Konstantin Usevich
email: konstantin.usevich@univ-lorraine.fr

Ivan Markovsky
email: ivan.markovsky@vub.ac.be

Software package for mosaic

Keywords: System identification, low-rank approximation, mosaic Hankel matrix, missing data, approximate greatest common factor, software

come

INTRODUCTION

Structured low-rank approximation is a core problem in system identification, machine learning, and computer algebra. Despite of the huge diversity of problem formulations, the following common in these application areas problem can be extracted.

Given measured data, prior knowledge about the data generating system, and approximation criterion, find optimal in the specified sense approximation of the measured data that is consistent with the given prior knowledge.

A key observation (see [START_REF] Markovsky | Structured low-rank approximation and its applications[END_REF][START_REF] Markovsky | Low Rank Approximation: Algorithms, Implementation, Applications[END_REF][START_REF] Markovsky | Recent progress on variable projection methods for structured low-rank approximation[END_REF]) is that in system identification, machine learning, and computer algebra the prior knowledge about the data can be expressed as a rank constraint on a structured matrix constructed from the data. Then, the common problem stated informally above becomes the following structured low-rank approximation problem.

• The measured data is an n p -dimensional real vector p.

• The prior knowledge is rank S (p) ≤ r, where S : R n p → R m×n , is the matrix structure.

• The approximation criterion is a weighted 2-norm ∆p W := ∆p W ∆p, of the approximation error vector ∆p := pp, where W is an n p × n p positive semidefinite matrix.

• The structured low-rank approximation problem is minimize over p pp W subject to rank S (p) ≤ r.

(SLRA)

Due to the rank constraint, problem (SLRA) is nonconvex. Except for a few notable exceptions (unstructured approximation in the spectral or Frobenius norm, rank-1 weight matrix W , and circulant structure) there are no polynomial time global solution methods for (SLRA). State-of-the-art methods split into convex relaxation and local optimization heuristics. In the special case of (generalized) Hankel and Toeplitz structured matrices, the class of subspace methods [START_REF] Van Overschee | Subspace identification for linear systems: Theory, implementation, applications[END_REF]; [START_REF] Verhaegen | Filtering and system identification: a least squares approach[END_REF] provides also an effective and efficient heuristic for structured low-rank approximation.

This paper presents a local optimization-based software package for mosaic Hankel structured low-rank approximation, hosted at https://github.com/slra/slra/

The SLRA package is built upon an implementation of the following methods for structured low-rank approximation: (i) variable projection (kernel representation) [START_REF] Markovsky | Recent progress on variable projection methods for structured low-rank approximation[END_REF]; Markovsky andUsevich (2014, 2013); [START_REF] Usevich | Variable projection for affinely structured low-rank approximation in weighted 2-norms[END_REF] and (ii) penalisation (image representation) [START_REF] Ishteva | Factorization approach to structured low-rank approximation with applications[END_REF]. In the variable projection approach, the problem is recast as optimization on a Grassmann manifold Usevich and Markovsky (2014a). The package includes wrapper functions for (a) system identification (the IDENT package) described in [START_REF] Markovsky | A software package for system identification in the behavioral setting[END_REF] and (b) AGCD computations [START_REF] Usevich | Variable projection methods for approximate (greatest) common divisor computations[END_REF].

We give a comprehensive overview of the features implemented in the package. The previous publication Markovsky and Usevich (2014) is outdated, as it takes into account only the methods of Markovsky andUsevich (2014, 2013); [START_REF] Usevich | Variable projection for affinely structured low-rank approximation in weighted 2-norms[END_REF]). Here, we describe, in addition, the methods of [START_REF] Usevich | Variable projection for affinely structured low-rank approximation in weighted 2-norms[END_REF]; [START_REF] Ishteva | Factorization approach to structured low-rank approximation with applications[END_REF]; Usevich and Markovsky (2014a); [START_REF] Markovsky | A software package for system identification in the behavioral setting[END_REF]; [START_REF] Usevich | Variable projection methods for approximate (greatest) common divisor computations[END_REF]. Thus, the paper gathers the description of the parameters and options of the methods scattered in the literature.

The paper is organized as follows. Section 2 defines the problem solved by the package. Section 3 describes the solvers included in the package and their options. Section 4 presents a MATLAB wrapper function for using the SLRA package for linear time-invariant system identification. Section 5 describes the wrapper functions for AGCD computations. An addendum to the paper, available from http://homepages.vub.ac. be/ ˜imarkovs/slra-demo, contains numerical examples of using the software.

PROBLEM FORMULATION

The SLRA package solves problem (SLRA). Typical code is

[ph, info] = slra(p, s, r, opt)
where p is the data vector, s encodes the structure and the weighted norm, and r is the rank of the approximation.

In the following subsection, we give more details on the structure specification and the weighted 2-norm (contained in the parameter s). The parameter opt determines the solver being used and contains the parameters of the solvers (see Section 3 for more details).

The output parameter ph contains the computed approximation p. The structure info contains additional output information from the optimization, such as:

• info.fmin: the value of the cost function pp 2 W ; • info.iter: number of iterations; • info.time: execution time;

• info.Rh: low-rank certificate-a full row rank matrix R ∈ R (m-r)×m , such that RS (p) = 0.

(KER)

Additional information may be returned in info for some of the solvers.

Structure specification

The SLRA package deals with affine structures, i.e., structured matrices that form an affine subset of R m×n .

The package allows for the following matrix structures:

• General affine structures.

S (p) = Φ(S 0 + n p ∑ k=1 p k S k), (S)
where S k ∈ R m ×n are basis matrices and Φ ∈ R m×m is a full row rank matrix (an identity matrix by default). Moreover, S k must be orthogonal (i.e., S k , S j = trace(S k S j) = 0 for k = j) and consist only of zeros and ones. The latter condition ensures that the linear part (i.e., ∑ n p k=1 p k S k) contains in each entry either zero, or an element of the vector p, so it can be compactly represented as an integer matrix of the indices of the elements of p.

For example, the matrix structure S (p) = 4 5 6 p 1 5 6 p 1 p 2 6 p 1 p 2 p 3 . can be specified as follows:

s.S0 = [4 5 6 0; ... 5 6 0 0; ... 6 0 0 0]; s.tts = [0 0 0 1; ... 0 0 1 2; ... 0 1 2 3];

An example for the matrix Φ will be given next.

• Mosaic Hankel structures

The mosaic Hankel [START_REF] Heinig | Generalized inverses of Hankel and Toeplitz mosaic matrices[END_REF] structure

H m,n (p) :=   H m 1 ,n 1 (p (1,1)) ••• H m 1 ,n N (p (1,N)) H mq,n 1 (p (q,1)) ••• H mq,n N (p (q,N))   ,
is a generalization of the classical Hankel structure

H m,n (p) :=      p 1 p 2 p 3 ••• p n p 2 p 3 . . . p n+1 p 3 p m p m+1 ••• p m+n-1      . A mosaic Hankel matrix H m,n (p) is a block matrix with scalar Hankel blocks. The vectors m := [m 1 • • • m q] and n := [n 1 • • • n N]
define the sizes of the scalar Hankel blocks and therefore uniquely specify the structure. The parameter vector p ∈ R n p is the concatenation of chunks p (i, j) p = (p (1,1) , . . . , p (q,1) , . . . , p (1,N) , . . . , p (q,N)),

where p (i, j) ∈ R m i +n j -1 . The software package supports mosaic-Hankel-like structures of the form S (p) := ΦH m,n (p), (ΦH m,n) where Φ is a full row rank matrix, further extending the class of mosaic Hankel matrices to (mosaic) Hankel-like matrices.

For example, a Toeplitz matrix

p 3 p 4 p 5 p 2 p 3 p 4 p 1 p 2 p 3
. can be specified as follows:

s.m = 3; s.n = 3; s.Phi = [0 0 1; ... 0 1 0; ... 1 0 0];

A Toeplitz-plus-Hankel matrix can be defined in a similar way, as shown in [START_REF] Markovsky | Software for weighted structured low-rank approximation[END_REF].

Approximation criterion

The approximation criteria supported by the package are weighted 2-norms • W , with two types of W .

• A diagonal weight matrix W = diag(w), where w is a vector with nonnegative real elements from 0 to ∞. Weight w i = 0 corresponds to treating p i as a missing value. In the other extreme w i = ∞, p i should match the data p i (an equality constraint in the optimization problem (SLRA)).

In general, the weights are specified by a given vector s.w of length n p . For mosaic-Hankel-like structure, block-wise weights can be specified in two ways:

• if s.w is of length qN, then the values are the weights for the whole chunks p (i, j) in the vectorisation order; • if s.w is of length q, the value of the i-th element of s.w is a weight for p (i, j) for every j. • Another option is to use a general symmetric positive semi-definite matrix W ∈ R n p ×n p .

SLRA PACKAGE: SOLVERS AND OPTIONS

This section gives an overview of methods implemented in the SLRA package. The package contains:

(1) fast C++ implementation of the variable projection (VARPRO) method for mosaic Hankel matrices Usevich and Markovsky (2014b); (2) an implementation of the VARPRO method for SLRA with missing data [START_REF] Markovsky | Structured low-rank approximation with missing data[END_REF]; this method is also called "experimental Matlab solver" in Markovsky and Usevich (2014).

(3) the factorization approach to SLRA based on a penalty method [START_REF] Ishteva | Factorization approach to structured low-rank approximation with applications[END_REF].

In Table 1 the supported structure and weight specification for each methods are listed. Table 1. Structures supported by solvers.

1) 2) 3) opt.solver 'c' 'm' 'r' General affine structure - + + Mosaic-Hankel-like (ΦH m,n) + + + elementwise weights w k ∈ (0, ∞] + + + missing data w k = 0 - + + semi-definite weight matrix W - + +
By default, the efficient VARPRO method is used, if a certain structure/weight specification is not supported, the method 2) is used. The user can select the method by using the field opt.solver.

Variable projection methods

In the variable projection Markovsky (2014) approach, the rank constraint is replaced by the equivalent constraint (KER) and problem (SLRA) is restated as an equivalent bi-level optimisation problem

minimize over R ∈ R d×m f (R) subject to R has full row rank, (SLRA R) where d = m -r and f (R) is a solution of the (SLRA) problem for fixed kernel matrix R f (R) := min p p -p 2 W subject to RS (p) = 0,
see [START_REF] Usevich | Variable projection for affinely structured low-rank approximation in weighted 2-norms[END_REF]; Markovsky andUsevich (2013, 2014) for more details.

The idea of the VARPRO method is that the cost function f (R) and its derivatives can be found in a closed form, and the cost function can be minimized using conventional optimisation methods, see [START_REF] Markovsky | Recent progress on variable projection methods for structured low-rank approximation[END_REF]; [START_REF] Markovsky | Structured low-rank approximation with missing data[END_REF].

Search space and constraints on the kernel The cost function has an invariance property f (R) = f (UR), for any nonsingular U ∈ R d×d . Hence, the search space is the Grassmann manifold Usevich and Markovsky (2014a).

In addition, the package allows for linear constraints on the kernel. Two types of constraints can be used.

(1) General linear constraint

R = R (θ) := vec -1 d (θ Ψ)
, where θ ∈ R n θ , and Ψ ∈ R n θ ×md , i.e., it is assumed that R belongs to a linear subspace of R d×m .

(2) Matrix-product constraint

R = R(θ) := ΘΨ, where Θ ∈ R d×m ,
and Ψ ∈ R m ×m is a full row rank matrix.

The matrix-product linear constraint is a special case of the general linear constraint since vec (ΘΨ) = vec (Θ)(Ψ ⊗ I d). Note 1. Both linear constraints are supported by both variable projection methods (efficient C++ solver and experimental MATLAB solver). Note that in [START_REF] Markovsky | Software for weighted structured low-rank approximation[END_REF] it was written that only the MATLAB solver supports the general linear constraint.

Both linear constraints are handled by giving the field opt.Psi. The package determines the constraint under consideration based on the size of the matrix Ψ. By default, it is assumed that Ψ = I m

Efficient C++ solver and its options

The efficient C++ solver (opt.solver = 'c') implements the method described in [START_REF] Usevich | Variable projection for affinely structured low-rank approximation in weighted 2-norms[END_REF]. It can handle mosaic Hankel structures (ΦH m,n) and elementwise positive weights, with a linear complexity in the size of data evaluation complexity of cost function and its derivatives (assuming m and d fixed). General structure (S), missing data, or general weight matrices cannot be handled. The solver can use optimization algorithms implemented in the GSL (GNU Scientific Library) library GSL (2017) and own implementation of Levenberg-Marquardt method.

GSL and constraints

The methods implemented in the GSL library are not designed for optimization on manifolds, hence these methods work under two assumptions:

(1) matrix-product constraint;

(2) and additional constraint

Θ = [X -I d] , where X ∈ R d×(m -d) .
(X) Note 2. The latter assumption parametrizes the Grassmann manifold minus a subset of measure zero. The whole Grassmann manifold can be considered by employing permutations (in Ψ), as explained in Usevich and Markovsky (2014a).

The employed methods are:

• opt.method = 'n...': derivative-free (Nelder-Mead) methods; • opt.method = 'q...': quasi-Newton methods; • opt.method = 'l...': Levenberg-Marquardt (see the next subsection).

The second letter of the string opt.method determines the submethod being used. The possible submethods can be found in the documentation of the package, see, cpp/OptimizationOptions.h.

Levenberg-Marquardt methods

The Levenberg-Marquardt methods use sum of squares representation of the cost function

f (R) = g(R) 2 2 ,
(1) where g : R d×m → R n g is a vector-valued map. By default, the Cholesky factorisation is used as g (the function g s in (Usevich and Markovsky, 2014b, Alg. 6)). Another option (opt.ls correction = 1) is to use the function g = ∆p * (R) (see (Usevich and Markovsky, 2014b, p. 435)).

The LM method from the GSL library (opt.method = 'l...') is applicable only to the matrix-product constraint on the kernel. The general linear constraint can be handled by an own implementation of the 'data-driven local coordinates' modification of the Levenberg-Marquardt method, described in (Usevich and Markovsky, 2014a, §3.2). This method (chosen by opt.method = 'p...') automatically takes care of the linear dependencies imposed by the Grassmann manifold and of the general or matrix-product linear constraint. Note 3. For opt.method = 'p...', in the case of a matrix-product constraint, still the additional constraint (X) is used. If the constraint (X) needs to be avoided, one should specify opt.avoid xi = 1.

Additional parameters

The available stopping criteria are:

• opt.maxiter: maximum number of iterations; • opt.epsgrad: lower bound on ∇ f • opt.epsabs, opt.epsrel: stops if X i -X i+1 < epsabs + epsrel • X i . • opt.maxx: when parameterisation (X) is used, stops if X ∞ exceeds opt.maxx.

Experimental (MATLAB) solver

The MATLAB solver (opt.solver = 'm'), based on the results of [START_REF] Markovsky | Structured low-rank approximation with missing data[END_REF], uses general purpose optimisation routines such as fmincon/fminunc.

The constraint on R is imposed in one of the following ways:

• hard constraint (default): RR = I d . In that case, fmincon is used. Note that, in this case, the cost function is minimised on the Stiefel manifold. • "penalty" term (if opt.method = 'reg'):

f (R) + γ RR T -I d 2
F , together with the fminunc. In fact, as shown in [START_REF] Markovsky | Structured low-rank approximation with missing data[END_REF], this penalty term is exact (enforces the hard constraint RR = I d).

Note that:

• If the linear constraints on the kernel are present, they are substituted in RR = I d . • Standard optimisation options (such as opt.maxiter, opt.tolx, etc.) can be passed in the structure opt.

Factorization (alternating least squares) methods

The method opt.solver = 'r' is an implementation of the method in [START_REF] Ishteva | Factorization approach to structured low-rank approximation with applications[END_REF]. (SLRA) is reformulated as

min P∈R m×r , L∈R r×n p-Π S vec(PL) 2 W +λ k PL-P S (PL) 2 F , (2)
where λ k is the penalty parameter controlling how close the approximation is to the set of structured matrices.

The method proceeds by alternately minimising the cost function for fixed P and L. The hyper parameter λ k depends on the iteration and is gradually increasing. The additional input parameters for this method are:

• opt.P init: initial approximation for P (default: based on the SVD); • opt.lamba init: initial value of λ k ; • opt.lambda max: maximal value of λ k ; • opt.max inner iter: maximal number of inner iterations (the maximal number of iterations when λ k does not change);

Additional output parameters include:

• info.P, info.L: computed P and L matrices;

• info.lambda: last value of lambda;

• info.outer iterations: number of of outer iterations (changes of λ k); • info.inner iterations: number of inner iterations for each outer iteration;

WRAPPER FUNCTIONS FOR SYSTEM IDENTIFICATION

This section describes the functions of the IDENT package [START_REF] Markovsky | A software package for system identification in the behavioral setting[END_REF] for linear time-invariant system identification. System identification problems can be solved via mosaic Hankel structured low-rank approximation, but a wrapper function is needed in order to convert the system identification problem to the input representation for the SLRA solver.

The identification problem

We use the behavioral language [START_REF] Polderman | Introduction to Mathematical Systems Theory[END_REF], where a dynamical system is viewed as a collection of trajectories. Let L q m, be the model class of linear-time invariant systems with q manifest variables (inputs and outputs) of bounded complexity (at most m inputs and lag at most). Given a system B ∈ L q m, , time series w d = {w 1 d , . . . , w N d }, and weights v = {v 1 , . . . , v N }, the lack of fit (misfit) between the model B and the data w d is defined as

M(w d , B) := min w 1 ,..., w N ∈B N ∑ k=1 w k d -w k 2 v k ,
Note that w i is the projection of w i d on B. The identification problem solved by the IDENT package is: given a (set of) time series w d , complexity specification (m,), and weights v, find the model that minimizes the misfit criterion over all models with bounded complexity:

B := arg min B∈L q m, M(w d , B). (SYSID)
As shown in [START_REF] Markovsky | Structured low-rank approximation and its applications[END_REF], Section 3.1) (SYSID) yields the maximum likelihood estimator in the errors-in-variables setting [START_REF] Söderström | Errors-in-variables methods in system identification[END_REF] w k d = wk + w k , where the true data wk is a trajectory of a true model B ∈ L q m, and the measurement noise w k is zero mean normally distributed measurement noise with variance σ 2 (v k) -1 , i.e., up to a scaling factor, the weights v are the inverse of the noise covariance. Under additional mild assumptions, the estimator B * is consistent and the parameters have asymptotically normal joint distribution [START_REF] Pintelon | System Identification: A Frequency Domain Approach[END_REF]; [START_REF] Kukush | Consistency of the structured total least squares estimator in a multivariate errors-in-variables model[END_REF].

Functions of the package

The function ident solves the approximate identification problem (SYSID), and misfit computes the misfit M(w d , B). Main parameters:

• w is the given set of time series w d -a real MATLAB array of dimension T × q × N, where T is the number of samples, q is the number of variables, and N is the number of time series. In case of multiple experiments of different duration, w should be specified as a cell array with N cells, each one of which is a T i × q matrix containing the ith time series, i.e., w(t, k) = w k (t) or w{k}(t, :) = w k (t) .

• (m, ell) is the complexity specification (input dimension m and lag). • sysh is an input/state/output representation of the identified or validated system B, given by an ss object, or a parameter R of a kernel representation(KER) if opt.ss is set to zero. • info is a structure, containing output information from the structured low-rank approximation solver: info.M is the misfit M(w d , B), info.time is the execution time, and info.iter is the number of iterations. • M is the misfit M(w d , B).

• wh is the optimal approximating set of time series w.

• xini is the initial condition for wh.

Optional parameters

opt is an optional argument specifying exact variables, exact initial conditions, and options for the optimization solver, used by the ident function. The options are passed to the functions ident and misfit as fields of a structure.

• 'exct' (default value []) -q-dimensional vector or N-dimensional cell array with q-dimensional vector elements, specifying the indices of the exact variables. • 'wini' -specifies exact initial conditions. If wini = 0, exact zero initial conditions are specified, i.e., col(0, w k) ∈ B, More generally, wini = w ini is an samples long trajectory (specified by an × q × N array or a N-dimensional cell array of ×q matrices), defining initial conditions for the time series w, i.e., col(w k ini , w k) ∈ B. • 'sys0' -initial approximation: an input/state/output representation of a system, given as an ss object, with m inputs, p := qm outputs, and order n := p; or specified by a minimal kernel parameter, i.e., a p × (+ 1)q matrix Default value is computed by the slra function, using unstructured low-rank approximation. • Arguments allowing the user to specify different optimization algorithms ('solver' and 'method'), control the displayed information ('disp'), and change the convergence criteria, see Section 3. • 'ss' set to zero disables the conversion of R to the statespace representation (A, B, C, D). • 'n' -order of the identified model. For multiple output system (p > 1), the order of the identified model B ∈ L m, is a multiple of the number of outputs n = p . A model of order p(-1) < n < p can be specified by the optinal parameter opt.n. In this case, the IDENT package does balanced model order reduction of the identified model B to obtained a model of order n.

APPROXIMATE GREATEST COMMON DIVISOR COMPUTATIONS

The problem of finding the AGCD of several polynomials appears, for example, in blind deblurring and distance to controllability problems. As shown in [START_REF] Usevich | Variable projection methods for approximate (greatest) common divisor computations[END_REF], the AGCD problem can be reformulated as a mosaic-Hankel structured low-rank approximation.

Let P n denote the space of (real or complex) polynomials of degree n. The AGCD problem solved by the package is the following. Given N polynomials p 1 ∈ P n 1 , . . . , p N ∈ P n N of and degree d, find the approximating polynomials, which have a common divisor of degree at least d: The solvers are contained in a subdirectory agcd of the SLRA package. The common interface for calling these functions is

[ph, info] = gcd_xxx (p, v, d, opt) where the input arguments are:

• p is a cell array containing vectors of coefficients of polynomials p k ; the coefficients are given from lowest to highest degree of the monomials; • v is a cell array of the weight vectors of corresponding length; • d is the degree of the GCD;

• opt is the structure containing options, which are passed to the slra solver; also the starting point for local optimization can be given by either:

• opt.hini: the initial value for h, • opt.gini: the cell array of initial values for g k .

and the output arguments are:

• ph is a cell array of approximating polynomials;

• info as for the slra solver.

The implemented optimization methods are:

• gcd nls: uses variable projection representation with respect to h, handles real polynomials; • gcd nls complex: uses variable projection representation with respect to h, handles complex polynomials; • gcd cofe: uses variable projection representation with respect to g k , handles real polynomials; • gcd syl: uses Sylvester subresultant low-rank approximation, handles real polynomials.

The default initial approximation is computed from a kernel of a Sylvester subresultant matrix. There is alternative way to compute the initial approximation using the matrix pencil, which is invoked by the function h ini mp. For more details on these methods, see [START_REF] Usevich | Variable projection methods for approximate (greatest) common divisor computations[END_REF].

minimize over p 1 ∈

 1 P n 1 , . . . , p N ∈ P n gcd(p 1 , . . . , p N) ≥ d, where • v is a weighted norm on the coefficients of the polynomial. Note that deg gcd(p 1 , . . . , p N) ≥ d if there exists a polynomial of h degree d (common divisor) such that p 1 = g 1 h, . . . , p N = g N h.

 , B → (M, w), where M is the misfit between B (specified by either input/state/output or kernel representation) and w d , and w is the optimal approximation of w d within B (the smoothed trajectory) [M, wh, xini] = misfit(w, sysh, opt)

	They implement the following mappings:
	ident: (w d , m,) → B, where B (specified by either in-
	put/state/output or kernel representation) is a locally optimal
	solution of (SYSID)
	[sysh, info, wh, xini] = ...
	ident(w, m, ell, opt)
	misfit: w d

ACKNOWLEDGEMENTS

The authors would like to thank Mariya Ishteva, who contributed to the development of the factorization-based solver for structured low-rank approximation. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement number 258581 "Structured low-rank approximation: Theory, algorithms, and applications", Fund for Scientific Research (FWO-Vlaanderen), FWO projects G028015N "Decoupling multivariate polynomials in nonlinear system identification" and G090117N "Block-oriented nonlinear identification using Volterra series"; and the FWO/F.R.S.-FNRS Excellence of Science project number 30468160 "Structured low-rank matrix / tensor approximation: numerical optimization-based algorithms and applications".