
HAL Id: hal-02402063
https://hal.science/hal-02402063

Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agent-based Model Exploration
Arnaud Banos, Philippe Caillou, Benoit Gaudou, Marilleau Nicolas

To cite this version:
Arnaud Banos, Philippe Caillou, Benoit Gaudou, Marilleau Nicolas. Agent-based Model Exploration.
Arnaud Banos; Christophe Lang; Nicolas Marilleau. Agent-based Spatial Simulation with NetLogo -
Volume 1 Introduction and Bases, 1, ISTE Press - Elsevier, pp.125-181, 2015, Volume 1: Introduction
and Bases, 978-1-78548-055-3. �10.1016/B978-1-78548-055-3.50004-6�. �hal-02402063�

https://hal.science/hal-02402063
https://hal.archives-ouvertes.fr


4

Agent-based Model Exploration

4.1. Introduction

4.1.1. Introductory example

The previous chapters have allowed us to introduce the basics of

agent-based model creation with NetLogo. This has resulted in a model

such as the one used in our running example. Once the model has been

built, the aim is to manipulate it in such a way that new knowledge about

the modeled phenomenon can be created. For example, we could look to

study the rate of infection resulting from certain parameter values. The

use and study of a model is nonetheless as complex as its creation. As

such, using our model, we could launch the simulation with standard

initial parameters (say 300 humans, 500 mosquitoes, a contamination

distance of 5 and a work–home distance of 500), and we would obtain

the graph in Figure 4.1(a), indicating no infection beyond the source

mosquito, which would lead us to conclude that these parameters lead

to no infections. However, upon relaunching the simulation with the

exact same values, we might obtain the graph in Figure 4.1(b), with the

infection present in almost 100% of individuals after 1,000 iterations.

Such results, typical of stochastic models, invite us to proceed to a

more detailed analysis of the situation:

Chapter written by Arnaud BANOS, Philippe CAILLOU, Benoît GAUDOU and

Nicolas MARILLEAU.



126 Agent-based Spatial Simulation with NetLogo 1

Number of infected agents

N
u

m
b

e
r 

o
f 

in
fe

ct
io

n
s

Time

mosquito_pen

human_pen

Number of infected agents

N
u

m
b

e
r 

o
f 

in
fe

ct
io

n
s

Time

mosquito_pen

human_pen

Figure 4.1. Evolution of the number of humans and mosquitoes infected after
1,000 iterations, during two separate simulations based on the same initial
conditions (identical initialization parameters). For a color version of the figure, see
www.iste.co.uk/banos/netlogo.zip

– Where does the infection come from during the simulation?

It would be useful to better visualize the simulation by perhaps

representing the distribution of infection dates (Figure 4.2 (a), see

section 4.2.2) and the infection sites compared to the movements of the

source mosquito (Figure 4.5, see section 4.2.3.1)

Dates of infection Infections - parameter variability

Figure 4.2. Distribution of the agent infection dates during the course of a simulation
(on the left) and the change in infection count across several simulations with different
values for one of the model’s variables (on the right). For a color version of the figure,
see www.iste.co.uk/banos/netlogo.zip

– How can several simulations be displayed in order for a

comparison? Given the different results obtained across several

simulations, it is interesting to display a graph that compares different

simulations (for example, the infection count across several simulations,

Figure 4.2 (b), see section 4.2.6)



Agent-based Model Exploration 127

– How can the impact of different parameters on the final result

be analyzed? We have defined four main parameters, but which has

the greatest effect, and which of these have an impact upon the final

infection count? Ideally, a large number of simulations would be carried

out with different values for the parameters (for example, to analyze the

impact of the contamination distance, Figure 4.2 (b), see section 4.3.2

for the definition of exploration and section 4.3.3.1 for a graph). We

would also like to be able to say whether or not the impact is statistically

significant (see section 4.3.4).

4.1.2. Objectives

More generally speaking, creating a simulation model is only the

first step to receive useful results. Any data received from running a

simulation once will not necessarily be the same if you launch the

same simulation again: random phenomena or even simply the order

in which certain agents act may have important consequences leading

to widely varying results, even based on the same initial conditions.

In our running example, the first infected mosquito may remain in a

corner without infecting anyone, as his movements are random. Equally,

if a human is infected near the start of the simulation, the infection

might spread very quickly, as this agent will rapidly transmit it to

his/her neighbors as he/she moves around. This instability phenomenon

is even more amplified when the parameters are modified. The inherent

unpredictability in complex systems renders a systematic exploration of

a model very important, which is facilitated by certain functionalities

offered by NetLogo, most particularly graphs and the BehaviorSpace.

Exploring a simulation consists of studying the behavior of the

model during and after its execution, and in particular, observing

variables defined as objectives (such as the number of infected

individuals). Three main approaches are detailed as following:

– How does the model behave during a simulation for a given set

of parameters? This first exploration step, which will be covered in

the following section, is primarily based on numerical indicators and

graphs, updated dynamically throughout the simulation.



128 Agent-based Spatial Simulation with NetLogo 1

– How do the different parameters influence the model’s behavior?

Here, a possibility is to carry out several simulations with different

parameter values, whether similar or far apart, thus to study the

sensitivity of the model to different parameter changes. By doing

this, we carry out an exploration of the parameter space. NetLogo’s

BehaviorSpace allows for this type of exploration and will be covered

in a second section. Analyzing data resulting from the implemented

experimental design, with the goal of obtaining results from the

sensitivity analysis, mainly requires the use of external tools such as

R or Excel. This option will be covered at the end of the second section.

– How can we arrive at one of the simulation’s specific objectives?

The goal here is to test virtual scenarios, searching for the

“best” solution. For example: whom to vaccinate and at which

point in time so that an epidemic spreads as slowly as possible?

This is a case of objective optimization. This type of approach,

typical of what is known as an “inverse problem”, can be carried

out in NetLogo with the help of the Behavior Search extension

(http://behaviorsearch.org/documentation/tutorial.html), or in a more

sophisticated manner with the OpenMole platform (http://www.

openmole.org/), which allows for distribution of simulations on

distributed computing environments. This type of approach will not be

studied in this chapter and will instead be covered in its own chapter in

Volume 2 [BAN 15].

4.2. Exploring a simulation

4.2.1. Objectives

NetLogo’s interface is one of its main assets. Simple in use, it offers

numerous possibilities for the exploration of models and in particular,

the exploration of dynamic graphs which allow the user to follow

the behavior of chosen variables during the simulation. The basics of

graph creation in NetLogo were presented in Chapter 3. We will now

concentrate on the use of these graphs for studying models.

Understanding what is happening during a single simulation requires

an initial effort to obtain pertinent data. Knowing which data would



Agent-based Model Exploration 129

be interesting to extract out of a simulation depends on the simulation

itself. For example, the interface of a social network simulation will be

different from that of a stadium evacuation simulation. We will now

present several commonalities and examples which demonstrate the

different possible situations.

During a simulation, two different information types that can be

studied may be distinguished as follows:

– variables belonging to agents, which may be represented as

distributions or scatter plots;

– aggregated variables (such as the average evacuation speed of the

number of infected individuals). These values will have a unique value

at each tick of time, and are usually represented as time series (evolution

of the number of infected agents) or coupled in an xy-plot (the number

of humans infected over the number of mosquitoes).

We will now define three graph types which facilitate the analysis of

these data categories:

– The study of the distribution of a variable within an agent

population with the help of a histogram;

– Following an agents trajectory with an xy-plot;

– The use of a same graph across different simulations to carry out

an initial sensibility study with identical or different parameters.

We will also modify the observers main window so as to produce

maps, display infection links and follow a specific agent.

4.2.2. Using a histogram to display distributions

Objective: displaying the distribution of infection dates (Figure 4.3)

Method: using a histogram whose range of axes is automatically

defined.

Histograms are particularly useful for studying the distribution of

values against a continuous variable. For example, we will display the

distribution of the infection date of each agent, which is stored in the



130 Agent-based Spatial Simulation with NetLogo 1

date variable of each infection link (see running example). NetLogo

can automatically display this with a predetermined discretization.

Dates of infection

Figure 4.3. Distribution of the number of infected individuals (along the
y-axis) relative to the infection date (along the x-axis)

Figure 4.4. Settings window for the graph displaying the distribution of
infections in the form of a histogram

The commands used to create a histogram are as follows:

– histogram allows for the displayed variable to be specified (date

of each agent link infection with [date] of infections). This



Agent-based Model Exploration 131

command allows for the creation of a histogram from any numerical

list (non-number variables are ignored);

– set-histogram-num-bars allows for the number of classes of

the histogram to be specified. A default value (10 in this case) must be

given, but a slider named after this value could also be created, which

would allow for the dynamic modification of the number of classes of

the histogram.

4.2.3. Using an xy-plot

Objective: displaying the locations of all infection events with a color

dependent on the date and trajectory of the first infected mosquitoes

(Figure 4.5).

Method: creating an xy-plot, defining a color taken from a color

pallet based on a variable, adding pens and naming them automatically.

XY-plots allow for points to be traced and if desired, joined, by

setting two coordinates (as opposed to series where the x-axis always

displays time).

They can be used in many different ways during a simulation:

– to represent the change of a variable relative to another so as to

display the evolution of the number of infected humans as compared to

the number of infected mosquitoes, for example:

- a particular situation consists of displaying x and y positional

coordinates along the x- and y-axes, respectively. In this case, the

change of position and therefore the trajectory of one or several agents

is displayed. However, it is also possible to display the change of

average position, such as to show where the current center of infection

is situated;

– finally, it is also possible to display the location of particular

events, such as infection sites.

4.2.3.1. Displaying a group of points (individuals/elements)

A certain number of primitives are used to define the tracing of

xy-plots. The plotxy primitive allows for a point to be added to the



132 Agent-based Spatial Simulation with NetLogo 1

current graph by specifying the x and y coordinates. For example,

in order to display the location of each infection recorded in the

infection links, the following command can be used to update the

graph in Figure 4.5:

ask infections

[

set-plot-pen-color scale-color red date 0 ticks

plotxy lieuInfectionX lieuInfectionY

]

Mosquito/human position at point of infection
mosquitoes

humans

mosquito432

Figure 4.5. Display of infection sites and of the trajectory of the first infected
mosquitoes. The red/blue color of the infection sites is darker for earlier infections.
For a color version of the figure, see www.iste.co.uk/banos/netlogo.zip

The scale-color command allows for a color gradient to be easily

defined by using a variable to define each level. Here, the date variable

(infection date, attribute of each infection link) is used to display the

location with a color (red) that is darker for earlier infections. The last

two variables allow for the minimum (0) and maximum (ticks) limits

of the scale to be defined.

4.2.3.2. Displaying one or several trajectories with the help of dynamic
pens

As well as infection sites, we might wish to add the trajectories of the

initially infected mosquito or mosquitoes. If we want a separate color for

each originally infected mosquito, NetLogo allows for new pens to be



Agent-based Model Exploration 133

dynamically created. In this situation, we can create a new pen for each

originally infected turtle (with isInfectionExternal being true).

Figure 4.6. Defining an xy-plot, with a pen for human infections and another
for mosquito infections

Figure 4.7. Defining the xy-plots mosquito pen: points are placed at the infection site
with a color that is lighter the closer the infection date (date) is to the current time of
the simulation (ticks)



134 Agent-based Spatial Simulation with NetLogo 1

In the update field of the graph, enter:

ask turtles with [estInfectionExterieur]

[

create-temporary-plot-pen word breed who

set-plot-pen-color green

plotxy pxcor pycor

]

create-temporary-plot-pen creates the new pen for each identified

agent. The only variable that this command takes is that of the pen

name (which appears in the key). To obtain the name of the agent, its

(breed) and identifier (who) are concatenated with the help of the word

command. This gives us a legible (species) and unique (identifier) name

for each trajectory.

Mosquito/human position at point of infection
mosquitoes

humans

Figure 4.8. Displaying infection sites with a color gradient dependent on the
infection date. For a color version of the figure, see

www.iste.co.uk/banos/netlogo.zip

As this is a new pen, we cannot write this command in the pen update

field (Pen update command) but instead it must be written in the graph

update field (Plot update command). Another solution would be to place

this command directly within the model’s code, while specifying which

graph is used with a similar command to the following:



Agent-based Model Exploration 135

set-current-plot "Position of mosquitoes and humans at

moment of infection"

4.2.3.3. Following the infection source mosquito with watch-me

Given the large number of displayed agents, it may be useful

to focus on a single agent. The watch-me command allows for an

agent to be focused upon (the initially infected agent, for example).

A simple implementation of this is to create a switch named

Follow_Source-Agent?, and then to call a simple procedure that uses

this Boolean value within the Go procedure.

to follow-source-agent

if FollowSource-Agent? and source-agent-follow? = 0

[

ask turtles with [isInfectionExternal]

[

watch-me

] set source-agent-follow? 1

]

if not FollowSource-Agent? and source-agent-follow? = 1

[

reset-perspective

set source-agent-follow? 0

]

end

The highly permissive character of the NetLogo language

should be noted here, as it allows for a high-level primitive

(reset-perspective) to be called by an agent. This

permissivity offers great flexibility but is not always free from

ambiguities and requires a certain formality. Equally, calling the

follow-source-agent procedure from within the Go procedure,

while practical, means that it is called at each tick. Resorting to a global

variable (source-agent-follow?) allows for its use to be limited by

introducing an intermediate test: the agent is only focused upon if the

switch is activated and if the agent in question is not already being

followed. We will see an alternative approach later, which separates the

call function from the central Go procedure.



136 Agent-based Spatial Simulation with NetLogo 1

Figure 4.9. Result of using the watch-me command which allows for an agent
to be followed. For a color version of the figure,

see www.iste.co.uk/banos/netlogo.zip

4.2.4. Mapping with the help of patches

Objective: cartographic display of spatial variables (Figure 4.10).

Method: constructing a smoothed thematic map with the help of the

diffuse and scale-color primitives.

Mapping spatial variables is particularly useful in the case of

spatial models such as the one developed here. NetLogo does not

have any predefined tools in this field, but certain included primitives

offer remarkable possibilities, notably when the base patch entities

are exploited. Nonetheless, there remains a delicate issue with the

interaction with the user. The user must be able to create their maps at

any moment, without interrupting the simulation, and without excessive

computation time. This is all the more true with a larger number of

patches: in our example, there are 222,700, a value which can be

obtained by entering show count patches in the observer field.

Unlike the approach detailed in the previous example, the principal

idea here is to only activate this cartographic option at the user’s

request, at the press of a button (Map) and with the help of a



Agent-based Model Exploration 137

scrollable menu (Chooser) which facilitates them to choose the variable

to be mapped : "Number of infected humans" or "Number of

infected mosquitoes"

Nevertheless, two important bridges must be crossed before arriving

at proper cartographic representation. The first step consists of creating

the spatial variable at the correct locations. While attempting to exploit

the possibilities offered by the patches, it is during this stage that

the new nb-infections-humans and nb-infections-mosquitoes

must be stored:

patches-own[

locationHome?

nb-infections-humans

nb-infections-mosquitoes

]

The second step consists of updating these two variables throughout

the simulation. In order to accomplish this, the principal process

that influences the calculation of these variables is used, which

is the Sting procedure in our case. At the moment when an

interaction between a mosquito and a human takes place, the

virus can be effectively transmitted from the mosquito to the

human, or the other way round. In both cases, a record of this

“transaction” is kept by incrementally increasing the variable of the

corresponding patch (nb-infections-humans in the first case and

nb-infections-mosquitoes in the second):

ask patch-here [

set nb-infections-humans

nb-infections-humans + 1

]

Once this variable is updated, it becomes possible to map it with the

use of two of NetLogo’s primitives: diffuse and scale-color. The

former (diffuse) allows for the smoothing of the variable in question

by taking the value of each of a patch’s neighboring patches. The



138 Agent-based Spatial Simulation with NetLogo 1

amount of smoothing depends not only on the numerical variable (here,

0.5), but also on the number of iterations of the procedure (repeat

20). The scale-color procedure, already discussed earlier, allows for

the simple creation of a color gradient once the lower (min-VC) and

higher (max-VC) limits have been defined. For increased legibility, it is

possible to turn off the graphical display of the agents present (humans

and mosquitoes but also links):

to map

if MappedVariable = "Number of infected humans"

[

ask turtles [ht]

ask links [hide-link]

ask patches [set pcolor black]

repeat 20 [diffuse nb-infections-humans 0.5]

let min-VC min [nb-infections-humans] of patches

let max-VC max [nb-infections-humans] of patches

ask patches with [nb-infections-humans > 0]

[set pcolor scale-color red nb-infections-humains

min-VC max-VC]

]

if MappedVariable = "Number of infected mosquitoes"

[

ask turtles [ht]

ask links [hide-link]

ask patches [set pcolor black]

repeat 20 [diffuse nb-infections-mosquitoes 0.5]

let min-VC min [nb-infections-mosquitoes] of patches

let max-VC max [nb-infections-mosquitoes] of patches

ask patches with [nb-infections-mosquitoes > 0]

[set pcolor scale-color green nb-infections-

mosquitoes min-VC max-VC]

]

if MappedVariable = "Land use"

[

ask turtles [st]

ask links [show-link]



Agent-based Model Exploration 139

ask patches [set pcolor black]

ask patches with [not locationHome?] [set pcolor

white]

ask patches with [locationHome?] [set pcolor gray]

]

end

The maps obtained (Figure 4.10) allow for the spatial distribution

of the mosquito–human and human–mosquito transmissions to be

visualized.

Figure 4.10. Spatial distribution of the mosquito–human and human–mosquito
transmissions. For a color version of the figure, see

www.iste.co.uk/banos/netlogo.zip

4.2.5. Display of the mosquito/human interaction network

The model is based on dynamic interactions between humans

and mosquitoes. Due to this, it is useful to visualize the underlying

interaction network. In order not to penalize the execution of the

model by displaying an ever-increasing number of links, we may use

a Show_Links? switch, which will activate and deactivate the display.

The show-hide_links procedure, called from within the Go

function, allows for the display of the dynamically created interaction

network. The scale-color procedure is once again very useful for

differentiating objects. In this case, it takes the infection date as a

variable: the later the infection, the lighter the link color.



140 Agent-based Spatial Simulation with NetLogo 1

to show-hide_links

ifelse Show_Links? and any? links

[

let min-date min [date] of

links let max-date max [date] of links

ask links

[

set hidden? false

if min-date != max-date [set color scale-color green

date min-date max-date]

]]

[ask links [set hidden? true]]

end

The link primitives (links) allow for the simple manipulation of the

graph. As such, the my-in-links and my-out-links functions called

by the human agents would allow for the subgraphs of the mosquito–

human infections and the human–mosquito infections to be displayed

separately and respectively. A dynamic coupling with the GraphStream

software (http://graphstream-project.org/) would allow for real-time

calculations of the graph indicators, describing the structures displayed

within NetLogo more precisely.

4.2.6. Use of graphs across several simulations

Objective: following the infection count across several simulations

(Figure 4.15).

Method : creating a graph that does not reset in between simulations.

Graphs allow us to follow the state of a simulation at a particular

instant (distributions) or its evolution across time (series). It may also be

interesting to follow a variable across several simulations, or to compare

its evolution between several simulations.

The definition of “persistent” graphs differs from that of standard

graphs in the following two ways:



Agent-based Model Exploration 141

– the simulation must not clear the graph when it relaunches;

– the definition of a temporary graph must take into account that the

pens must pass through the origin again, without drawing a line between

the last point and the origin.

To accomplish the first objective, the commonly used clear-all

function must not be used, as it automatically calls the clear-plots

function, which clears all graphs.

A function alternative to setup must be created which includes all

the elements of the basic function except for the function that clears all

graphs:

to clean

clear-ticks

clear-turtles

clear-patches

clear-drawing

clear-globals

load-map

init-mosquito

init-human

create-epidemic

reset-ticks

end

We can link this function to an alternative button to the standard

Setup (Figure 4.11).

Once this has been carried out, certain graph types can already be

persistently used, such as the xy-plot displaying the infection age and

the trajectory of the original host mosquitoes defined in the previous

section (Figure 4.12). In this case, we can visualize the trajectories of

the mosquitoes as well as the infection locations and dates across three

simulations.



142 Agent-based Spatial Simulation with NetLogo 1

setup - except graphs

Follow source agent

Figure 4.11. Defining a button which calls the clean function, as
opposed to the setup function, which allows for the simulation

to be reset without clearing the graphs

Mosquito/human position at point of infection
mosquitoes

humans

mosquitoes389

mosquitoes660

mosquitoes279

Figure 4.12. xy-plot of the infection locations and mosquito trajectories across
three successive simulations, which notably allows for the random locations
of origin of the source mosquitoes. For a color version of the figure, see
www.iste.co.uk/banos/netlogo.zip

Numerous graphs are not, however, able to be used across different

simulations. For example, a series representing the number of infected

mosquitoes and humans leads to the following result (Figure 4.13). In

effect, in a basic series graph, the x-axis is incrementally increased

at each period. Also, when passing to the next simulation, the pen

remains active and NetLogo therefore links the last value of the previous

simulation to the first value of the new simulation.



Agent-based Model Exploration 143

N
o
m

b
re

 d
’i

n
fe

ct
és

Nombre d’infectés

pen-moustiques pen-humains

581

0

0 Temps 2740

Number of infected agents

N
u

m
b

e
r 

o
f 

in
fe

ct
io

n
s

Time
mosquito_pen human_pen

Figure 4.13. Series graph used across three simulations: the simulation data
is combined without returning to the origin for each new simulation

One solution for defining a graph in series consists of:

– using an xy-plot with the x-axis manually defined as representing

time (ticks);

– deactivating the pen (plot-pen-up) while moving to a new

simulation, that is to say when ticks is equal to 0.

The pen update command hence becomes (Figure 4.14):

if ticks = 0

[

plot-pen-up

]

plotxy ticks count infections

plot-pen-down

This type of graph allows us to easily compare the same variable

across several simulations (in our case, with the same parameters so as

to carry out an initial stability test of the variable with said parameters)

(Figure 4.15).



144 Agent-based Spatial Simulation with NetLogo 1

Figure 4.14. Defining a new graph representing the infection count across
several simulations, and defining the pen for this persistent series graph

Infections - persistent

Figure 4.15. Following the infection count across three successive simulations
with identical parameters

4.3. Exploring several simulations

4.3.1. Introduction

The persistent graphs studied in the previous section allow for the

user to form an initial idea as to the behavior of the model across several

simulations. Nonetheless, this does not allow for a more systematic

and detailed study of the variable stability or the models parameter

space. For this, NetLogo’s BehaviorSpace allows for a large number

of simulations to be launched by specifying the parameter values and

the desired number of simulations (replications) to be launched for each

combination of values.



Agent-based Model Exploration 145

This tool is particularly useful for:

– studying the stability of the results obtained with the current

parameter values. This type of analysis may be carried out by analyzing

the standard deviation of the results obtained across several replications;

– studying the impact of each variation of a parameter’s value

around the current solution (local sensitivity) so as to identify the most

influential parameters;

– exploring the spread of possible results for each of the acceptable

parameter values (exploring the parameter space). This gives an

impression of the results attainable by the simulation based on the main

possible configurations.

The BehaviorSpace allows for simple experiment designs to be

defined (complete designs), to run these (this can be optionally done

in parallel, on several cores), and to export the data resulting from these

experiments in CSV files. The goal is usually not to analyze these within

NetLogo, as its processing features are rather limited.

4.3.2. Exploring the parameter space: the BehaviorSpace, step by step

The BehaviorSpace tool is found in the Tools menu. It allows for

different experiment plans to be defined (experiments, see Figure 4.16).

Each experiment plan defines the values taken by the parameters, the

number of times that the simulation is replicated for each combination

of parameters, the exit variables and the stop conditions, etc.

initial situation (1 run)
global analysis (1000 runs)

Figure 4.16. The BehaviorSpace’s startup window, giving access to the list of already
defined experiment plans, allowing for their modification (Edit), their duplication
(Duplicate), their deletion (Delete), their execution (Run) or for the creation of another
(New)



146 Agent-based Spatial Simulation with NetLogo 1

By default, the experiment plan is defined as the current situation:

a single execution with the parameters fixed to their current values and

with no stop conditions (see Figure 4.17).

Figure 4.17. Experiment plan with the current parameter values and a single
execution by default

We will define an experiment plan whose goal is to analyze what

influences the number of humans infected after 1,000 ticks of time

(Figure 4.18):

– observed variables: number of humans infected at the end of the

execution, proportion of infected humans, number of mosquitoes and

proportion of infected mosquitoes;

– variable parameters: number of initial humans and mosquitoes,

contamination distance and home–work distance.



Agent-based Model Exploration 147

Figure 4.18. Defining an experiment plan to globally
explore the parameter space

We begin by defining a new experiment plan (New). The different

options to be defined are:

– Experiment name: the name of the experiment which will allow

for easy identification and which will determine the default name of

savefiles. Example: global exploration.

– Vary variables as follows: determines the values which will be

taken by the parameters. Each line corresponds to a variable. After

having specified the name of the variable in between quotation marks,

we can specify the values taken by the parameters in two different ways:

- by directly stating which values will be taken by the variable,

for e.g. [“number-mosquito” 300 500 1000] which indicates that

the possible values for number-mosquito are 300, 500 and

1,000, or [“contagion_transport” true false] to indicate that

contagion_transport can take the values true and false;

- by specifying an initial value, an increment and a final

value for the variable, in the form [“name-variable [initial

increment final]]. For example, [“number-human” [100 100

300]] indicates that number-human will take the values 100, 200 and



148 Agent-based Spatial Simulation with NetLogo 1

300 (which is, in this case, equivalent to writing [“number-human”

100 200 300]).

– Repetitions: the number of times (replications) that each

configuration will be executed. For identical parameter values, the

observed variable may have different values (due to the stochasticity

present within the model) and the simulation may be executed several

times for each combination of chosen values so as to obtain more precise

results.

– Measure runs using these reporters: the observed values which

will be exported into a savefile. Each line defines an exported value. It

may be a global variable (of the type date-first-infection) or more

commonly a sum: e.g. count humans with [isInfected?] which

returns the number of infected humans.

– Measure runs at every step: if this box is ticked, the previously

defined observed values will be recorded at each simulation step.

Otherwise, only the final value will be recorded.

– Setup commands: the commands to be executed at the start of

each simulation. Usually, this will be the setup command, but other

commands may also be included, if desired. A command different to

setup may be used if we specifically require a certain graph or global

variable to be conserved throughout the exploration (see following

section on advanced analysis).

– Go commands: the command to be executed at each simulation

step, usually go.

– Stop conditions: a stop condition if we desire for the simulation

to end before the specified time limit (or if no limit is given). For

example, if we wanted only to analyze the date of the first human

infection, the stop condition could be defined as: any? humans with

[isInfected?] and to export the infection date by adding ticks in

the following variables.

– Final commands: potential commands to be executed when the

stop condition or the time limit are reached. It is possible to export plots

or to save the state of the world as new files, for example.

– Time limit: the maximum number of steps that the simulation may

reach.



Agent-based Model Exploration 149

The BehaviorSpace will carry out all the possible combinations

between the parameters defined in the list. The number of defined

simulations can as such increase exponentially: four parameters with

five values each already represent 5 x 5 x 5 x 5 = 625 possible

combinations. With 10 parameters and 10 values per parameter, we

reach 1010 combinations, which means that 10 million simulations must

be carried out for a complete study.

The order in which the parameters are listed determines the order

in which the simulations will be executed. Let us take the example of

two parameters with two and three values, respectively, and a single

execution per configuration:

[“contagion_transport” true false]

[“number-human” 100 200 300]

The six simulations will be successively executed as follows: (100;

true), (200; true), (300; true), (100; false), (200; false), (300; false).

Once the experiment plan has been defined, we can execute it by

selecting it in the experiment list and clicking on Run. In this case, we

can choose the execution options (Figure 4.19):

Figure 4.19. Choice of options for launching an experiment
plan within the BehaviorSpace

Spreadsheet output and Table output allow for the file export format

to be chosen:

– Spreadsheet will generate a spreadsheet with a single line per

simulation step (so a single line if only the final value is exported),

and one column per variable – simulation couple. If the plan includes

6 simulation runs and 4 observed variables, the spreadsheet will be



150 Agent-based Spatial Simulation with NetLogo 1

composed of 6 × 4 = 24 columns (as well as the column with headings).

An example is given in Figure 4.21. This layout is adapted when all

the intermediate steps are recorded (Measure runs at every step ticked

within the experiment plan options window).

– Table will generate a file with one line per simulation–iteration

couple (so as many lines as there are simulations if only the final value

is recorded, and n*m lines if n simulations are executed with m recorded

iterations). Each column will correspond to a variable. One example is

given in Figure 4.20. This layout is made for the analysis of data from a

large number of simulations.

Figure 4.20. Example of a CSV table (imported into OpenOffice) obtained
from the BehaviorSpace with the Table output box ticked

Figure 4.21. Example of a CSV table (imported into OpenOffice) obtained
from the BehaviorSpace with the Spreadsheet output box ticked

Simultaneous runs in parallel: number of simulations which will be

run at the same time. NetLogo is able to run several simulations at once

to speed up the analysis, as long as the computer’s processor contains

several cores (choosing a value higher than the number of cores would



Agent-based Model Exploration 151

slow down the execution instead of speeding it up). The default value

is equal to the number of cores. This option is tempting but has several

consequences:

– Using all of a processor’s cores makes any other use of the

computer during the execution of the experiment plan very difficult as

all of the processing power is being used by NetLogo. At least one or

two cores should be left free so that continued use of the computer is

possible.

– As the number of parallel simulations increases, so does the

memory used by NetLogo.

– Only one simulation can access the graphical display, which means

that if several simulations are running alongside each other, they will not

be able to be observed or displayed in graphs (see the use of graphs with

the BehaviorSpace in the following section).

– If any global variable is conserved in between simulations, their

value will depend on which core they are being run on (see the following

section).

– The order of the lines of exported data will be randomly arranged

if simulations are running in parallel, especially if variables are being

exported at each iteration.

Once the options and filenames have been chosen, the simulations

will be successively executed (and occasionally in parallel depending

on the chosen options). In order to speed up the processing, it is

possible to turn off the main view updates update view update and/or

the graph and monitor updates (update plots and monitors). If the user

has chosen to record each iteration’s variables, a graph displaying these

variables within the current simulation will automatically be generated

(see Figure 4.22).

4.3.3. Analyzing data within NetLogo (advanced use of
BehaviorSpace)

Basic use of the BehaviorSpace allows for data tables to be easily

obtained, which can then be analyzed with external tools (Excel, R,

etc.). Nonetheless, it is possible to obtain an initial display of data within



152 Agent-based Spatial Simulation with NetLogo 1

the simulation, of which we will present certain uses for carrying out a

data analysis of the results within NetLogo.

Run #1 of 6, step #369

Total elapsed time: 0:00:49

transport_infection = true

number-human = 100

0 count humans wit...

1 count mosquitoes...

2 (count humans wit...

3 (count mosquitoes...

Figure 4.22. Monitor window for the BehaviorSpace execution, with the number
of completed and total simulations, as well as information about the current
simulation and interface updating options. For a color version of the figure, see
www.iste.co.uk/banos/netlogo.zip

4.3.3.1. Use of graphs with BehaviorSpace

4.3.3.1.1. Constraints specific to BehaviorSpace

In the previous section, we studied the use of a graph across several

simulations. It is possible to use the same principle and to improve it

with the BehaviorSpace. As such, existing persistent graphs will work

with the BehaviorSpace, and will allow for series graphs or xy-plots to

be viewed across several simulations. The use of persistent graphs with

the BehaviorSpace does, however, have two constraints:

– Just as a new initialization button calling the clean function was

needed, the standard setup function (which usually calls the clear-all

and therefore clear-all-plots functions) must be replaced by a

new function such as clean so as to initialize simulations within the

experiment plan.



Agent-based Model Exploration 153

– Only one simulation can access the interface at any given point

in time; so if several simulations are being run in parallel (on several

cores), only one of them will be displayed upon the graphs.

4.3.3.1.2. Transferring BehaviorSpace parameters onto a graph

In order to visualize the impact of a parameter on a variable, the

BehaviorSpace allows for a large number of simulations to be run

while varying one or several parameters, and for the results of each

simulation to be displayed on persistent graphs. In order to obtain a

more legible and complete result, it is possible to add the value of each

pen’s parameter as a tag, which gives a graph similar to the following

one.

Even so, this adds additional constraints relative to the simple

persistent graph previously defined:

– It is unfortunately impossible to ask the BehaviorSpace or the user

what the name of the variable currently being analyzed is, therefore the

graph’s update function must be modified.

– Although a pen is defined by its name, this will depend on its value

in this case, which means that the pen must be dynamically created and

this can only occur at the beginning. The graph will therefore initially

not have any pens, and the pen will be added when the graph next

updates.

– The type of pen must also be defined, with the use of the

set-plot-pen-mode command, which allows for the type of graph

to be created by the pen (it corresponds to a choice taken from the

scrollable mode menu in the advanced pen configuration window):

1) set-plot-pen-mode 0 will cause the pen to trace lines (series

graphs or connected xy-plots), see Figure 4.23;

2) set-plot-pen-mode 1 will create a histogram;

3) set-plot-pen-mode 2 will draw points (such as for xy-plots,

see following example).

– The name of the pen to be created or chosen may be the

name of the parameter followed by its chosen value, created



154 Agent-based Spatial Simulation with NetLogo 1

by using the concatenation function: word : word "distance"

distance-contamination.

– Verifying the existence of a pen (once it has been created) can be

done with plot-pen-exists?.

– A pen’s color can be chosen from a color pallet by using

scale-color. In order to better differentiate pens and if one is certain

that the number of pencils will remain low, NetLogo’s included color list

(base-colors), which offers 14 basic colors, may be used. To receive

a reference and to choose the color, the BehaviorSpace run number may

be used with the behaviorspace-run-number variable.

The update function of the graph may be written as follows:

ifelse plot-pen-exists? word "distance"

distance-contamination

[

set-current-plot-pen word "distance"

distance-contamination

]

[

ifelse (behaviorspace-run-number < 14)

[

create-temporary-plot-pen word "distance"

distance-contamination

set-plot-pen-color item behaviorspace-run-number

base-colors

]

[

set-plot-pen-color wrap-color behaviorspace-run-number

]

]

set-plot-pen-mode 0

if ticks = 0

[

plot-pen-up ] plotxy ticks (100 * (count infections) /

(count turtles))

plot-pen-down



Agent-based Model Exploration 155

This function allows for the display of the number of infections

against the value of the distance-contamination parameter

(Figure 4.23).

Infections - parameter variability

Figure 4.23. Infection count obtained across several infections by using a pen
with the value of its distance-contamination parameter for each

simulation. For a color version of the figure, see
www.iste.co.uk/banos/netlogo.zip

4.3.3.2. Analyzing data with BehaviorSpace

In order to delve further within data analysis, data manipulation

and aggregation across several simulations is necessary. NetLogo is not

suitable for this type of analysis, and it would perhaps be advisable

to use an external software such as R (see the next section) or Excel.

It is nonetheless possible to carry out certain analyses directly within

NetLogo so as to illustrate their potentials and limitations.

The aim is to carry out:

– a representation of the average infection count obtained across

the previous simulations, which approximately equates to the standard

deviation (Figure 4.24);

– a sensitivity analysis to view the part of the variance represented

by each variable. This analysis allows us to see which variables have the

largest impact on the final result, the infection count (Figure 4.27).



156 Agent-based Spatial Simulation with NetLogo 1

In order to achieve this aim, the following must be done:

– creating global variables which will record the values of the

variable to be analyzed within each simulation;

– updating these variables with their new values;

– making sure these values are not cleared when the simulations are

reset.

4.3.3.2.1. Graph of the average and standard deviation

This type of graph allows for the evolution of the average and the

stability of a result, whether for fixed parameters or not, to be seen

in a more synthetic manner than a graph superimposing all of the

simulations.

For example, Figure 4.24 is obtained after 81 simulations following

an exploration of the parameter space (4 parameters with 3 values each).

The graph is illegible and gives little useful information (other than the

fact that the result is unpredictable. . . ). Representing the average and

standard deviation allows for the data to be synthesized: the average is

clearly increasing by jumps per day (transports). The standard deviation,

and thus the instability, becomes particularly high from the fourth day

onward, but remains stable at a very high level afterward.

mean

running total

+ standard deviation

- standard deviation

plot 1

Figure 4.24. On the left, the infection counts obtained over 81 simulations
with different parameters. On the right, a representation of the average (in

purple) plus or minus the standard deviation (in blue) of the previous
simulations, as well as of the current one (in red). For a color version of the

figure, see www.iste.co.uk/banos/netlogo.zip



Agent-based Model Exploration 157

Results such as those shown in Figure 4.25, obtained after 10

simulations with identical parameters, demonstrate great stability after

the fourth day (as every entity is infected), while the first three days

remain highly unpredictable (with a large standard deviation).

Infections - persistent

mean

running total

+ standard deviation

- standard deviation

plot 1

Figure 4.25. Results of 10 simulations with identical parameters and a high
transmission distance. For a color version of the figure, see

www.iste.co.uk/banos/netlogo.zip

4.3.3.2.2. Creating global variables to record the values of the variable

to be analyzed within each simulation

In the section at the beginning of the NetLogo code, where species

are declared, the global variable which will stock the variable values

must be added:

globals [list-variable]

Then, the following initialization is added to the setup function (and

not to the clean function, as this initialization must only be carried out

once):

set list-variable [[]]

4.3.3.2.3. Updating these variables with the new values

The values can be added to the list both within the NetLogo code

and within the update function of the graph. The advantage of using

the update function is that it will not be called during usage of the

BehaviorSpace where plots are not being updated, which will reduce



158 Agent-based Spatial Simulation with NetLogo 1

the memory use and calculation time. The plots update function is

therefore:

while [(length list-variable) < (ticks + 1)]

[

set list-variable lput [] list-variable

]

let current-list item ticks list-variable

set current-list lput

(100 * (count infections) / (count turtles))

current-list

set list-variable replace-item ticks list-variable

current-list

list-variable is a list of lists containing the value taken by the

variable for each tick of the previous simulations. If 10 simulations with

a length of 50 ticks are carried out, then list-variable will contain

50 lists of 10 elements.

The first section of the code serves to add an empty list if the current

tick has not been reached during previous simulations.

The second section finds the list corresponding to the current tick,

adds the target variable (the infection count) to it and replaces the old

list by the updated current-list version.

4.3.3.2.4. Defining graph and pen updates

Once the value has been saved within list-variable, all that is

needed is to define the pens which will display the average plus and

minus the standard deviation, and potentially the current simulation

(Figure 4.26).

In order to calculate the average and standard deviation, NetLogo

has the mean and standard-deviation functions allowing for these

values to be obtained from a list.



Agent-based Model Exploration 159

Figure 4.26. Defining the average and standard deviation pens of the graph

The mean pen will therefore be defined by:

plotxy ticks mean item ticks list-variable

For standard deviation, it is necessary to verify that the number of values

is greater than or equal to 2 in order to avoid the standard-deviation

function returning an error message:

if length item ticks list-variable > 1

[

plotxy ticks (mean item ticks list-variable +

standard-deviation item ticks list-variable)

]

4.3.3.2.5. Making sure these values are not cleared when the

simulations are reset

One final important element to take into account when global

variables are being used to store values across several simulations: these

global variables must not be cleared when the simulation is reset. This

problem is identical to that with graph reinitialization when defining

persistent graphs.

The clear-all function that is usually used calls the

clear-globals function, which clears all global variables. We

have seen in the previous section that a new initialization function

clean has to be defined, which does not call clear-all, but instead

calls all of its elements barring clear-plots. Two solutions are

possible for conserving global variables:



160 Agent-based Spatial Simulation with NetLogo 1

– not calling clear-globals, but then care must be taken to clear

the global variables which are not to be kept;

– using let to keep the desired global variables: since local variables

are not cleared by clear-globals, we can make the clean function

keep the values of list-variable, for example:

let list-variable-temp list-variable

clear-globals

let list-variable list-variable-temp

4.3.3.3. Analyzing variance: presentation

Going even deeper within data analysis, we can wish to understand

where the variability of received results arises from. For example, let

us return to the 81 executions needed for a complete exploration of

the parameter space for a model with three values for four parameters,

which led to the infection count graph in Figure 4.24. These graphs

show that results can vary considerably depending on the parameter

values, and it is thus important to correctly calibrate these parameters

if we want to obtain realistic results. However, searching for the correct

parameter values is complicated and costly (when it is even possible),

and it might be interesting to know which parameters have the greatest

impact upon the result. If certain parameters have no impact, it is hardly

important to precisely define them, and more attention should instead

be put toward refining those with a greater importance.

To determine the weight of each parameter on the result (and thus to

perform a sensibility analysis based on the variations of a parameter), a

possible method is a variance analysis [FAI 13, SAL 09].

We will now break up the variance of a variable x, based on three

parameters i, j and k, with n observations of x, written as xijk (to

simplify the notation, the parameter k indicates the kth simulation for

each of the i and j parameters). This analysis can be generalized to any

number of parameters. The variance (square of the standard deviation



Agent-based Model Exploration 161

calculated above) summarizes the deviations from the mean of the

variable:

V (x) =
1

(n− 1)

∑
ijk

(xijk − x...)2

where x... and x both represent the observed global mean of x: x... =
x = 1

n

∑
ijk xijk.

As n− 1 is constant for all variables, we can consider only the sum

of squares (SS) for charts/analysis:

SStotal =
∑
ijk

(xijk − x...)2

These deviations correspond to the instability and unpredictability of

the variable under study. It is possible to break down these deviations.

For example, for the first parameter, two extreme cases would be:

– if this parameter is responsible for all the changes in the x
variable, this would indicate that if the value of this parameter is

fixed, so would be x. For a value of i, x will always be identical and

therefore equal to the means of x for this value of i: xijk = xi..,
with xi.. = 1

njnk

∑
jk xijk. Here, SStotal =

∑
ijk (xi.. − x...)

2 =

nj .nk
∑

i (xi.. − x...)
2, which means that the deviations correspond to

the deviations between the partial means of the parameter and the global

variable. The variability within classes is as such nil for the parameter,

and the variability between classes is at maximum;

– if no parameters in a sufficiently large sample size have any

impact on the final result, the mean of each parameter value will be

equal to that of the global variable: xi.. = x.... This will also be true

for each parameter couple: xij. = x... In this case, the previously

calculated value, which is the variability between classes, will be nil.

Any and all variability will depend on the remainders: any variations

of x which are not contained in the means: SStotal = SSresidual =∑
ijk (xijk − xij.)

2. The residual SSs will measure what results from

inherent randomness and from non-measured parameters. The higher

this value, the less predictable the model is, if only the tested parameter

values are known.



162 Agent-based Spatial Simulation with NetLogo 1

The general case is situated in between these two extremes.

When only one parameter, i, exists (and there remain nk

observations for each value of i), the variability (SStotal) can be broken

down between the variability between classes (SSvariable) and the

residuals (variability within classes, SSresidual)

SStotal = SSvariable + SSresidual

∑
ik

(xik − x)2 = nk

∑
i

(xi. − x)2 +
∑
ik

(xik − xi.)
2

For example, if the number of humans takes the values 100, 200 and

300, the variability from the number of humans (nh) will be:

SSnh = nk(xnh=100 − x)2 + nk(xnh=200 − x)2 + nk(xnh=300 − x)2

For a larger number of parameters, the effect of interactions between

parameters must be added: the interaction SSs measure the impact of

independent parameters. For example, this may be useful if both the

number of humans and mosquitoes must be high for the infection to be

significant (as opposed to only one of the values being large).

SStotal = SSvariable + SSinteraction + SSresidual

The variable SSs (the variability between intermediate and global

means described previously) are easily calculated and will be analyzed

within NetLogo. For the interaction SSs, see section 4.3.4.

4.3.3.4. Graph of the variance analysis

The graph obtained (Figure 4.27) represents the evolution of the

percentage of total variance attributed to each variable (which is

identical to the part of the SStotal).

To carry out the variance analysis, the variable values must be stored

as with the previous graph, and the values of each parameter must be

known for each simulation that is run (so as to be able to calculate the

partial means depending on the parameter values).



Agent-based Model Exploration 163

distance-contamination

distance-work-home

number-humans

number-mosquitoes

Figure 4.27. Breaking down the infection count variance from
the exploration of a 4 parameter space

The process this graph follows can be summarized in several steps:

– creation of global variables for storing parameter names and

values;

– storing of global variables in between simulations;

– recording of the parameter values at each period;

– calculation of parameter variance;

– display of these values on the corresponding pen.

4.3.3.4.1. In the NetLogo code

Creation of global variable for storing parameter names and values

As with the previous graph, we will use global variables to store

the names of the studied parameters as well as their lists of values. We

will also continue to use the list-variable variable which we defined

previously so as to keep the chosen variable’s list of values (here, the

infection count).

globals [list-variable list-parameter-values

list-parameters]

These variables are initialized within the setup as follows:

set list-variable [[]]



164 Agent-based Spatial Simulation with NetLogo 1

set list-parameter-values [[]]

set list-parameters ["distance-contamination"

"distance-work-home"]

Storing of global variables in between simulations

As with the previous graph, we use the clean function (which

does not call clear-global) to store the variable values in between

simulations.

4.3.3.4.2. In the BehaviorSpace experiment setup options

Defining the list of parameters to be followed within the BehaviorSpace

Due to list-parameters being defined as a global variable, it is

possible to choose and analyze different parameters in each experiment

(the same method can be used for the variable to be analyzed, which

here is still the global infection count).

The list-parameters variable is therefore defined within the setup
of the experiment plan (Figure 4.28).

set list-parameters

["distance-contamination"

"distance-work-home"

"number-human"

"number-mosquito"]

clean

4.3.3.4.3. In the graph setup options

Recording the parameter value at each tick

The graph’s setup function will be used to record the parameter

values for the current simulation. The code will be split into two parts.

First, the function will check that the variable containing the

parameter values (list-parameter-values) contains at least as many

lists as there are values (a list per parameter is required). If this is not

the case, empty lists are added:



Agent-based Model Exploration 165

while [(length list-parameter-values) < (length

list-parameters)]

[

set list-parameter-values lput [] list-parameter-

values

]

Figure 4.28. Defining an experiment plan allowing for a sensitivity
analysis of the infection count

Then, the function will go through the parameter list defined

in parameters-list. We are now interested in the ith parameter

corresponding to the ith list of list-parameter-values.

We cannot add a new value corresponding to the parameter value

of the current simulation to this list without running into one of



166 Agent-based Spatial Simulation with NetLogo 1

NetLogo’s limitations: we have the variable name (it is the ith element

of list-parameters copied into current-parameter), but there is

no simple way to obtain its value from its name.

We will therefore use NetLogo’s Run function, which allows for an

instruction to be directly passed from a text to a command line. It is

impossible to create a local variable with this command, as it would be

instantly deleted; instead, this command will be directly executed so as

to update list-parameter-values, by adding the new value:

Run (word "set list-parameter-values replace-item i

list-parameter-values lput " current-parameter "

current-list")

If current-parameter is equal to “distance-contamination”,

the command given to NetLogo will be:

set list-parameter-values replace-item i list-parameter-

values

lput distance-contamination current-list

The command places in ith position in list-parameter-values

the current-list list to which distance-contamination is added.

if ticks = 0

[

clear-plot

while [(length list-parameter-values) < (length

list-parameters)]

[

set list-parameter-values lput [] list-parameter-values

]

let i 0

while [i < length list-parameters]

[

let current-parameter item i list-parameters

let current-list item i list-parameter-values

Run (word "set list-parameter-values replace-item i



Agent-based Model Exploration 167

list-parameter-values lput" current-parameter "

current-list")

set i i + 1 ] ]

Calculating parameter variance and display of values

The graph’s update function will carry out the calculations and

display them for each of the parameters:

let i 0

let current-list item ticks list-variable

if length current-list > 1

[

let total-pop length current-list

let global-mean mean current-list

let total-variance variance current-list

if total-variance > 0

[

while [i < length list-parameters]

[

let parameter-values item i list-parameter-values

The aim is to calculate, for each parameter, the parts of SSvariable:∑
ni.(xi. − x)2/SStotal

With ni., the number of simulations carried out with the value of the

i parameter is xi. =
∑

jk xijk/ni.

and SStotal = (n− 1) ∗ V (x)

Independent from the current parameter are the following:

– Current-list corresponds to the list of variable values for the

current tick during previous simulations (the xijk);

– Total-pop corresponds to the total number of simulations that

have been carried out (n);

– Global-mean corresponds to the global mean (x);

– Total-variance corresponds to the global variance (V (x)).



168 Agent-based Spatial Simulation with NetLogo 1

Therefore, we need to calculate xi., as well as ni., the population

size and the mean of the xijk – all simulations using the same parameter

value.

During the loop, we are interested in the ith parameter, and

parameter-values will correspond to the values of this parameter

during previous simulations:

if (length current-list) < (length parameter-values)

[

set parameter-values sublist parameter-values

(length parameter-values - length current-list)

(length parameter-values)

]

If the list of values is smaller than the list of parameter values, the

last parameter values of the list are used.

let unique-values []

let unique-means []

let unique-size []

To explain the importance of these three variables, let us say

that we have carried out six simulations, with the two parameters

number-human and number-mosquito set to the following values:

– Number-human [100 200 100 200 100 200];

– Number-mosquito [100 100 500 500 1000 1000].

Let us also state that the infection counts for the current tick (the xijk
values contained in current-list) are the following: [2 2 2 10 10

10].

For the first parameter (i=0), parameter-values will therefore be

[100 200 100 200 100 200].

We will attempt to find the means of xijk for the two values taken by

parameter-values, 100 and 200. In order to do this, we use:



Agent-based Model Exploration 169

– Unique-values to store the different values taken by the

parameter. At the end, unique-values = [100 200];

– Unique-means to store the sum of the xijk corresponding to each

unique value (which we will divide by the number of elements to find

the mean). At the end, unique-means=[2+2+10 1+10+10]=[14 21];

– Unique-size to store the number of simulations corresponding to

each unique value. At the end, unique-size=[3 3].

(foreach current-list parameter-values

For each current-list / Parameter-values couple, ?1 will be

the current xijk, with ?2 being the current parameter value

[

let index position ?2 unique-values

index is the position of ?2 in the already identified parameter values.

If the value does not yet exist, it will be added:

ifelse index = false

[

set unique-size lput 1 unique-size

set unique-values lput ?2 unique-values

set unique-means lput ?1 unique-means

]

Otherwise, the mean and size lists are updated by the current value:

[

set unique-means replace-item index unique-means

(?1 + item index unique-means)

set unique-size replace-item index unique-size

(1 + item index unique-size)

]

])



170 Agent-based Spatial Simulation with NetLogo 1

Then, the SS is calculated. In order to do this, the variance is updated

for each mean – size couple:

let var-part 0

(foreach unique-means unique-size

[

set var-part (var-part + ?2 * (?1 / ?2 -

global-mean) ^ 2)

])

Finally, we divide by the population (so as to obtain the parameter

variance) and by the total variance (to obtain the proportion of the total

variance):

set var-part var-part / (total-pop - 1) * 100 /

total-variance

The result can then be displayed, by creating the appropriate pen if

it does not yet exist:

ifelse plot-pen-exists? item i list-parameters

[

set-current-plot-pen item i list-parameters

]

[

create-temporary-plot-pen item i list-parameters

set-plot-pen-color item i base-colors

]

plotxy ticks var-part

set i i + 1

The graph’s complete update function is thus:

let i 0

let current-list item ticks list-variable

if length current-list > 1

[

let total-pop length current-list



Agent-based Model Exploration 171

let global-mean mean current-list

let total-variance variance current-list

if total-variance > 0

[

while [i < length list-parameters]

[

let parameter-values item i list-parameter-values

if (length current-list) < (length parameter-values)

[

set parameter-values sublist parameter-values

(length parameter-values - length current-list)

(length parameter-values)

]

let unique-values []

let unique-means []

let unique-size []

(foreach current-list parameter-values

[

let index position ?2 unique-values

ifelse index = false

[

set unique-size lput 1 unique-size

set unique-values lput ?2 unique-values

set unique-means lput ?1 unique-means

]

[

set unique-means replace-item index unique-means

(?1 + item index unique-means)

set unique-size replace-item index unique-size

(1 + item index unique-size)

]

])

let var-part 0

(foreach unique-means unique-size

[

set var-part (var-part + ?2 * (?1 / ?2 -



172 Agent-based Spatial Simulation with NetLogo 1

global-mean) 2)

])

set var-part var-part / (total-pop - 1) * 100 /

total-variance ifelse plot-pen-exists? item i

list-parameters [ set-current-plot-pen item

i list-parameters ] [ create-temporary-plot-pen

item i list-parameters set-plot-pen-color

item i base-colors ] plotxy ticks var-part set

i i + 1 ] ] ]

The graph obtained (Figure 4.27) allows for the part of the variance

that each variable is causing to be clearly seen. The contamination

distance appears to be the variable with the greatest effect during the

first few days. Slowly, however, its importance diminishes and the total

human population becomes more important. The work–home distance

and the number of mosquitoes seem to have a much lesser impact.

The use of this graph/analysis has several limitations which must be

noted:

– These results do not take into account the interactions between

variables. A more complete variance analysis would allow for a larger

part of the total variance to be explained by analyzing the impact of

couple variables (the impact of a simultaneous increase of two factors).

– The calculations undertaken here do not allow us to say whether

the results obtained are of any significance. Hypothesis tests must

instead be added, similar to those we will use with the R software in

the following section.

– From a technical point of view, this graph and the previous graph

require a large number of calculations and a great deal of memory space

to store the value history. They therefore slow down the exploration of

the mode incredibly (and do not allow for running parallel simulations).

As such, they should only be used as a first approach before carrying a

more detailed (and faster) analysis with external tools.



Agent-based Model Exploration 173

4.3.4. Data analysis beyond NetLogo: the example of R

The files obtained from the BehaviorSpace may be analyzed with

external tools. For example, the R freeware (http://www.r-project.org/)
can be used to carry out simple or complex statistical analyses.

Based on the file from the previous analysis (three different values

for four parameters, with one execution per combination), obtained in

the form of a table, we will carry out a variance analysis in order to

test whether the results are significant or not (see section 4.3.3.3 for a

description of a variance analysis). The type of results obtained at the

end of the procedure is as follows:

Df Sum Sq Mean Sq F value Pr(>F)

distance.contamination 1 1.389 1.3893 15.407

0.000212 ***

distance.travail.maison 1 0.703 0.7029 7.795

0.006873 **

number.mosquito 1 0.095 0.0950 1.053 0.308539

number.human 1 1.712 1.7124 18.989

4.78e-05 ***

4.3.4.1. Preliminary stage: modifying the CSV file

The file obtained from NetLogo is a CSV file (see Figure 4.20) which

needs to be modified so that it may be imported by R.

By opening the file with a text editor (such as NotePad++ on

Windows), we will modify the file in two ways:

1) Removing the first lines which are not needed for the analysis

The first 6 lines are deleted (all those before the variable list):

Deleted lines:

"BehaviorSpace results (NetLogo 5.1.0)"

"landuseV5a.nlogo"

"stability analysis"



174 Agent-based Spatial Simulation with NetLogo 1

"08/11/2014 18:00:06:646 +0200"

"min-pxcor","max-pxcor","min-pycor","max-pycor"

"0","523","0","424"

Lines kept:

"[run number]","distance-contamination",

"distance-work-home",

"number-mosquito","number-human","[step]",

"count humans with [isInfected?]",

"count mosquitoes with [isInfected?]",

"(count humans with [isInfected?]) / number-human",

"(count mosquitoes with [isInfected?]) /

number-mosquito"

"1","3","100","300","100","1000","6","8","0.06",

"0.026...67"

"2","3","100","300","200","1000","30","24","0.15","0.08"

2) Removing the inverted commas

NetLogo adds inverted commas (") all over the place, including

around numerical values. Therefore, a Search/Replace operation must

be carried out to replace all occurrences of " by a blank space so as to

remove them.

Once these modifications have been made, the file can be used with

R.

4.3.4.2. Analysis with R

Once the current directory has been defined, the file can be imported

into R:

> dataexf=read.table("landuse.csv",header=T,sep=",

",dec=".")

We can now check that the values and columns correspond correctly

by displaying a data synthesis:



Agent-based Model Exploration 175

> summary(dataexf)

X.run.number. distance.contamination distance.work.home

number.mosquito number.human X.step.

Min. : 1 Min. : 3 Min. : 100.0

Min. : 300 Min. :100 Min. : 1000

1st Qu.: 21 1st Qu.: 3 1st Qu.: 100.0

1st Qu.: 300 1st Qu.:100 1st Qu.:1000

Median : 41 Median : 5 Median : 500.0

Median : 500 Median :200 Median : 1000

Mean : 41 Mean : 6 Mean : 533.3

Mean : 600 Mean :200 Mean :1000

3rd Qu.: 61 3rd Qu.:10 3rd Qu.:1000.0

3rd Qu.: 1000 3rd Qu.: 300 3rd Qu.:1000

Max. : 81 Max. : 10 Max. :1000.0

Max. : 1000 Max. : 300 Max. :1000

count.humans.with..isInfected..

count.mosquitoes.with..isInfected..

X.count.humans.with..isInfected......number.human

Min. : 0.00 Min. : 1.0

0 :25

1st Qu.: 0.00 1st Qu.: 1.0

1 :14

Median : 52.00 Median : 64.0

0.01 : 2

Mean : 98.96 Mean :198.2

0.06 : 2

3rd Qu.:199.00 3rd Qu.:290.0

0.78 : 2

Max. :300.00 Max. :973.0

0.98 : 2

(Other):34

X.count.mosquitos..with..isInfected......

number.mosquitos

0.0010 : 9

0.0033333333333333335: 9



176 Agent-based Spatial Simulation with NetLogo 1

0.0020 : 8

0.128 : 2

0.58 : 2

0.918 : 2

(Other) : 49

If we want to carry out operations between columns (in a faster

manner than with NetLogo), or if we have forgotten to calculate

the target variable (like in this situation, where we only have the

total of mosquitoes and the total of infected humans), we can use

R’s functionalities to perform calculations on matrices. Here, we will

replace column 6 (which contained the final tick, 1000) by the infection

count and then rename the column:

> dataexf[,6]<-(dataexf[,7]+dataexf[,8])/(dataexf[,4]+

dataexf[,5])

> colnames(dataexf)[6]<-"infections"

We check that the values are coherent:

> dataexf[,6]

[1] 0.0350000000 0.1080000000 0.0016666667 0.0016666667

0.1157142857 0.1650000000 0.0018181818 0.1725000000

0.1246153846 0.0025000000

[11] 0.1980000000 0.1350000000 0.0066666667 0.4414285714

0.2375000000 0.0009090909 0.0008333333 0.8446153846

0.0100000000 0.0020000000

[21] 0.3466666667 0.0016666667 0.1442857143 0.0012500000

0.0009090909 0.6875000000 0.0492307692 0.0850000000

0.0240000000 0.0016666667

[31] 0.0016666667 0.4128571429 0.5462500000 0.0254545455

0.3675000000 0.1138461538 0.5375000000 0.3240000000

0.7816666667 0.1216666667

[41] 0.8357142857 0.0012500000 0.0009090909 0.7766666667

0.2900000000 0.5825000000 0.6960000000 0.9266666667

0.6466666667 0.8628571429

[51] 0.0012500000 0.0009090909 0.7558333333 0.9538461538

0.0025000000 0.0080000000 0.0016666667 0.3333333333

0.3385714286 0.7462500000



Agent-based Model Exploration 177

[61] 0.0009090909 0.6466666667 0.7430769231 0.0025000000

0.0020000000 0.9833333333 0.0016666667 0.9500000000

0.9837500000 0.8545454545

[71] 0.9316666667 0.9792307692 0.0025000000 0.9760000000

0.9650000000 0.0016666667 0.9414285714 0.9787500000

0.0009090909 0.0008333333

[81] 0.9769230769

> summary(dataexf[,6])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0008333 0.0020000 0.1443000 0.3440000 0.7431000 0.9838000

>

We can then launch the variance analysis in a single line:

> aovexf<-aov(infections~distance.contamination

*distance.work.home*number.mosquito

*number.human,data=dataexf)

Then we display a synthesis of results:

> summary(aovex)

Df Sum Sq Mean Sq F value Pr(>F)

distance.contamination 1 1.389 1.3893 15.407 0.000212 ***

distance.work.home 1 0.703 0.7029 7.795 0.006873 **

number.mosquito 1 0.095 0.0950 1.053 0.308539

number.human 1 1.712 1.7124 18.989 4.78e-05 ***

distance.contamination:distance.work.home

1 0.012 0.0118 0.130 0.719290

distance.contamination:number.mosquito

1 0.043 0.0431 0.478 0.491639

distance.work.home:number.mosquito 1

0.176 0.1765 1.957 0.166583 d

istance.contamination:number.human 1

0.653 0.6531 7.242 0.009044 **

distance.work.home:number.human

1 0.104 0.1040 1.154 0.286717

number.mosquito:number.human

1 0.066 0.0660 0.732 0.395395

distance.contamination:distance.work.home:number.mosquito

1 0.305 0.3053 3.386 0.070328



178 Agent-based Spatial Simulation with NetLogo 1

distance.contamination:distance.work.home:number.human

1 0.144 0.1440 1.597 0.210906

distance.contamination:number.mosquito:number.human

1 0.051 0.0512 0.568 0.453742

distance.work.home:number.mosquito:number.human

1 0.000 0.0001 0.001 0.973626

distance.contamination:distance.work.home:number.mosquito

:number.human

1 0.022 0.0221 0.245 0.622349

Residuals 65 5.861 0.0902 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The third column (Sum Sq) corresponds to the sums of the squares

of the deviations (SS), such as those which we calculated with NetLogo

in the previous part (the 4 first lines).

We can also obtain each variable relative part by dividing each SS

by the total of the deviations (this also gives us the part of the variance):

> round(summary(aovex)[[1]][2]/

sum(summary(aovex)[[1]][2])*100,2)

zSum Sq

distance.contamination 12.25

distance.work.home 6.20

number.mosquito 0.84

number.human 15.10

distance.contamination:distance.work.home 0.10

distance.contamination:number.mosquito 0.38

distance.work.home:number.mosquito 1.56

distance.contamination:number.human 5.76

distance.work.home:number.human 0.92

number.mosquito:number.human 0.58

distance.contamination:distance.work.home

:number.mosquito 2.69

distance.contamination:distance.work.home

:number.human 1.27

distance.contamination:number.mosquito

:number.human 0.45



Agent-based Model Exploration 179

distance.work.home:number.mosquito:number.human 0.00

distance.contamination:distance.work.home

:number.mosquito:number.human 0.19

Residuals

We can confirm the results obtained from NetLogo in the previous

section: the parameters with the greatest impacts are clearly number-

human (15% of the total variance) and distance-contamination (12% of

the total variance).

The complete analysis done with R offers us numerous additional

information relative to our NetLogo graph:

– We also have the weight of paired factors now: the combined

impact of distance-contamination and number-human also appears

to be rather important (5.7% of the variance).

– The residual part (Residuals) is particularly interesting: it

corresponds to the variance which is not explained by the deviations

between partial means and the global mean, that is to say, all the

deviations obtained with identical parameters. This is the variance

which is due to other parameters or random phenomena present in the

model (in our case, mosquito movement and, more importantly, the

location of the original infected mosquito). We can see that our four

parameters only justify 48% of the total variance. The model is therefore

very unstable even with fixed parameters.

– Another piece of useful information received in the R analysis is

the statistical test carried out for each parameter ((F value, Pr(>F)).

The columns correspond to a Fisher’s test which tests the following

hypothesis: “the parameter has no impact upon the variable” (if we

assume a linear impact). The indicated probability is the probability

that this statement is true. There is therefore 0.02% probability that,

with the obtained results, the distance-contamination parameter

has no impact on the count-infection variable. The stars (*** ** *)

synthesize this value. This value gives the analysis a statistical

justification (the impact of distance-contamination is statistically

significant within our model). Nonetheless, care must be taken so as



180 Agent-based Spatial Simulation with NetLogo 1

not to misinterpret this value: a parameter without a star (*) (where

Pr>10%) does not mean that the parameter has no impact, but instead

that no conclusion can be made using the obtained results.

4.4. Conclusion

The exploration of NetLogo models is greatly facilitated, both by the

graphical, dynamic and reactive interface and by the BehaviorSpace,

an integrated tool which allows for experiment plans to be carried

out simply and intuitively. Coupled with NetLogo graphs, or with an

external data analysis software such as R, this tool offers robust and

statistically founded analysis perspectives for any NetLogo model.

Several important and more advanced aspects of model exploration

with NetLogo have nonetheless not been covered here and will be

specifically focused upon in Volume 2 [BAN 15].

First, these need to be done with automatic calibration of models,

as well as optimization, which requires the maximization/minimization

of an objective function, which might allow for a configuration

that minimizes the final infection count to be found. This

process requires a large number of calculations and is thus

not included within the BehaviorSpace, but can nonetheless be

used in NetLogo with the help of the BehaviorSearch extension

(http://behaviorsearch.org/documentation/tutorial.html), or in a more

sophisticated manner with the OpenMole platform ([REU 13]

http://www.openmole.org/), which allows for the distribution of

simulations on distributed computing environments.

Second, this has to be done with the direct integration of R’s or

GraphStream’s analysis functions into the NetLogo code, via the use

of existing plug-ins, so as to directly obtain the statistical indicators (R)

or graphs (R, GraphStream) necessary for the evaluation of the model

within NetLogo.



Agent-based Model Exploration 181

Finally, this has to be done with the use of more advanced statistical

tools such as clustering algorithms, with or without interaction with the

NetLogo model, allowing for the analysis of homogeneous groups of

individuals or of parameter groups which produce homogeneous results

from an exploration of their parameter space.


