
Software package for mosaic-Hankel structured
low-rank approximation

Konstantin Usevich and Ivan Markovsky

∗CRAN, Université de Lorraine, CNRS
Campus Sciences, BP 70239

54506 Vandœuvre-lès-Nancy, France
Konstantin.Usevich@univ-lorraine.fr

∗∗Department ELEC
Vrije Universiteit Brussel (VUB)
Building K, Pleinlaan 2, B-1050

Brussels, Belgium
Ivan.Markovsky@vub.ac.be

Abstract: This paper presents the SLRA package (http://slra.github.io)—C software with
interface to MATLAB, Octave, and R for solving low-rank approximation problems with the following
features: mosaic Hankel structured approximating matrix, weighted 2-norm approximation criterion, and
fixed and missing elements in the approximating matrix. The package has applications in system iden-
tification, machine learning, and computer algebra. The paper gives an overview of the features of the
package, including the wrapper functions for system identification (IDENT package) and approximate
greatest common divisor (AGCD) computations. The addendum to the paper, available from http:
//homepages.vub.ac.be/˜imarkovs/slra-demo, includes examples that demonstrate the
usage, versatility, and efficiency of the software.

Keywords: System identification; low-rank approximation; mosaic Hankel matrix; missing data;
approximate greatest common factor; software.

1. INTRODUCTION

Structured low-rank approximation is a core problem in system
identification, machine learning, and computer algebra. Despite
of the huge diversity of problem formulations, the following
common in these application areas problem can be extracted.

Given measured data, prior knowledge about the
data generating system, and approximation crite-
rion, find optimal in the specified sense approxi-
mation of the measured data that is consistent with
the given prior knowledge.

A key observation (see Markovsky (2008, 2012, 2014)) is that
in system identification, machine learning, and computer alge-
bra the prior knowledge about the data can be expressed as a
rank constraint on a structured matrix constructed from the data.
Then, the common problem stated informally above becomes
the following structured low-rank approximation problem.

• The measured data is an np-dimensional real vector p.
• The prior knowledge is

rank
(
S (p)

)
≤ r, where S : Rnp → Rm×n,

is the matrix structure.
• The approximation criterion is a weighted 2-norm

‖∆p‖W :=
√

∆p>W∆p,
of the approximation error vector ∆p := p− p̂, where W
is an np×np positive semidefinite matrix.
• The structured low-rank approximation problem is

minimize over p̂ ‖p− p̂‖W
subject to rank

(
S (p̄)

)
≤ r.

(SLRA)

Due to the rank constraint, problem (SLRA) is nonconvex. Ex-
cept for a few notable exceptions (unstructured approximation
in the spectral or Frobenius norm, rank-1 weight matrix W , and
circulant structure) there are no polynomial time global solution
methods for (SLRA). State-of-the-art methods split into convex
relaxation and local optimization heuristics. In the special case
of (generalized) Hankel and Toeplitz structured matrices, the
class of subspace methods Van Overschee and De Moor (1996);
Verhaegen and Verdult (2007) provides also an effective and
efficient heuristic for structured low-rank approximation.

This paper presents a local optimization-based software pack-
age for mosaic Hankel structured low-rank approximation,
hosted at

https://github.com/slra/slra/

The SLRA package is built upon an implementation of the
following methods for structured low-rank approximation: (i)
variable projection (kernel representation) Markovsky (2014);
Markovsky and Usevich (2014, 2013); Usevich and Markovsky
(2014b) and (ii) penalisation (image representation) Ishteva
et al. (2014). In the variable projection approach, the problem
is recast as optimization on a Grassmann manifold Usevich and
Markovsky (2014a). The package includes wrapper functions
for (a) system identification (the IDENT package) described in
Markovsky (2013) and (b) AGCD computations Usevich and
Markovsky (2017).



We give a comprehensive overview of the features implemented
in the package. The previous publication Markovsky and Use-
vich (2014) is outdated, as it takes into account only the meth-
ods of Markovsky and Usevich (2014, 2013); Usevich and
Markovsky (2014b)). Here, we describe, in addition, the meth-
ods of Usevich and Markovsky (2014b); Ishteva et al. (2014);
Usevich and Markovsky (2014a); Markovsky (2013); Usevich
and Markovsky (2017). Thus, the paper gathers the description
of the parameters and options of the methods scattered in the
literature.

The paper is organized as follows. Section 2 defines the prob-
lem solved by the package. Section 3 describes the solvers
included in the package and their options. Section 4 presents a
MATLAB wrapper function for using the SLRA package for lin-
ear time-invariant system identification. Section 5 describes the
wrapper functions for AGCD computations. An addendum to
the paper, available from http://homepages.vub.ac.
be/˜imarkovs/slra-demo, contains numerical examples
of using the software.

2. PROBLEM FORMULATION

The SLRA package solves problem (SLRA). Typical code is

[ph, info] = slra(p, s, r, opt)

where p is the data vector, s encodes the structure and the
weighted norm, and r is the rank of the approximation.

In the following subsection, we give more details on the struc-
ture specification and the weighted 2-norm (contained in the
parameter s). The parameter opt determines the solver being
used and contains the parameters of the solvers (see Section 3
for more details).

The output parameter ph contains the computed approxima-
tion p̂. The structure info contains additional output informa-
tion from the optimization, such as:

• info.fmin: the value of the cost function ‖p− p̂‖2
W ;

• info.iter: number of iterations;
• info.time: execution time;
• info.Rh: low-rank certificate—a full row rank matrix

R̂ ∈ R(m−r)×m, such that
R̂S (p̂) = 0. (KER)

Additional information may be returned in info for some of
the solvers.

2.1 Structure specification

The SLRA package deals with affine structures, i.e., structured
matrices that form an affine subset of Rm×n.

The package allows for the following matrix structures:

• General affine structures.

S (p) = Φ(S0 +
np

∑
k=1

pkSk), (S )

where Sk ∈ Rm′×n are basis matrices and Φ ∈ Rm×m′ is a
full row rank matrix (an identity matrix by default). More-
over, Sk must be orthogonal (i.e., 〈Sk,S j〉= trace(SkS>j ) =
0 for k 6= j) and consist only of zeros and ones. The
latter condition ensures that the linear part (i.e., ∑

np
k=1 pkSk)

contains in each entry either zero, or an element of the

vector p, so it can be compactly represented as an integer
matrix of the indices of the elements of p.

For example, the matrix structure

S (p) =

[4 5 6 p1
5 6 p1 p2
6 p1 p2 p3

]
.

can be specified as follows:
s.S0 = [4 5 6 0; ...

5 6 0 0; ...
6 0 0 0];

s.tts = [0 0 0 1; ...
0 0 1 2; ...
0 1 2 3];

An example for the matrix Φ will be given next.
• Mosaic Hankel structures

The mosaic Hankel Heinig (1995) structure

Hm,n(p) :=

Hm1 ,n1 (p(1,1)) ··· Hm1 ,nN (p(1,N))

...
...

Hmq ,n1 (p(q,1)) ··· Hmq ,nN (p(q,N))

 ,
is a generalization of the classical Hankel structure

Hm,n(p) :=


p1 p2 p3 ··· pn

p2 p3 . .
.

pn+1

p3 . .
. ...

...
pm pm+1 ··· pm+n−1

 .
A mosaic Hankel matrix Hm,n(p) is a block matrix with
scalar Hankel blocks. The vectors

m := [m1 · · · mq] and n := [n1 · · · nN ]

define the sizes of the scalar Hankel blocks and therefore
uniquely specify the structure. The parameter vector p ∈
Rnp is the concatenation of chunks p(i, j)

p = (p(1,1), . . . , p(q,1), . . . , p(1,N), . . . , p(q,N)),

where p(i, j) ∈ Rmi+n j−1.
The software package supports mosaic-Hankel-like

structures of the form
S (p) := ΦHm,n(p), (ΦHm,n)

where Φ is a full row rank matrix, further extending the
class of mosaic Hankel matrices to (mosaic) Hankel-like
matrices.

For example, a Toeplitz matrix[p3 p4 p5
p2 p3 p4
p1 p2 p3

]
.

can be specified as follows:
s.m = 3; s.n = 3; s.Phi = [0 0 1; ...

0 1 0; ...
1 0 0];

A Toeplitz-plus-Hankel matrix can be defined in a similar
way, as shown in Markovsky and Usevich (2014).

2.2 Approximation criterion

The approximation criteria supported by the package are
weighted 2-norms ‖ · ‖W , with two types of W .

• A diagonal weight matrix W = diag(w), where w is a
vector with nonnegative real elements from 0 to ∞. Weight
wi = 0 corresponds to treating pi as a missing value. In
the other extreme wi = ∞, p̂i should match the data pi (an
equality constraint in the optimization problem (SLRA)).



In general, the weights are specified by a given vec-
tor s.w of length np. For mosaic-Hankel-like structure,
block-wise weights can be specified in two ways:
· if s.w is of length qN, then the values are the weights

for the whole chunks p(i, j) in the vectorisation order;
· if s.w is of length q, the value of the i-th element of
s.w is a weight for p(i, j) for every j.

• Another option is to use a general symmetric positive
semi-definite matrix W ∈ Rnp×np .

3. SLRA PACKAGE: SOLVERS AND OPTIONS

This section gives an overview of methods implemented in the
SLRA package. The package contains:

(1) fast C++ implementation of the variable projection (VARPRO)
method for mosaic Hankel matrices Usevich and Markovsky
(2014b);

(2) an implementation of the VARPRO method for SLRA
with missing data Markovsky and Usevich (2013); this
method is also called “experimental Matlab solver” in
Markovsky and Usevich (2014).

(3) the factorization approach to SLRA based on a penalty
method Ishteva et al. (2014).

In Table 1 the supported structure and weight specification for
each methods are listed.

Table 1. Structures supported by solvers.

1) 2) 3)
opt.solver ’c’ ’m’ ’r’

General affine structure − + +
Mosaic-Hankel-like (ΦHm,n) + + +

elementwise weights wk ∈ (0,∞] + + +
missing data wk = 0 − + +

semi-definite weight matrix W − + +

By default, the efficient VARPRO method is used, if a certain
structure/weight specification is not supported, the method 2)
is used. The user can select the method by using the field
opt.solver.

3.1 Variable projection methods

In the variable projection Markovsky (2014) approach, the rank
constraint is replaced by the equivalent constraint (KER) and
problem (SLRA) is restated as an equivalent bi-level optimisa-
tion problem

minimize over R ∈ Rd×m f (R)
subject to R has full row rank,

(SLRAR)

where d = m− r and f (R) is a solution of the (SLRA) problem
for fixed kernel matrix R

f (R) := min
p̂
‖p− p̂‖2

W subject to RS (p̂) = 0,

see Usevich and Markovsky (2014b); Markovsky and Usevich
(2013, 2014) for more details.

The idea of the VARPRO method is that the cost function f (R)
and its derivatives can be found in a closed form, and the
cost function can be minimized using conventional optimisa-
tion methods, see Markovsky (2014); Markovsky and Usevich
(2013).

Search space and constraints on the kernel The cost function
has an invariance property

f (R) = f (UR), for any nonsingular U ∈ Rd×d .

Hence, the search space is the Grassmann manifold Usevich
and Markovsky (2014a).

In addition, the package allows for linear constraints on the
kernel. Two types of constraints can be used.

(1) General linear constraint
R = R ′(θ) := vec−1

d (θΨ), where θ ∈ Rnθ ,

and Ψ ∈ Rnθ×md , i.e., it is assumed that R belongs to a
linear subspace of Rd×m.

(2) Matrix-product constraint

R = R(θ) := ΘΨ, where Θ ∈ Rd×m′′ ,

and Ψ ∈ Rm′′×m is a full row rank matrix.
The matrix-product linear constraint is a special case of

the general linear constraint since

vec>(ΘΨ) = vec>(Θ)(Ψ⊗ Id).

Note 1. Both linear constraints are supported by both vari-
able projection methods (efficient C++ solver and experimental
MATLAB solver). Note that in Markovsky and Usevich (2014)
it was written that only the MATLAB solver supports the gen-
eral linear constraint.

Both linear constraints are handled by giving the field opt.Psi.
The package determines the constraint under consideration
based on the size of the matrix Ψ. By default, it is assumed
that Ψ = Im

3.2 Efficient C++ solver and its options

The efficient C++ solver (opt.solver = ’c’) implements
the method described in Usevich and Markovsky (2014b). It
can handle mosaic Hankel structures (ΦHm,n) and element-
wise positive weights, with a linear complexity in the size of
data evaluation complexity of cost function and its derivatives
(assuming m and d fixed). General structure (S ), missing data,
or general weight matrices cannot be handled. The solver can
use optimization algorithms implemented in the GSL (GNU
Scientific Library) library GSL (2017) and own implementation
of Levenberg-Marquardt method.

GSL and constraints The methods implemented in the GSL
library are not designed for optimization on manifolds, hence
these methods work under two assumptions:

(1) matrix-product constraint;
(2) and additional constraint

Θ = [X −Id ] , where X ∈ Rd×(m′′−d). (X)
Note 2. The latter assumption parametrizes the Grassmann
manifold minus a subset of measure zero. The whole Grass-
mann manifold can be considered by employing permutations
(in Ψ), as explained in Usevich and Markovsky (2014a).

The employed methods are:

• opt.method = ’n...’: derivative-free (Nelder-Mead)
methods;

• opt.method = ’q...’: quasi-Newton methods;
• opt.method = ’l...’: Levenberg-Marquardt (see

the next subsection).



The second letter of the string opt.method determines the
submethod being used. The possible submethods can be found
in the documentation of the package, see,

cpp/OptimizationOptions.h.

Levenberg-Marquardt methods The Levenberg-Marquardt
methods use sum of squares representation of the cost function

f (R) = ‖g(R)‖2
2, (1)

where g : Rd×m → Rng is a vector-valued map. By default,
the Cholesky factorisation is used as g (the function gs in
(Usevich and Markovsky, 2014b, Alg. 6)). Another option
(opt.ls correction = 1) is to use the function g =
∆p∗(R) (see (Usevich and Markovsky, 2014b, p. 435)).

The LM method from the GSL library (opt.method =
’l...’) is applicable only to the matrix-product constraint
on the kernel. The general linear constraint can be handled by
an own implementation of the ’data-driven local coordinates’
modification of the Levenberg-Marquardt method, described in
(Usevich and Markovsky, 2014a, §3.2). This method (chosen
by opt.method = ’p...’) automatically takes care of the
linear dependencies imposed by the Grassmann manifold and
of the general or matrix-product linear constraint.
Note 3. For opt.method = ’p...’, in the case of a
matrix-product constraint, still the additional constraint (X) is
used. If the constraint (X) needs to be avoided, one should
specify opt.avoid xi = 1.

Additional parameters The available stopping criteria are:

• opt.maxiter: maximum number of iterations;
• opt.epsgrad: lower bound on ‖∇ f‖
• opt.epsabs, opt.epsrel: stops if

‖Xi−Xi+1‖< epsabs+ epsrel · ‖Xi‖.
• opt.maxx: when parameterisation (X) is used, stops if
‖X‖∞ exceeds opt.maxx.

3.3 Experimental (MATLAB) solver

The MATLAB solver (opt.solver = ’m’), based on the
results of Markovsky and Usevich (2013), uses general purpose
optimisation routines such as fmincon/fminunc.

The constraint on R is imposed in one of the following ways:

• hard constraint (default): RR>= Id . In that case, fmincon
is used. Note that, in this case, the cost function is min-
imised on the Stiefel manifold.
• “penalty” term (if opt.method = ’reg’):

f (R)+ γ‖RRT − Id‖2
F ,

together with the fminunc. In fact, as shown in Markovsky
and Usevich (2013), this penalty term is exact (enforces
the hard constraint RR> = Id).

Note that:

• If the linear constraints on the kernel are present, they are
substituted in RR> = Id .
• Standard optimisation options (such as opt.maxiter,
opt.tolx, etc.) can be passed in the structure opt.

3.4 Factorization (alternating least squares) methods

The method opt.solver = ’r’ is an implementation of
the method in Ishteva et al. (2014). (SLRA) is reformulated as

min
P∈Rm×r ,L∈Rr×n

‖p−ΠS vec(PL)‖2
W +λk‖PL−PS (PL)‖2

F , (2)

where λk is the penalty parameter controlling how close the
approximation is to the set of structured matrices.

The method proceeds by alternately minimising the cost func-
tion for fixed P and L. The hyper parameter λk depends on
the iteration and is gradually increasing. The additional input
parameters for this method are:

• opt.P init: initial approximation for P (default: based
on the SVD);

• opt.lamba init: initial value of λk;
• opt.lambda max: maximal value of λk;
• opt.max inner iter: maximal number of inner iter-

ations (the maximal number of iterations when λk does not
change);

Additional output parameters include:

• info.P, info.L: computed P and L matrices;
• info.lambda: last value of lambda;
• info.outer iterations: number of of outer itera-

tions (changes of λk);
• info.inner iterations: number of inner iterations

for each outer iteration;

4. WRAPPER FUNCTIONS FOR SYSTEM
IDENTIFICATION

This section describes the functions of the IDENT package
Markovsky (2013) for linear time-invariant system identifica-
tion. System identification problems can be solved via mo-
saic Hankel structured low-rank approximation, but a wrapper
function is needed in order to convert the system identification
problem to the input representation for the SLRA solver.

4.1 The identification problem

We use the behavioral language Polderman and Willems
(1998), where a dynamical system is viewed as a collection of
trajectories. Let L q

m,` be the model class of linear-time invari-
ant systems with q manifest variables (inputs and outputs) of
bounded complexity (at most m inputs and lag at most `). Given
a system B ∈L q

m,`, time series wd = {w1
d, . . . ,w

N
d }, and weights

v = {v1, . . . ,vN}, the lack of fit (misfit) between the model B
and the data wd is defined as

M(wd,B) := min
ŵ1,...,ŵN∈B

√
N

∑
k=1
‖wk

d− ŵk‖2
vk ,

Note that ŵi is the projection of wi
d on B.

The identification problem solved by the IDENT package is:
given a (set of) time series wd, complexity specification (m, `),
and weights v, find the model that minimizes the misfit criterion
over all models with bounded complexity:

B̂ := arg min
B∈L q

m,`

M(wd,B). (SYSID)

As shown in (Markovsky, 2008, Section 3.1) (SYSID) yields
the maximum likelihood estimator in the errors-in-variables
setting Söderström (2007)

wk
d = w̄k + w̃k,

where the true data w̄k is a trajectory of a true model B̄ ∈
L q

m,` and the measurement noise w̃k is zero mean normally



distributed measurement noise with variance σ2(vk)−1, i.e., up
to a scaling factor, the weights v are the inverse of the noise
covariance. Under additional mild assumptions, the estimator
B̂∗ is consistent and the parameters have asymptotically nor-
mal joint distribution Pintelon and Schoukens (2001); Kukush
et al. (2005).

4.2 Functions of the package

The function ident solves the approximate identification
problem (SYSID), and misfit computes the misfit M(wd,B).
They implement the following mappings:

ident: (wd,m, `) 7→ B̂, where B̂ (specified by either in-
put/state/output or kernel representation) is a locally optimal
solution of (SYSID)
[sysh, info, wh, xini] = ...

ident(w, m, ell, opt)

misfit:
(
wd,B

)
7→ (M, ŵ), where M is the misfit between

B (specified by either input/state/output or kernel represen-
tation) and wd, and ŵ is the optimal approximation of wd
within B (the smoothed trajectory)
[M, wh, xini] = misfit(w, sysh, opt)

Main parameters:

• w is the given set of time series wd — a real MATLAB
array of dimension T × q×N, where T is the number of
samples, q is the number of variables, and N is the number
of time series. In case of multiple experiments of different
duration, w should be specified as a cell array with N cells,
each one of which is a Ti×q matrix containing the ith time
series, i.e.,

w(t, :, k) =
(
wk(t)

)> or w{k}(t, :) =
(
wk(t)

)>
.

• (m, ell) is the complexity specification (input dimension
m and lag `).
• sysh is an input/state/output representation of the iden-

tified or validated system B̂, given by an ss object, or a
parameter R̂ of a kernel representation(KER) if opt.ss
is set to zero.
• info is a structure, containing output information from

the structured low-rank approximation solver: info.M is
the misfit M(wd,B̂), info.time is the execution time,
and info.iter is the number of iterations.
• M is the misfit M(wd,B̂).
• wh is the optimal approximating set of time series ŵ.
• xini is the initial condition for wh.

4.3 Optional parameters

opt is an optional argument specifying exact variables, exact
initial conditions, and options for the optimization solver, used
by the ident function. The options are passed to the functions
ident and misfit as fields of a structure.

• ’exct’ (default value []) — q-dimensional vector or
N-dimensional cell array with q-dimensional vector ele-
ments, specifying the indices of the exact variables.
• ’wini’ — specifies exact initial conditions. If wini
= 0, exact zero initial conditions are specified, i.e.,
col(0, ŵk) ∈ B̂, More generally, wini = wini is an ` sam-
ples long trajectory (specified by an `× q×N array or a

N-dimensional cell array of `×q matrices), defining initial
conditions for the time series ŵ, i.e., col(wk

ini, ŵ
k) ∈ B̂.

• ’sys0’ — initial approximation: an input/state/output
representation of a system, given as an ss object, with m
inputs, p := q−m outputs, and order n := `p; or specified
by a minimal kernel parameter, i.e., a p× (`+1)q matrix
Default value is computed by the slra function, using
unstructured low-rank approximation.

• Arguments allowing the user to specify different optimiza-
tion algorithms (’solver’ and ’method’), control the
displayed information (’disp’), and change the conver-
gence criteria, see Section 3.

• ’ss’ set to zero disables the conversion of R̂ to the state-
space representation (Â, B̂,Ĉ, D̂).

• ’n’ — order of the identified model. For multiple output
system (p> 1), the order of the identified model B̂ ∈Lm,`

is a multiple of the number of outputs n= p`. A model of
order p(`− 1) < n < p` can be specified by the optinal
parameter opt.n. In this case, the IDENT package does
balanced model order reduction of the identified model B̂
to obtained a model of order n.

5. APPROXIMATE GREATEST COMMON DIVISOR
COMPUTATIONS

The problem of finding the AGCD of several polynomials ap-
pears, for example, in blind deblurring and distance to control-
lability problems. As shown in Usevich and Markovsky (2017),
the AGCD problem can be reformulated as a mosaic-Hankel
structured low-rank approximation.

Let Pn denote the space of (real or complex) polynomials of
degree n. The AGCD problem solved by the package is the
following. Given N polynomials p1 ∈Pn1 , . . . , pN ∈PnN of
and degree d, find the approximating polynomials, which have
a common divisor of degree at least d:

minimize over p̂1 ∈Pn1 , . . . , p̂N ∈PnN

N

∑
k=1
‖pk− p̂k‖2

vk

subject to deggcd(p̂1, . . . , p̂N)≥ d,
where ‖ · ‖v is a weighted norm on the coefficients of the
polynomial. Note that deggcd(p̂1, . . . , p̂N) ≥ d if there exists
a polynomial of ĥ degree d (common divisor) such that

p̂1 = ĝ1ĥ, . . . , p̂N = ĝN ĥ.

The solvers are contained in a subdirectory agcd of the SLRA
package. The common interface for calling these functions is

[ph, info] = gcd_xxx(p, v, d, opt)

where the input arguments are:

• p is a cell array containing vectors of coefficients of
polynomials pk; the coefficients are given from lowest to
highest degree of the monomials;
• v is a cell array of the weight vectors of corresponding

length;
• d is the degree of the GCD;
• opt is the structure containing options, which are passed

to the slra solver; also the starting point for local opti-
mization can be given by either:
· opt.hini: the initial value for ĥ,
· opt.gini: the cell array of initial values for ĝk.



and the output arguments are:

• ph is a cell array of approximating polynomials;
• info as for the slra solver.

The implemented optimization methods are:

• gcd nls: uses variable projection representation with
respect to ĥ, handles real polynomials;

• gcd nls complex: uses variable projection representa-
tion with respect to ĥ, handles complex polynomials;
• gcd cofe: uses variable projection representation with

respect to ĝk, handles real polynomials;
• gcd syl: uses Sylvester subresultant low-rank approxi-

mation, handles real polynomials.

The default initial approximation is computed from a kernel
of a Sylvester subresultant matrix. There is alternative way
to compute the initial approximation using the matrix pencil,
which is invoked by the function h ini mp. For more details
on these methods, see Usevich and Markovsky (2017).

ACKNOWLEDGEMENTS

The authors would like to thank Mariya Ishteva, who con-
tributed to the development of the factorization-based solver
for structured low-rank approximation. The research leading
to these results has received funding from the European Re-
search Council under the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC Grant agreement
number 258581 “Structured low-rank approximation: Theory,
algorithms, and applications”, Fund for Scientific Research
(FWO-Vlaanderen), FWO projects G028015N “Decoupling
multivariate polynomials in nonlinear system identification”
and G090117N “Block-oriented nonlinear identification using
Volterra series”; and the FWO/F.R.S.-FNRS Excellence of Sci-
ence project number 30468160 “Structured low-rank matrix
/ tensor approximation: numerical optimization-based algo-
rithms and applications”.

REFERENCES

(2017). GSL — GNU Scientific Library. URL www.gnu.
org/software/gsl/.

Absil, P.A., Mahony, R., and Sepulchre, R. (2008). Optimiza-
tion Algorithms on Matrix Manifolds. Princeton University
Press, Princeton, NJ.

Absil, P.A., Mahony, R., Sepulchre, R., and Dooren, P.V.
(2002). A Grassmann–Rayleigh quotient iteration for com-
puting invariant subspaces. SIAM Review, 44(1), 57–73.

Buckheit, J. and Donoho, D. (1995). Wavelets and statistics,
chapter Wavelab and reproducible research. Springer-Verlag.

De Moor, B., Gersem, P.D., Schutter, B.D., and Favoreel, W.
(1997). DAISY: A database for identification of systems.
Journal A, 38(3), 4–5.

Dominik, C. (2010). The org mode 7 reference manual. Net-
work theory ltd. URL http://orgmode.org/.

Golub, G. and Pereyra, V. (2003). Separable nonlinear least
squares: the variable projection method and its applications.
Institute of Physics, Inverse Problems, 19, 1–26.

Heinig, G. (1995). Generalized inverses of Hankel and Toeplitz
mosaic matrices. Linear Algebra Appl., 216(0), 43–59.

Ishteva, M., Usevich, K., and Markovsky, I. (2014). Factor-
ization approach to structured low-rank approximation with
applications. SIAM J. Matrix Anal. Appl., 35(3), 1180–1204.

Knuth, D. (1992). Literate programming. Cambridge Univer-
sity Press.

Kukush, A., Markovsky, I., and Van Huffel, S. (2005). Con-
sistency of the structured total least squares estimator in
a multivariate errors-in-variables model. J. Statist. Plann.
Inference, 133(2), 315–358.

Ljung, L. (2013). System identification toolbox: User’s guide.
The MathWorks.

Markovsky, I. (2008). Structured low-rank approximation and
its applications. Automatica, 44(4), 891–909.

Markovsky, I. (2012). Low Rank Approximation: Algorithms,
Implementation, Applications. Springer.

Markovsky, I. (2013). A software package for system iden-
tification in the behavioral setting. Control Eng. Practice,
21(10), 1422–1436.

Markovsky, I. (2014). Recent progress on variable projection
methods for structured low-rank approximation. Signal
Processing, 96PB, 406–419.

Markovsky, I. and Usevich, K. (2013). Structured low-rank
approximation with missing data. SIAM J. Matrix Anal.
Appl., 34(2), 814–830.

Markovsky, I. and Usevich, K. (2014). Software for weighted
structured low-rank approximation. J. Comput. Appl. Math.,
256, 278–292.

Marmorat, J.P. and Olivi, M. (2012). RARL2 software (realiza-
tions and rational approximation in L2 norm).

Nelder, J.A. and Mead, R. (1965). A simplex method for
function minimization. Computer J., 7, 308–313.

Pintelon, R. and Schoukens, J. (2001). System Identification: A
Frequency Domain Approach. IEEE Press, Piscataway, NJ.

Polderman, J. and Willems, J.C. (1998). Introduction to Math-
ematical Systems Theory. Springer-Verlag, New York.

Ramsey, N. (1994). Literate programming simplified. IEEE
Software, 11, 97–105.

Söderström, T. (2007). Errors-in-variables methods in system
identification. Automatica, 43, 939–958.

Taylor, C., Pedregal, D., Young, P., and Tych, W. (2007).
Environmental time series analysis and forecasting with the
CAPTAIN toolbox. Env. Modelling&Software, 22, 797–814.

Usevich, K. and Markovsky, I. (2014a). Optimization on a
Grassmann manifold with application to system identifica-
tion. Automatica, 50, 1656–1662.

Usevich, K. and Markovsky, I. (2014b). Variable projection
for affinely structured low-rank approximation in weighted
2-norms. J. Comput. Appl. Math., 272, 430–448.

Usevich, K. and Markovsky, I. (2017). Variable projection
methods for approximate (greatest) common divisor compu-
tations. Theoretical Computer Science.

Van Huffel, S., Sima, V., Varga, A., Hammarling, S., and Dele-
becque, F. (2004). High-performance numerical software for
control. IEEE Control Systems Magazine, 24, 60–76.

Van Overschee, P. and De Moor, B. (1996). Subspace identifi-
cation for linear systems: Theory, implementation, applica-
tions. Kluwer, Boston.

Vandewalle, P., Kovacevic, J., and Vetterli, M. (2009). Repro-
ducible research in signal processing - what, why, and how.
IEEE Signal Proc. Magazine, 26(3), 37–47.

Verhaegen, M. and Verdult, V. (2007). Filtering and system
identification: a least squares approach. Cambridge univer-
sity press.


