid accuracy.  

 

APPENDIX C: DERIVATION OF EQUATIONS FOR Rj AND zj  

Equations for jR  and jz  are derived by the method of the Lagrangian formalism. 

According to this method, we need to calculate the Lagrangian function L T U � , where T  and 

U  are the kinetic and the potential energies of the system under study.  

The kinetic energy of the liquid within the cavity is given by  

 2( )
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l
l l

V

T dVU M ³ � , (C1) 

where lU  is the liquid density and lV  is the volume occupied by the liquid. Equation (C1) can be 

transformed as follows:  
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where cS  and jS  denote the surfaces of the cavity and of the jth bubble, respectively, and cn  and 

jn  are the unit vectors normal to the surfaces of the cavity and of the jth bubble, respectively, and 

directed into the liquid. When transforming Eq. (C1), we have used the Laplace equation 0M'   

to replace 2( )M�  with ( )M M�� �  and Gauss’s theorem to go from the volume integral to the 

surface integrals [32].  

On substitution of the expressions for M  near the cavity surface and near the bubble 

surfaces, Eq. (C2) gives  
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In Eq. (C3), we have used Eqs. (A14), (A15), and (A17).  

The potential energy of the liquid is calculated by  
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 3 3
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4 4( ) ( )
3 3l D DU R P t R P t z F z FS S
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where ( )jP t  is the scattered pressure at the surface of the jth bubble and DjF  is the viscous drag 

force on the jth bubble. It should be noted that the potential energy itself is given by the first two 

terms of Eq. (C4). The inclusion of the last two terms is an ad-hoc way that allows one to include 

the viscous drag forces in the equations of translational motion of the bubbles [22,25,29,33,34].  

To allow for liquid compressibility corrections, the pressure jP  can be taken in the form 

proposed by van der Meer et al. [35],  
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where 0 02gj l jP P RV �  is the equilibrium gas pressure inside the jth bubble, 0jR  is the 

equilibrium radius of the jth bubble, J  is the ratio of specific heats of the gas, lc  is the speed of 

sound in the liquid, lK  is the dynamic viscosity of the liquid, lV  is the surface tension, 0P  is the 

hydrostatic pressure in the liquid, and acP  is the driving acoustic pressure.  

If viscous effects are restricted to the thin boundary layer at the bubble surfaces, the viscous 

drag force is shown in Ref. [36] to be given by  

 12Dj l j jF R zSK � . (C6) 

According to the analysis performed in Ref. [36], Eq. (C6) is valid not only in the limit of high 

Reynolds numbers but also for moderate or even low Reynolds numbers, provided the condition 

1j j l lR R U K !!  is satisfied.  

The kinetic energy of the solid, making use of Eq. (9) and keeping up to 21 sc , is calculated 

by  
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where sV  denotes the volume occupied by the solid and sR  is the external radius of the solid layer.  

The potential energy of the solid is calculated by  
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where H  denotes the elastic energy density, which is defined by [21]  
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Here iju  is the linear strain tensor, P  is the shear modulus, K  is bulk modulus, and summation 

over double indices is implied. Substituting Eq. (8) into Eq. (C9) and keeping up to 21 sc , one 

obtains  
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Substitution of Eq. (C10) into Eq. (C8) yields  
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Let us return to Eq. (C3). It gives the kinetic energy of the liquid lT  in terms of the functions 

( )
0

jb , ( )
1

jb , ( )
0

jA , and ( )
1

jA . These functions can be calculated as expansions in series, considering 

j[ , 0j cR R , and 0j cz R  as expansion parameters because these quantities are always smaller than 

unity. We will carry out this calculation with an accuracy up to terms of third order of smallness.  

From Eqs. (A22) and (A23), it follows that  
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From these equations, with an accuracy up to terms of third order, one obtains  
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Substitution of Eqs. (C12), (C14), (C16), and (C17) into Eqs. (A5), (A6), and (A21) results in  
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Substitution of Eqs. (C18) – (C23) into Eq. (C3) yields  
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We now can apply the Lagrangian equation,  

 0
j j

d L L
dt q q

w w
�  

w w
, (C25) 

in which jR  and jz  should fulfil the role of the generalized coordinates jq .  

Note that, as follows from Eq. (A19), cR  is a function of jR  and jR , so we can write  
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In addition, the following equation is valid:  

 3 3 3 3 3 3
1 2 0 10 20c cR R R R R R� �  � � , (C27) 

which gives  
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Equations (C26) – (C28) are used when the derivatives with respect to jR  and jR  in Eq. (C25) 

are calculated.  

Another point to be made is the appearance of cR  in Eq. (C7) and cR  in Eq. (C11). These 

quantities should be considered as time functions when Eqs. (C7) and (C11) are substituted into 

Eq. (C25).  

With these remarks, substituting Eqs. (C4), (C7), (C11), and (C24) into Eq. (C25), one 

obtains  
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where  
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As one can see, Eqs. (C29) and (C30) involve 4 4
cd R dt , which appears in a correction 

term that is caused by the compressibility of the solid. Since this term is of the order 21 sc , it will 

suffice to evaluate 4 4
cd R dt  with an accuracy up to leading terms, neglecting all secondary 

effects. To this end, we can apply the following approximation.  

From Eq. (A19), it follows that  
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We can express jR  in terms of jR  by the Rayleigh-Plesset equation for a single bubble in an 

unbounded liquid, 
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Substitution of Eq. (C37) into Eq. (C36) yields  
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Differentiation of this equation with respect to time gives  
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Substituting Eq. (C37) for jR , one obtains  
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Differentiation of Eq. (C40) with respect to time gives  
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Expressions for jP  and jP  should be calculated up to leading terms as well. In this 

approximation, Eq. (C5) gives  
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Substituting Eqs. (C42) and (C43) into Eq. (C41) and then substituting the result into Eq. (C35), 

one obtains  
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where  
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Substitution of Eq. (C44) into Eqs. (C29) and (C30) makes them ordinary differential 

equations of second order with respect to the time derivatives of jR .  
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FIG. 2. Acoustic pulse used as excitation in Fig. 3. The mathematical definition is given by Eq. 

(32). The pulse parameters are 1.5f   MHz, 50aP   kPa, and 5N  .  
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FIG. 3. Response of bubbles to the acoustic pulse shown in Fig. 2. Left panel: bubbles in a cavity. 

Right panel: bubbles in an unbounded liquid. 10 7.5R   µm, 20 5R   µm, 1(0) 50z  �  µm, 

2(0) 50z   µm, 0 100cR   µm, 500sR   µm. The Minnaert frequencies of the bubbles are 468 

kHz and 724 kHz. The bubbles are excited above their natural frequencies.  
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FIG. 4. Translational motion of two bubbles in a cavity and in an unbounded liquid. The parameters 

are as in Fig. 3, except that the number of cycles in the excitation pulse is N = 500. The bubbles 

are moving toward each other.  
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FIG. 5. Response of bubbles to an acoustic pulse with the parameters 0.6f   MHz, 50aP   kPa, 

5N  . Left panel: bubbles in a cavity. Right panel: bubbles in an unbounded liquid. 10 7.5R   µm, 

20 5R   µm, 1(0) 50z  �  µm, 2(0) 50z   µm, 0 100cR   µm, 500sR   µm. The driving frequency 

lies between the natural frequencies of the bubbles.  
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FIG. 6. Translational motion of two bubbles in a cavity and in an unbounded liquid. The parameters 

are as in Fig. 5, except that N = 50. The bubbles are moving away from each other.  
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FIG. 7. Response of bubbles to an acoustic pulse with the parameters 0.3f   MHz, 50aP   kPa, 

5N  . Left panel: bubbles in a cavity. Right panel: bubbles in an unbounded liquid. 10 7.5R   µm, 

20 5R   µm, 1(0) 50z  �  µm, 2(0) 50z   µm, 0 100cR   µm, 500sR   µm. The bubbles are 

excited below their natural frequencies.  

 

  



35 
 

 

 
 

FIG. 8. Translational motion of two bubbles in a cavity and in an unbounded liquid. The parameters 

are as in Fig. 7, except that N = 1000.  
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FIG. 9. Free oscillations of two equal bubbles. Left panel: bubbles in a cavity. Right panel: bubbles 

in an unbounded liquid. 10 20 5R R   µm, 1(0) 50z  �  µm, 2(0) 50z   µm, 0 100cR   µm, 

500sR   µm. The Minnaert frequency of the bubbles is 724 kHz. The free oscillations are excited 

by a small initial deviation from the equilibrium bubble radii.  
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FIG. 10. Free oscillations of two unequal bubbles. Left panel: bubbles in a cavity. Right panel: 

bubbles in an unbounded liquid. 10 7.5R   µm, 20 5R   µm, 1(0) 50z  �  µm, 2(0) 50z   µm, 

0 100cR   µm, 500sR   µm. The Minnaert frequencies of the bubbles are 468 kHz and 724 kHz. 
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FIG. 11. Growth and evolution of two bubbles in a rectangular microchannel. Images are taken 

after nucleation at times (a) 1.9 µs, (b) 15 µs, (c) 45 µs. The vertical scale is 100 µm.  

 

 

 

 
 

FIG. 12. Comparison of experimental data and theoretical predictions. 

 


