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Real to H-space Autoencoders
for Theme Identification in Telephone Conversations

Titouan Parcollet, Student Member, IEEE, Mohamed Morchid, Member, IEEE, Xavier Bost,
Georges Linarès, and Renato De Mori, Life Fellow, IEEE

Abstract—Machine learning (ML) and deep learning with deep
neural networks (DNN), have drastically improved the perfor-
mances of modern systems on numerous spoken language under-
standing (SLU) related tasks. Since most of current researches
focus on new neural architectures to enhance the performances
in realistic conditions, few recent works investigated the use of
different algebras with neural networks (NN), to better represent
the nature of the data being processed. To this extent, quaternion-
valued neural networks (QNN) have shown better performances,
and an important reduction of the number of neural parameters
compared to traditional real-valued neural networks, when deal-
ing with multidimensional signal. Nonetheless, the use of QNNs
is strictly limited to quaternion input or output features. This
paper introduces a new unsupervised method based on a hybrid
autoencoder (AE) called real-to-quaternion autoencoder (R2H),
to extract a quaternion-valued input signal from any real-valued
data, to be processed by QNNs. The experiments performed to
identify the most related theme of a given telephone conversation
from a customer care service (CCS), demonstrate that the R2H
approach outperforms all the previously established models,
either real- or quaternion-valued ones, in term of accuracy and
with up to four times fewer neural parameters.

Index Terms—Features extraction, quaternion autoencoder,
quaternion neural networks, spoken language understanding

I. INTRODUCTION

Spoken language understanding (SLU) is a major sub-
domain of artificial intelligence (AI). It defines the human-
machine interactions and allows the machine to interpret the
human language. Recent advances in the domain have been
pushed by the resurgence of neural networks (NN), and more
precisely deep neural networks (DNN). Interesting solutions
have been therefore proposed for SLU in human-computer
dialogues [1], [2], [3], [4], [5]. Also, numerous DNNs have
been employed for the extraction of semantic contents in
textual documents. Noticeable examples are the recognition
of implicit discourse relations [6], information distillation for
compressive summarization [7], and extraction of document-
level context for machine translation [8]. Extracting semantic
contents in spoken conversations is complicated due to the
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localisation and characterisation of acoustic correlations of
relevant acoustic features as reported in [9]. An important
component of this research area is the task of topic identi-
fication, for which an ample review of the state-of-the-art can
be found in [9].

The task of inferring the topics discussed in a real-life
human-human telephone conversation is particularly difficult.
This paper deals with customer care services (CCS) in which
an agent interacts with a customer to address her/his concerns
and to provide a solution. An automatic system is developed
for automatically detecting the topic of concern, called here the
theme of the conversation, allowing the agent to concentrates
only on solving problems and retrieving necessary informa-
tion. Automatically annotated themes are employed to perform
useful statistics. Human-human telephone conversations are a
type of spoken documents involving at least two speakers,
suggesting that topics and other semantic contents may have
multiple views in a conversation. For example, there may be
a view for each speaker and a global view including both
speakers. Another view may be the voice of other speakers
briefly consulted for obtaining external information, such as
a different service of the CCS. Another possibility can be to
consider views that describe the formulation of a problem,
the solution, or simply views of different segments of a
conversation such as speech turns. Indeed, one can consider
that the agent is following a very specific path that evolves
during the conversation. Unfortunately, appropriate views of a
conversation cannot always be inferred with prior knowledge.
This paper therefore proposes to learn these views without
supervision from any real-valued representation of the doc-
ument. As views cannot be localized with prior knowledge,
it is appropriate to start with real vector features computed
with latent Dirichelet allocation (LDA). The use of LDA is
motivated by the observation that accurate topic classification
for human-human telephone conversations has been obtained
with a sophisticated integration of features in a large number
of hidden spaces [10]. The possibility of learning, without
any supervision, nor manual data segmentation, latent view
representations from any real-valued representation of the
document, in a single hidden topic space, is investigated in
this paper. A satisfactory result would be to achieve perfor-
mances close to the best results obtained with multiple topic
spaces or manually segmented views. With the purpose of
reducing computational complexity in a test phase, staked
denoising autoencoders using LDA features were proposed
on the same task in [11]. To represent these multiple views,
multidimensional algebras such as quaternion numbers have



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2

been considered with neural networks. Nonetheless, all these
multiviews are extracted based on prior assumptions and may
differ in their forms depending on the context of the human-
human interactions.

In this paper a new neural architecture based on hyper
complex numbers is proposed for unsupervised inference of
new representations, made of quaternion number vectors, from
a global set of real-valued feature vectors, embedding the
whole conversation. Each inferred quaternion is estimated to
integrate, in an abstract representation, multiple views to solve
the task. A list of the contributions of this work is:
• Detail previously investigated quaternion-valued neural

networks models in a comprehensive way (Section IV).
• Introduce a new unsupervised method based on a hybrid

autoencoder (AE) called real-to-quaternion autoencoder
(R2H, Section V), to create and extract a quaternion-
valued input signal from any real-valued source in an
unsupervised manner.

• Combine this generated quaternion-valued features to the
recent quaternion convolutional neural network (QCNN,
Section VI) in a R2H-QCNN.

• Compare the R2H-QCNN to previously investigated
quaternion, and state-of-the-art real-valued models on
a theme identification task of telephone conversations
(Section VII).

The experiments show that the R2H-QCNN architecture out-
performs all the previous models on the French DECODA
framework, highlighting the efficiency of unsupervised quater-
nion features extraction made by R2H. Furthermore, we show
that quaternion-valued models always outperform real-valued
comparable architectures with up to four times fewer neural
parameters.

II. RELATED WORK

Recently, neural architectures have been proposed for ex-
tracting semantic content from documents. Interesting results
have been obtained in the extraction of global textual doc-
ument features of latent semantic relations. In [6], a neural
model is proposed that gradually focus on more fine-grained
parts of a document, after grasping the global information
of a relation between two arguments. In [12], a dynamic
attention neural model is introduced to capture the interac-
tions between a question and a document. In [13], existing
approaches to diarization, an important automatic speech anal-
ysis task, are reviewed and novel approaches are proposed
to improve automatic speech recognition for this task. A
review on non-automatic conversation analysis and models of
conversational interactions applicable to speech can be found
in [14]. Multiple views are not explicitly mentioned, but the
possibility of considering them has motivations in this review.
In [15], an end-to-end framework for topic identification using
multi-scale convolutional neural networks (CNN) is proposed,
with an algorithmic approach for integrating verification and
identification tasks, without taking into account the possible
expression of semantic contents. The input is raw text, but the
approach could also be applied to speech documents. Then,
[16] proposed to integrate different types of word and semantic

features with the latent Dirichlet allocation (LDA) method,
jointly used with a deep neural network for the task of topic
identification in telephone conversations. A deep bottleneck
features extractor is investigated in [17], on the same task of
theme identification of telephone conversations. In the latter,
the authors proposed various deep denoising autoencoders
to build robust representations of automaticaly transcribed
conversations, for better classification performances. In [18]
two automatic speech recognition (ASR) systems, based on
word and grapheme embeddings, are proposed to transcribe
speech for topic identification. Distributed representation of
speech are obtained with CNNs, with an average pooling layer
to integrate the outputs of the two ASR systems. These hidden
representations do not take into account the possibility that
topic mentions may express domain dependent and multiple
semantic views. In [19], a gating attention model is proposed
for separating a set of voices out of a sound mixture, con-
taining an unknown number of sources during a conversation.
Individual speaker embeddings are learned to separate a single
speaker, while superpositions of the individual speaker embed-
dings are used to separate sets of speakers. Different speakers
in a conversation could be viewed as expressing different
views, but this specific aspect is not considered in the paper.
For human-human telephone conversations analysis, novel
conversation features represented by vectors of quaternions
were introduced in [20].

Quaternions are an extension of complex-numbers, and are
defined as hypercomplex numbers that contain a real and
three separate imaginary components, perfectly fitting to three
and four dimensional feature vectors [21], such as for image
processing, robot kinematics or computer graphics [22], [23],
[24]. Contrary to traditional homogeneous representations,
quaternion networks bundle sets of features together. Thereby,
quaternions allow neural network based models to code latent
inter-dependencies between groups of input features during
the learning process with fewer parameters than real-valued
neural networks, by taking advantage of the Hamilton product
as the equivalent of the mere dot product. Early applications of
quaternion-valued backpropagation algorithms [25], [26] have
efficiently solved quaternion functions approximation tasks.
More recently, neural networks of complex and hyper complex
numbers have received an increasing attention [27], [28], [29],
[30], and some efforts have shown promising results in differ-
ent applications. In particular, a deep quaternion network [20],
[31], [32], a deep quaternion convolutional network [33], [34],
and a quaternion recurrent neural network [35], [36] have been
employed for challenging tasks such as images classification,
compression and reconstruction, or speech recognition and
natural language processing.

Motivations to use quaternion neural networks over real
valued ones are numerous and well documented [37], [35].
The major advantage of QNNs is the more efficient and
natural representation of the multidimensional input infor-
mation, compared to traditional real-valued NNs. Indeed, a
good neural network model has to represent, encode, and
learn the relations charactarizing the input data. Many realistic
tasks involve multi-dimensional features, with input elements
composed with multiple internally related components. These
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applications are image processing, with three channels describ-
ing a single pixel, or speech recognition, with three values
(Mel filter banks and deltas) for a unique time frequency,
or human motion recognition, with outputs and inputs to be
represented in the 3D space with 3D coordinates. To succeed
in such multidimensional tasks, the employed model needs a
specific representation and processing of the features. Indeed,
traditional real-valued NNs consider internal relations at the
same level than contextual and global dependencies. As an
example, relations between different pixels are considered
equivalently to the relation that links the three channels
composing each pixel, and it is not clear if both relations
are accurately learned. More precisely, composed entities
are processed by traditional real-valued NNs as a bag of
independent and smaller components, while a natural solution
is to process such entities as multidimensional and internally
related elements with quaternion neural networks. QNNs have
shown to be effective to learn internal relations describing the
multidimensional features, with much less neural parameters
[38]. Indeed, a 4-number quaternion weight linking two 4-
number quaternion units only has 4 degrees of freedom,
whereas a standard neural net parametrization has 4x4 = 16,
i.e., a 4-fold saving in memory.

While quaternion neural networks have been used in a
wide range of domain applications, they have mostly been
limited to tasks that are easily interpretable in the three and
four dimensional spaces. In the latter context, it has been
demonstrated that QNNs offer superior performances with
a reduction by a factor of four of the number of neural
parameters over real-valued neural networks. In this paper,
we propose to bridge the gap of the input representation, by
introducing an unsupervised technique to extract meaningful
quaternion features from any type of input signal, making it
feasible to benefit from the better internal representation of
QNNs regardless of the space domain of the task.

III. QUATERNION ALGEBRA

Quaternion numbers H have been discovered by William
Rowan Hamilton [21], and are part of the hyper-complex
numbers as a non-commutative extension of complex numbers.
One of the remarkable property of quaternion numbers is a
solution to the well known Gimbal lock problem for Euler
angles [39]. A quaternion Q is written as:

Q = r + xi + yj + zk, (1)

with 1, i, j, and k the four bases of the four-dimensional vector
space, that follow the mathematical relations:

i2 = j2 = k2 = ijk = −1. (2)

Such relations are at the heart of quaternions, and make the
H algebra an efficient tool to represent spatial rotations. In a
quaternion, r is the real part or scalar part named s while xi,
yj, and zk is the imaginary part or vector part also noted −→v .
Therefore, Q can be summarized as:

Q = (s,−→v ). (3)

One of the quaternion polar representation is:

Q = ||Q||(cosθ + nsinθ) = ||Q||enθ (4)

with

cosθ =
s

||Q||
, sinθ =

||−→v ||
||Q||

, n =
−→v
||−→v ||

(5)

Considering R and the complex plane C as subsets of the
hyper-complex algebra, Q can be projected back to either of
these spaces following:

Qmat =


r −x −y −z
x r −z y
y z r −x
z −y x r

 , (6)

for the real plane and:

Qmat =

[
(r + xi) (y + zi)

(−y + zi) (r − yi)

]
, (7)

for the complex one. The real-valued matrix representation
turns out to be particularly efficient for computations, due to
the parallelization capabilities of modern graphic processing
units (GPU). The conjugate Q∗ is an involution of Q and is
noted as:

Q∗ = r1− xi− yj− zk. (8)

The norm of Q denoted ||Q|| is the same as Euclidean norm
in R but in the four dimensional space H:

||Q|| =
√
r2 + x2 + y2 + z2. (9)

Therefore, a normalized quaternion or unit quaternion Q/ can
be easily expressed as:

Q/ =
Q

||Q||
. (10)

In the same manner as for complex numbers, unit quaternions
lie on a unit sphere and are used to precisely describe rotations.
The inverse Q−1 of Q is written as:

Q−1 =
Q∗

||Q||2
. (11)

The unit quaternion Q/ represents a rotation by an angle θ
around a unit axis vector (of length 1) −→v as:

Q/ = (cos
θ

2
+−→v sinθ

2
). (12)

The conjugate p′ of p by Q/ is the new position vector of the
point after the rotation of p = (x, y, z) by Q/ defined as:

p′ = Q/ ⊗ p⊗Q/−1, (13)

with ⊗ the Hamilton product between two quaternions Q1 and
Q2 defined as:

Q1 ⊗Q2 =(r1r2 − x1x2 − y1y2 − z1z2)+

(r1x2 + x1r2 + y1z2 − z1y2)i+

(r1y2 − x1z2 + y1r2 + z1x2)j+

(r1z2 + x1y2 − y1x2 + z1r2)k. (14)
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The Hamilton product is used to performs composition of
rotations in R3. Consequently, the quaternion Q3 = Q1 ⊗Q2

is equivalent to the rotation Q1 followed by the rotation Q2. It
is also worth underlying that the product commutativity does
not hold in the quaternion space:

Q1 ⊗Q2 6= Q2 ⊗Q1. (15)

Indeed, an object rotated by Q1 and Q2 will not be in the
same position as it was rotated by Q2 and Q1.

IV. QUATERNION NEURAL NETWORKS

Since the initial proposal of a quaternion-valued multilayer
perceptron neural network [25], many new quaternion-based
architectures have been developed to benefit from modern,
more efficient and powerful neural networks. This section
proposes to summarize all the milestones needed to build
the proposed R2H-QCNN in a comprehensive way. First, the
fundamentals of a basic quaternion-valued neural network
(Section IV-A) are presented. Then, the quaternion encoder-
decoder neural network (QAE), also known as autoencoder
neural network is introduced (Section IV-B), while a quater-
nion convolutional neural network (QCNN) used for classi-
fication is depicted (Section IV-C). Finally, a discussion on
the computational complexity of quaternion neural networks
is provided (Section IV-D).

A. Basics of quaternion multilayer perceptrons

The multilayer perceptron (MLP) was the first artificial
neural network architecture extended to the quaternion algebra
(QMLP) [25]. Since then, all the proposed quaternion-valued
NNs have been derived from these fundamental equations. [25]
have first proposed an adapted backpropagation algorithm that
takes into account the specificities of the Hamilton product
(Eq. 14). This section introduces the basic building blocks
of a QMLP, including activation functions (Section IV-A1),
the forward (Section IV-A2), backward and update (Section
IV-A3) steps.

1) Activation functions: Activation functions are at the
heart of neural networks. Indeed, non-linearity allows NNs
to solve complex tasks. Common activation functions are
the sigmoid, the hyperbolic tangent (tanh), or the more
recent rectified linear unit (ReLU) [40], [41]. In fact, real-
valued activation functions are a well established research
area in the machine learning community with an important
number of previous researches on various solutions [42], [43].
Quaternion-valued activation functions are not as straighfor-
ward as their real-valued counterpart. Indeed, based on the
Cauthy-Riemann-Fueter (CRF) equation, the only functions
that are analytic in the quaternion domain are either linear
or constant. Fortunately, it has been demonstrated that lo-
cally analytic functions are suitable to train a neural net-
work with the backpropagation algorithm [44]. Consequently,
two classes of quaternion-valued activation functions have
emerged. Fully quaternion-valued functions are extensions to
the hypercomplex domain of real-valued activation functions,
such as sigmoid or tanh functions. Our work does not rely
on this class of functions that are harder to train due to many

singularities [45]. In fact, the most widely spread quaternion
activation functions are called split activation functions [46].
Split activations rely on a simpler implementation and in a
more stable training phase due to the decorrelation of the four
components composing a quaternion. Unfortunately, they are
also reported to obtain slightly worst results [47] depending
on the task. Indeed, split activation functions map quaternion
numbers back to the real-valued space by ignoring the nature
of the relation that exists between the components. Let α(Q)
be a split activation function applied to the quaternion Q:

α(Q) = f(r) + f(x)i + f(y)j + f(z)k, (16)

with f corresponding to any standard and real-valued ac-
tivation function (e.g, sigmoid, tanh, ReLU, eLU,...,). The
split approach is adopted in the rest of the QMLP equations
considering its usage in the first proposition of the QMLP [25]
alongside with its higher number of applications.

2) Forward step: In a quaternion-valued neural network
layer, all parameters are quaternions, including inputs, weights,
biases and outputs. Let us introduce the QMLP first described
by [25]. The model is made of M layers of N nodes or
neurons, whose number depends on the layer. Let x be the
input to a node. Let Nl be the number of neurons contained
in the layer l (1 ≤ l ≤ M ) and M be the number of layers
of the QMLP. bln is the bias of the neuron n (1 ≤ n ≤ Nl)
from the layer l. Given a set of P quaternion input patterns
xp (1 ≤ p ≤ P ) and a set of labels tp associated to each xp,
the output γln (γ0n = xnp ) of the neuron n of the layer l is:

γln = α(Sln), (17)

with

Sln =

Nl−1∑
m=0

wlnm ⊗ γl−1m + bln, (18)

and α any split activation function. Finally, the output layer
of a QMLP is either quaternion-valued, such as for quaternion
approximation [26], or real-valued to obtains a posterior
distribution based on a softmax function [20]. Indeed, target
classes are often expressed as real numbers.

3) Backward and update steps: The loss function E is a
crucial element that quantifies how far the inferred predictions
SM are from the target distribution tp. Numerous real-valued
loss functions have been defined and used for different tasks.
In its original paper, [25] proposed an extension of the mean
squared error (MSE) [48] to quaternions (QMSE) by solely
replacing real-numbers by hyper-complex numbers:

E =
1

N

N∑
n=1

(tpn − SMn )2 (19)

One may notice that any traditional and real-valued loss
function can be applied to a real-valued QMLP output layer.
Starting from the QMSE, the backpropagation of QNNs is
an extension of the standard backpropagation for real-valued
NNs. Its full version is derived by [49], while a brief summary
is introduced below. The gradient with respect to the loss E is
expressed for each wl that composes the weight matrix W l:

∆l =
∂E

∂W l
. (20)
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Fig. 1. Illustration of the quaternion-valued convolution process. First, the initial quaternion-valued filter map W is transformed into its real-valued
representation. Then, each part of this new representation is convolved with the input signal Qp. As for the traditional convolution process, rows of the
simulated W represents the channels, while columns define the depth of the feature maps.

The output gradient (l = M ) for each neuron n is expressed
as follows:

∆l=M
n = (tpn − Sl=Mn ). (21)

And the gradients of the hidden layers parameters are derived
following the chain rules:

∆l
n =

N l+1∑
n=1

w∗l+1
h,n ⊗ (∆l+1

h α′(Sl+1
n )). (22)

Finally, biases and each weight w that connects the neuron n
to m of the layer l are updated as:

wlnm = wlnm + λ∆l
n ⊗ S∗l−1m , bln = bln + λ∆l

n, (23)

with λ the learning rate.

B. Quaternion autoencoder neural networks

As described in [50] and [31], the quaternion-valued
encoder-decoder or quaternion autoencoder (QAE) is a three-
layered (M = 3) neural network made of an encoder and
a decoder where N1 = N3, as depicted in Figure 2. The
QAE has the same algorithm than the real-valued AE but
with quaternion numbers, and with the Hamilton product to
replace the standard dot product. Given a set of P normalized
inputs Qp (1 ≤ p ≤ P ), the encoder computes a hidden
representation h = l2 of Qp following:

hn = α(

P∑
m=0

wl2nm ⊗Qm + bl2n ), (24)

with α any split activation function. Then, the decoder at-
tempts to reconstruct the input vector Qp from this hn = l2
hidden vector to obtain the output vector Q̃p:

Q̃n = α(

N l2∑
m=0

wl3nm ⊗ hm + bl3n ). (25)

The learning phase follows the algorithms previously de-
scribed in Section IV-A. Indeed, the QAE attempts to reduce
the reconstruction error between Q̃p and Qp based on the
QMSE loss (Eq. 19).

C. Quaternion convolutional neural networks

The quaternion convolutional neural network (QCNN) [34]
is an extension of the widely investigated real-valued CNN to
the quaternion algebra. As for QMLP and QAE, the QCNN
only contains quaternion numbers and relies on the backprop-
agation algorithm at learning time. From a formal point of
view, the convolution process can easily be extended to the
quaternion domain. Let Slab be the pre-activation quaternion
output at layer l and at the indexes (a, b) of the new feature
map, and w the weight filter map of size f × f . The forward
equation of a QCNN can be derived based on Eq. 18 as:

γlab = α(Slab), (26)

with

Slab =

f−1∑
c=0

f−1∑
d=0

wl ⊗ γl−1(a+c)(b+d). (27)

with α any split activation function. More practically, the
quaternion-valued convolution process is implemented in the
real-valued space as proposed in [51] and [33]. In this extent, a
traditional 2D convolutional layer, with a kernel that contains
f feature maps, is split into four parts: the first part equal
to r, the second one to xi, the third one to yj and the last
one to zk of a quaternion Q = r1 + xi + yj + zk. Then,
the quaternion-valued matrix is projected back to the real-
valued space following Eq. 6 before being convolved with the
quaternion-valued input signal as depicted in Figure 1.

D. Notes on computational complexity

The computational complexity remains unchanged with
quaternion neural networks compared to real-valued ones, due
to the fact that QNNs do not add any depth to the computation
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Xp = real inputs = l1
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~

Fig. 2. Illustration of a quaternion autoencoder (QAE, left) and a real-to-quaternion autoencoder (R2H, right).

graph. Indeed, quaternions are manipulated following the real-
valued matrix representation (Eq. 6). Nonetheless, and due to
the Hamilton product, a single forward propagation between
two quaternion neurons uses 28 operations, compared to a
single one for two real-valued neurons, implying a longer
training time (up to 3 times slower). However, such worst
speed performances could easily be alleviated with a proper
engineered cuDNN kernel implementation for the Hamilton
product, that would helps QNNs to be more efficient than real-
valued ones. Indeed, a well-adapted CUDA kernel would allow
QNNs to perform more computations, with fewer parameters,
and therefore less memory copy operations from the CPU to
the GPU.

V. R2H AUTOENCODER

For many real-life problems, prior knowledge suggests
that there are input features that have a limited number of
related components. In certain cases, decomposition of input
documents can be precisely defined by prior knowledge. For
example, it is possible to assume that there are two different
speakers for certain types of telephone services, suggesting
that an input token could be represented with separate but
related speaker views. Furthermore, the semantic content of
a conversation may be represented by a limited number of
high level abstractions, such as problem types, expressed by a
limited number of views that are not precisely defined. In this
case, it is appropriate to represent related view features with
quaternion numbers, but it is necessary to learn to generate
each component composing a quaternion. In this section, a
method is proposed for learning this mapping with a real-to-
quaternion autoencoder (R2H).

The R2H is a fusion of a real-valued AE and a QAE. The
computation of the R2H is composed with two simple steps:
1) map any real-valued input vector to a hidden space with

a real-valued encoder; 2) reconstruct the input data with a
quaternion-valued decoder. The quaternion-valued decoder is
expected to force the hidden representation of the real-valued
encoder to project the input features into the quaternion space.
Formally, the R2H has the same equations as QAEs, except
for the encoder (Eq. 24) that is redefined in the real valued
space as:

hn = α(

P∑
m=0

wl2nm ×Xm + bl2n ), (28)

with X the real-valued input vector of size P , and α any
split activation function. Note that contrary to the QAE, all
the parameters but h are real numbers. Indeed, hn is processed
by a standard QAE decoder (Eq. 25) and is therefore defined in
the quaternion space. The learning process of the R2H follows
the QAE (Section IV-B), with the optimization of the QMSE
loss. It is important to notice the use of the split activation
function in the output layer, since it is mandatory to allow
the R2H to reconstruct a real-valued signal with decorrelated
components. More practically, and as for QCNNs, the hidden
layer h (l2) is split into four parts that are equivalent to the
four components of quaternion numbers as depicted in Figure
2. Therefore, the real-valued encoder uses different weight
matrices to generate the real and the imaginary components
of the quaternion hidden vector, while the quaternion-valued
decoder will use a unique quaternion weight for each generated
quaternion. Finally, the number of neurons of h and the
number of input features must be divisible by four to be
intepreted as quaternion vectors. Nevertheless, it is crucial
to distinguish the difference in term of input representation
between QAEs and R2H autoencoders. Indeed, QAEs must
receive quaternion features as inputs, due to the Hamilton
product that considers quaternion components to be related. In
the case of decorrelated components, QAEs (or any quaternion
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neural network) might suffer from bad performances, due to
the difficulty induced by the abscence of internal relations.
More precisely, QAEs offer an elegant way to generate a
quaternion embedding from a quaternion input signal, while
the R2H autoencoder allows the generation of quaternion
embeddings regardless of the input signal domain, making it
feasible to use R2H autoencoders in any real-world task.

VI. EXPERIMENTAL PROTOCOL

As depicted in Figure 4, a textual document is first pro-
jected in a basic representation, based on word frequencies
(Section VI-C) or latent Dirichlet allocation (LDA, Section
VI-D)[52], before being fed to an autoencoder. In the case
of a quaternion-valued autoencoder, documents must be first
manually segmented following a proper quaternion scheme as
detailed in Section VI-B. Different classifiers, AE and real-
valued state-of-the-art architectures are proposed in Section
VI-E.

A. Spoken conversations dataset

The corpus of spoken conversations is a set of automatically
transcribed and annotated human-human telephone conver-
sations of the Paris transportation system CCS (RATP), an
example of which is shown in Figure 3. This corpus comes
from the first version of the DECODA project [53], [54] and is
employed to evaluate the effectiveness of the proposed R2H-
QCNN on a conversation theme identification task. The DE-
CODA corpus is composed of 1, 242 telephone conversations
recorded during heavy traffics days in the capital, which is
equivalent to about 74 hours of signal. The data set was split
into 8 categories or dominant themes as described in Table I.

TABLE I
DECODA DATASET.

Class Number of samples
label training development testing

problems of itinerary 145 44 67
lost and found 143 33 63
time schedules 47 7 18

transportation cards 106 24 47
state of the traffic 202 45 90

fares 19 9 11
infractions 47 4 18

special offers 31 9 13
Total 740 175 327

The LIA-Speeral Automatic Speech Recognition (ASR)
system [55] is used to extract textual content of dialogues
from the DECODA corpus. Acoustic model parameters were
estimated from 150 hours of speech in telephone conditions.
The vocabulary contains 5, 782 words. A 3-gram language
model (LM) was obtained by adapting a basic LM with the
training set transcriptions.

As conversations are collected in noisy environments the
overall word error rate (WER) of the system is of 45.8% on
the training set, 59.3% on the development set, and 58.0% on
the test set. A “stop list” of 126 words1 was used to remove
unnecessary words (mainly function words) which results in

1http://code.google.com/p/stop-words/

Fig. 3. Example of a manualy transcribed dialogue from the DECODA corpus
for the SLU task of theme identification.

a WER of 33.8% on the training, 45.2% on the development,
and 49.5% on the test. These high WER are mainly due to
speech disfluencies and to adverse acoustic environments (for
example, calls from noisy streets with mobile phones).

B. User-Agent-Document segmentation

The user-agent-document segmentation (UAD) proposed in
[20] provides speaker dependent features encoded in quater-
nions. The initial idea is to construct a purely imaginary
quaternion based on the speech turns of the different speakers.
In this way, a dialogue quaternion Q = r + xi + yj + zk
can be composed with the speech turns of the user in xi, the
speech turns of the agent in yj and the whole document in zk.
As for image processing [37] the real component r is set to
zero, and will change to any other value after the computation
performed with the Hamilton product to obtain the first layer
latent features. The quaternion features obtained with UAD
feeding a quaternion classifier have shown superior theme
identification accuracies for the DECODA corpus compared
with results obtained with other types of features [20], [32].

C. Word frequency-based representations

In information retrieval, textual documents are often consid-
ered as bag-of-words in which many basic statistical methods
can be applied [56]. In this work, we propose to consider both
a straightforward representation of the DECODA spoken docu-
ments called binary representation, and the more sophisticated
and investigated term frequency–inverse document frequency
also known as TF-IDF [56], as first baselines. First, the 500
most occurring words are extracted from the training set of
DECODA to compose the reference vocabulary. The binary
representation is obtained by composing a binary vector of
size 500 (vocabulary size), denoting the occurrence (1) or the
absence (0) of each word for a given spoken document. Such
binary representation does not consider any information about
the relevance of a given word considering a given document.
In this extent, we propose to also use the frequency–inverse
document frequency (TF-IDF) features [57]. Indeed, the TF-
IDF is intended to reflect how important a word is to a
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Fig. 4. Illustration of the complete architecture including the autoencoder (AE, QAE or R2H, left) and the classifier (CNN or QCNN, right).

document considering a corpus. Let wi be a word contained
in the document dj containing |dj | words of a corpus C of
size |C|, f(wi, dj) is the frequency of wi in the document
dj , and n(wi) is the number of document containing wi. The
tf(wi, df ), and idf(wi) are calculated following:

tf(wi, dj) =
f(wi, dj)

|dj |
, idf(wi) = log

|C|
n(wi)

. (29)

Finally, the TF-IDF is expressed as:

tfidf(wi, dj) = tf(wi, dj)× idf(wi). (30)

During the experiments, documents are projected according
to the segmentation. In the case of the UAD segmentation,
each part is projected and concatenated to obtain a 500× 3 =
1500 input vector. If no segmentation is applied, the final input
vector only contains the projection of the entire document and
is of size 500.

D. Latent Dirichlet Allocation

The latent Dirichlet allocation (LDA) is a more complex
and commonly used method, to represent documents in an
unsupervised manner, as probability distributions of hidden
topics in a document [52], [58]. For the experiments described
in this section, the LDA model is trained over the training
set of DECODA following the standard hyper-parameters
heuristic [52]. Consequently, α = 50

T , with T the number of
topics, and β = 0.01. The number T has been previously
investigated for this task in [20], [32], and is set to 25. More
precisely, 10 runs of the T = 25 LDA model are concatenated
to obtain a final vector of size 25×10 = 250, to alleviate any
variation. It is important to notice that the input vector size
in the case of a LDA inference of the UAD segmentation for
a given document is 750. Indeed, each part is project in 10
differents T = 25 LDA models. Finally, 250 zeros are added
for a quaternion-valued processing to build purely imaginary
quaternions as described in section VI-B.

E. Models architectures
As depicted in Figure 4, the model architecture is made

of two core components: 1) An autoencoder to extract the
input features; 2) A convolutional classifier. Autoencoders are
real-valued (AE), straightforward quaternion-based (QAE) or
hybrid (R2H) and trained during 100 epochs with the Adam
learning rate optimizer with a learning rate of 0.005, a momen-
tum of 0.9, and a weight decay of 0.001. This number of epoch
ensure that all models have converged to a minimal loss. Then,
CNNs and QCNNs are trained using the features extracted
with these autoencoders (AE-CNN, QAE-QCNN, and R2H-
QCNN) with the same optimizer and hyperparameters during
10 epochs. The ReLU activation function is used across all
the layers for both the autoencoders and the classifiers, except
for the output layers that are based on the tanh function for
the autoencoders, and the softmax function for the classifiers.
No regularization techniques are employed. It is important to
notice that the tanh function is a better fit than ReLU in the
case of a bottleneck layer, due to its bounded nature. Indeed,
the ReLU might produces very high and positive values,
while projecting the negative space to zero, creating a poorly
distributed internal representation to be used as input features.
Conversely, the tanh function offers a smooth distribution of
the features in a bounded interval, suiting particularly well to
classifiers. At the end of the training, the results on the test
dataset are saved with respect to the best results observed on
the validation dataset. It is worth noticing that the results are
averaged over five runs (5-folds), to alleviate any variation due
to the parameters initialization.

1) AE & QAE: Baseline models involve straightforward
autoencoders. Due to the quaternion representation of the basic
QAE, the latter needs the input features to already represent
quaternion numbers. Therefore, AE and QAE are trained using
the UAD segmentation followed by binary, TF-IDF or LDA
representations. The hidden layer of both autoencoders is fixed
to a size of 100 neurons, that are equivalents to 25 quaternion
numbers.

2) R2H: For a fair comparison, the hidden dimension of the
R2H is also set to 100 values that are equivalent to 25 quater-
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nion numbers. Due to the nature of the R2H, the input features
representation does not require any particular segmentation,
and can be defined in the real-valued space. The encoder
part is initialized randomly following the Glorot criterion [40],
while the quaternion-valued decoder parameters are initialized
following the scheme described in [34], alongside with the
quaternion version of the Glorot criterion.

3) CNN and QCNN: It is first important to note that CNNs
and QCNNs are designed so the internal dimensions are
equivalents. Consequently, a real-valued convolutional layer
of 256 filter maps (FM) corresponds to a quaternion-valued
convolutional layer of 64 quaternion filter maps. In the case
of a QCNN, these 64 filter maps will represent 64× 4 = 256
real values. Both CNNs and QCNNs contain three 1D convo-
lutional layers of size 256 FM (64 for the QCNN) followed
by two dense layers of size 512 and 8, corresponding to the
number of classes. The last dense layer of the QCNN is real-
valued to classify the document in the real-valued space.

4) Word2Vec baselines: For a fair comparison, the exper-
iments incorporate results obtained with the same conditions
but with traditional and state-of-the-art words representations,
known as words to vectors (word2vec). In this extent, a
continuous bag-of-words (CBoW) [59], a skip-gram [60],
and a fastText [61] models are tested with DECODA. More
precisely, these models assume that it is feasible to learn the
meaning of a word, by looking at the words that tend to
appear near it. The CBoW model trains each word against
its context, while skip-gram trains each context against the
word. Consequently, skip-gram is often prefered with small
datasets, or corpora that contain a lot of rare words (i.e. not
occurring frequently). FastText [61] is an extension of CBoW
and skip-gram, that proposes to decompose the vocabulary
with smaller entities, named n-grams. The intuition is that
a very rare word might be better represented if we consider
smaller pieces as fundamental units. Indeed, while the word
elephant may appears once in the DECODA framework, the
elements el, le, or ph might be more frequent and thus be used
to better train the context.

The word2vec baselines rely on a training phase of 10
epochs, based on the non-segmented automatic transcriptions
of the train set of the DECODA dataset. The context window
is fixed to 10, while a number of negative samples of 20 is
used to smooth the training. The fastText model relies on the
skip-gram approach, due to better results observed over CBoW,
and processes bi-gram units. Finally, the word embedding size
is fixed to 100, to match the dimensions of our previously
introduced techniques.

VII. EXPERIMENTS

To evaluate the performances of the R2H, we first introduce
the results observed with a simple QAE compared to the
real-valued AE using the manual UAD segmentation (Section
VII-A). Then the R2H is compared to the AE when no
segmentation is applied (Section VII-B), before being com-
pared to the QAE that uses the UAD segmentation (Section
VII-C). In this extent, the performances of the quaternion-
valued neural networks are investigated in all the testing

conditions. Finally, a summary of all the results obtained so far
on the DECODA framework with various neural architectures,
including word2vec, are reported in Section VII-D.

A. AE-CNN vs QAE-CNN with UAD document segmentation

Due to the quaternion nature of the QAE and for fair
comparison, both QAEs and AEs are trained with the UAD
document segmentation to obtain a proper quaternion input
representation. Table II shows the results observed for both
QAE-QCNN and AE-CNN models.

TABLE II
RESULTS OBSERVED WITH THE UAD DOCUMENT SEGMENTATION FOR

BOTH QAE-QCNN AND AE-CNN MODELS ON THE DECODA DATASET.
EXPRESSED PERCENTAGES REPRESENT THE ACCURACY. RESULTS ARE

FROM A 5-FOLDS AVERAGE.

Models Type Features Dev. % Test % Params
AE-CNN R Binary 80.4 78.9 4.2M

QAE-QCNN H Binary 81.4 80.0 1.1M
AE-CNN R TF-IDF 86.1 81.1 4.2M

QAE-QCNN H TF-IDF 86.6 82.1 1.1M
AE-CNN R LDA 86.1 83.4 4.0M

QAE-QCNN H LDA 86.1 84.0 1.0M

It is worth underlying the important difference with respect
to the number of neural parameters between the two models.
This is easily explained by considering the content of the
quaternion algebra. Indeed, for a fully-connected layer with
2, 048 input values and 2, 048 hidden units, a real-valued
NN has 2, 0482 ≈ 4.2M parameters, while to maintain equal
input and output dimensions the quaternion equivalent has 512
quaternions inputs and 512 quaternion hidden units. Therefore,
the number of parameters for the quaternion-valued model is
5122×4 ≈ 1M. In fact, quaternion neural networks need four
times less neural parameters to deal with the same internal
signal dimension, compared to real-valued ones, leading to a
lower number of parameters to manipulate and save. Such a
complexity reduction turns out to produce better performances
and results in a smaller memory footprint while saving models
on budget memory systems. It can also have an impact on
the generalization ability of the network, since reducing the
number of parameters can act as a regularizer.

As expected, the binary representation of the textual docu-
ment gives the worst results with both models, and the more
complex LDA representation the best ones. Nonetheless, the
QAE-QCNN consistently outperform the AE-CNN regardless
of the input representation. Indeed, best tests of 80.0%, 82.1%,
84.0% are reported for the quaternionic solution with the
binary, TF-IDF and LDA representations respectively, com-
pared to 78.9%, 81.1%, 83.4% for the real-valued model. This
represent an average gain of 1% in accuracy with four times
less neural parameters.

B. AE-CNN vs R2H-QCNN without document segmentation

Maintaining high performance with a drastic reduction of
the parameters to be estimated is an important objective,
especially when limited resources are available as for the
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application considered in this paper. Consequently, the R2H-
QCNN is compared to the traditional AE-CNN without any
segmentation of the textual documents. Input features of both
models are real-valued and correspond to common document
representations (Section VI).

TABLE III
RESULTS OBSERVED WITHOUT DOCUMENT SEGMENTATION FOR BOTH

AE-CNN AND R2H-QCNN MODELS ON THE DECODA DATASET.
EXPRESSED PERCENTAGES REPRESENT THE ACCURACY. RESULTS ARE

FROM A 5-FOLDS AVERAGE.

Models Type Features Dev. % Test % Params
AE-CNN R Binary 80.4 78.5 4.2M

R2H-QCNN RH Binary 82.4 82.6 1.1M
AE-CNN R TF-IDF 82.9 80.5 4.2M

R2H-QCNN RH TF-IDF 86.1 83.6 1.1M
AE-CNN R LDA 88.9 84.0 3.7M

R2H-QCNN RH LDA 91.6 86.3 0.9M

Table III first shows that the R2H-QCNN substantially
outperforms its real-valued counterpart in all the testing condi-
tions. Therefore, results of 82.6%, 83.6%, 86.3% are reported
on the test set for the R2H-QCNN with the binary, TF-IDF
and LDA representations, compared to 78.5%, 80.5%, 84.0%
for the real-valued model. This is an average gain of 3.1%
in accuracy with the same factor of reduction of the number
of parameters equal to four. Consequently, the R2H-QCNN
outperforms the AE-CNN, while processing real-valued input
features and with less neural parameters.

C. R2H-QCNN vs QAE-QCNN

While previous experiments have demonstrated the supe-
riority of quaternion-valued neural networks over real-valued
ones on the DECODA classification task, Table IV compares
the unsupervised R2H to a QAE using the manual UAD
segmentation, to highlight the meaningfulness of the latent
representation learned by the R2H, compared to a manually
designed segmentation.

TABLE IV
RESULTS OBSERVED FOR THE QAE-QCNN WITH THE UAD

SEGMENTATION AND THE R2H-QCNN WITHOUT DOCUMENT
SEGMENTATION ON THE DECODA DATASET. EXPRESSED PERCENTAGES
REPRESENT THE ACCURACY. RESULTS ARE FROM A 5-FOLDS AVERAGE.

Models Type Seg. Features Test %
QAE-QCNN H UAD Binary 80.0
R2H-QCNN RH None Binary 82.6
QAE-QCNN H UAD TF-IDF 82.1
R2H-QCNN RH None TF-IDF 83.6
QAE-QCNN H UAD LDA 84.0
R2H-QCNN RH None LDA 86.3

It is first important to mention that the R2H-QCNN always
outperforms the QAE-QCNN. Indeed, test results of 82.6%,
83.6%, 86.3% are reported for the R2H-QCNN with the
binary, TF-IDF and LDA representations, compared to 80.0%,
82.1%, 84.0% for QAE-QCNN and the UAD document seg-
mentation. The average gain is of 2.1% with an almost identi-
cal number of free parameters. Indeed, both QCNN classifiers

are equivalent and the R2H only has few parameters more
due to the real-valued encoder. According to the results, the
quaternionic representation learned in an unsupervised manner
by the R2H is more meaningful than the one manually created
by the user-agent document segmentation. More precisely,
the R2H learns a multidimensional projection of the text
input features that is optimal in the quaternion space, while
the previously introduced UAD segmentation makes a strong
assumption by manually providing a representation that might
not be a perfect fit to the quaternion algebra, resulting in worst
performances.

D. Overview of the DECODA results and discussions

Table V summarizes the recent accuracies observed on
the test set of the DECODA corpus with various quaternion
and real-valued neural network architectures. Three word2vec
models (Section VI-E4) are used as baselines for a fair
comparison with respect to modern approaches.

TABLE V
RESULTS OBSERVED FOR VARIOUS NEURAL NETWORKS ON THE TEST SET
OF THE DECODA DATASET. EXPRESSED PERCENTAGES REPRESENT THE

ACCURACY.

Models Type Features Test %
MLP[32] R LDA 83.4

QMLP[32] H LDA 84.6
CBoW-CNN R Binary 77.8

skipgram-CNN R Binary 82.6
fastText-CNN R Binary 83.4

AE[11] R TF-IDF 81
DSAE[11] R TF-IDF 82.0
DAE[31] R TF-IDF 83.0

R2H-QCNN RH TF-IDF 83.6
QAE-QCNN H LDA 84
QDAE[31] H LDA 85.2

R2H-QCNN RH LDA 86.3
DNN[32] R LDA 84.0

QDNN[32] H LDA 85.2

As for previous experiments, QNNs consistently outper-
form equivalent real-valued neural networks in the DECODA
framework. Input features representations also have a great
impact on the final accuracies of all the tested models. Indeed,
models fed with LDA features outperformed by far models
fed with word frequency representations. This is explained
by the nature of the LDA algorithm. LDA is much more
complex than the straightforward statistical TF-IDF method. It
provides information about latent relations between the words
composing a corpus. In fact, LDA performs an unsupervised
classification over each document by giving the probability of
each topic with respect to the document.

It is worth underlying the lower standard deviation over the
five runs observed with the R2H model compared to QAE
and AE architectures. Indeed, the standard deviation of R2H-
QCNN experiments with LDA input features is 0.004 com-
pared to 0.005 and 0.008 for the QAE and AE respectively. In
fact, all the models are very robust to the random initialization
of the parameters, due to the nature of the input representation
induced by the embedding transformation.
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Then, it is important to notice that word2vec models are
trained with the binary representation of the vocabulary, and
manage to achieve significantly better results that the ones
reported with traditional real-valued autoencoders on the same
input features (Table III). This is easily explained by the
fact that word2vec methods are an improved version of the
mere autoencoder, to specifically take into consideration the
meaning of a word. Then, it is well-known that the skip-gram
variation is preferable over CBoW with small datasets, or with
documents that contain a lot of rare words. Both conditions are
validated with the DECODA dataset, and the initial assumption
is confirmed with an average accuracy of 82.6% reported
for the skip-gram, compared to 77.8% for CBoW. In the
same manner, the more robust representation obtained by
decomposing words into smaller n-grams allows fastText to
reach an accuracy of 83.4%, while operating with binary input
features, yielding the best accuracy observed so far with the
latter representation. Interestingly, such performances are also
superior to the ones observed with the TF-IDF input rep-
resentation and real-valued classifiers (83.0%). Nevertheless,
transformations obtained with LDA offer higher accuracies
across all the tested models. An explanation comes from the
size of the vocabulary considered. Indeed, the vocabulary size
of DECODA is barely superior to 3, 000 words, with many
meaningless words for the classification task. Consequently,
word2vec approaches might suffer from both the lack of
training samples, and the lack of diversity in the vocabulary.

Based on the LDA input features, the proposed R2H obtains
the best observed accuracies so far on the DECODA dataset,
outperforming the word2vec baselines, and the previously
investigated manual and quaternion-valued document segmen-
tations. Overall, the R2H provides a bridge to project any
real-valued source to a quaternion-valued representation that
fit perfectly to QNNs. Indeed, the conduced experiments have
demonstrated that the latent multi-view representation learn
by the R2H, allows a quaternion-valued classifier to performs
better than real-valued representations, or manually adapted
quaternion segmentations.

VIII. CONCLUSION

This work addresses an important issue raised by previous
researches on quaternion-valued neural networks. Indeed, it
provides an efficient and unsupervised tool based on a hy-
brid autoencoder called real-to-quaternion autoencoder (R2H),
to extract a quaternion-valued representation from any real-
valued input vector, for a better processing by quaternion-
valued neural networks (QNN). This is an important step
forward for researchers that are not able to benefit from
the efficiency of QNNs due to a non-adapted input vec-
tor representation. Indeed, the R2H allows the use of any
QNNs with any task, regardless of the input features domain.
The conduced experiments on the classification task of the
DECODA dataset, have shown that the R2H outperformed
all the previously investigated models, even when compared
to an adapted manual segmentation of textual document for
quaternion neural networks. Finally, it is also demonstrated
that QNNs always outperform equivalent real-valued NNs on
this task with four times fewer parameters.

REFERENCES

[1] R. Sarikaya, G. E. Hinton, and A. Deoras, “Application of deep belief
networks for natural language understanding,” IEEE/ACM Transactions
on Audio, Speech and Language Processing (TASLP), vol. 22, no. 4, pp.
778–784, 2014.

[2] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau,
“Building end-to-end dialogue systems using generative hierarchical
neural network models,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[3] Y.-N. Chen, D. Hakkani-Tür, G. Tür, J. Gao, and L. Deng, “End-to-
end memory networks with knowledge carryover for multi-turn spoken
language understanding.” in Interspeech, 2016, pp. 3245–3249.

[4] P. Haghani, A. Narayanan, M. Bacchiani, G. Chuang, N. Gaur,
P. Moreno, R. Prabhavalkar, Z. Qu, and A. Waters, “From audio to
semantics: Approaches to end-to-end spoken language understanding,”
in 2018 IEEE Spoken Language Technology Workshop (SLT). IEEE,
2018, pp. 720–726.

[5] D. Serdyuk, Y. Wang, C. Fuegen, A. Kumar, B. Liu, and Y. Bengio,
“Towards end-to-end spoken language understanding,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 5754–5758.

[6] Y. Liu and S. Li, “Recognizing implicit discourse relations via repeated
reading: Neural networks with multi-level attention,” arXiv preprint
arXiv:1609.06380, 2016.

[7] P. Li, W. Lam, L. Bing, W. Guo, and H. Li, “Cascaded attention based
unsupervised information distillation for compressive summarization,” in
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, 2017, pp. 2081–2090.

[8] J. Zhang, H. Luan, M. Sun, F. Zhai, J. Xu, M. Zhang, and Y. Liu, “Im-
proving the transformer translation model with document-level context,”
arXiv preprint arXiv:1810.03581, 2018.

[9] G. Tur and R. De Mori, Spoken language understanding: Systems for
extracting semantic information from speech. John Wiley & Sons, 2011.

[10] M. Morchid, R. Dufour, G. Linares, and Y. Hamadi, “Latent topic
model based representations for a robust theme identification of highly
imperfect automatic transcriptions,” in Computational Linguistics and
Intelligent Text Processing. Springer, 2015, pp. 596–605.

[11] K. Janod, M. Morchid, R. Dufour, G. Linares, and R. De Mori,
“Deep stacked autoencoders for spoken language understanding,” ISCA
INTERSPEECH, vol. 1, p. 2, 2016.

[12] C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks for
question answering,” arXiv preprint arXiv:1611.01604, 2016.

[13] N. Ryant, E. Bergelson, K. Church, A. Cristià, J. Du, S. Ganapa-
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