Titouan Parcollet

Mohamed Morchid

Xavier Bost

Georges Linarès

Real to H-space Autoencoders for Theme Identification in Telephone Conversations

Real to H-space Autoencoders for Theme Identification in Telephone Conversations Titouan Parcollet, Student Member, IEEE, Mohamed Morchid, Member, IEEE, Xavier Bost, Georges Linarès, and Renato De Mori, Life Fellow, IEEE Abstract-Machine learning (ML) and deep learning with deep neural networks (DNN), have drastically improved the performances of modern systems on numerous spoken language understanding (SLU) related tasks. Since most of current researches focus on new neural architectures to enhance the performances in realistic conditions, few recent works investigated the use of different algebras with neural networks (NN), to better represent the nature of the data being processed. To this extent, quaternionvalued neural networks (QNN) have shown better performances, and an important reduction of the number of neural parameters compared to traditional real-valued neural networks, when dealing with multidimensional signal. Nonetheless, the use of QNNs is strictly limited to quaternion input or output features. This paper introduces a new unsupervised method based on a hybrid autoencoder (AE) called real-to-quaternion autoencoder (R2H), to extract a quaternion-valued input signal from any real-valued data, to be processed by QNNs. The experiments performed to identify the most related theme of a given telephone conversation from a customer care service (CCS), demonstrate that the R2H approach outperforms all the previously established models, either real-or quaternion-valued ones, in term of accuracy and with up to four times fewer neural parameters.

Index Terms-Features extraction, quaternion autoencoder, quaternion neural networks, spoken language understanding I. INTRODUCTION Spoken language understanding (SLU) is a major subdomain of artificial intelligence (AI). It defines the humanmachine interactions and allows the machine to interpret the human language. Recent advances in the domain have been pushed by the resurgence of neural networks (NN), and more precisely deep neural networks (DNN). Interesting solutions have been therefore proposed for SLU in human-computer dialogues [START_REF] Sarikaya | Application of deep belief networks for natural language understanding[END_REF], [START_REF] Serban | Building end-to-end dialogue systems using generative hierarchical neural network models[END_REF], [START_REF] Chen | End-toend memory networks with knowledge carryover for multi-turn spoken language understanding[END_REF], [START_REF] Haghani | From audio to semantics: Approaches to end-to-end spoken language understanding[END_REF], [START_REF] Serdyuk | Towards end-to-end spoken language understanding[END_REF]. Also, numerous DNNs have been employed for the extraction of semantic contents in textual documents. Noticeable examples are the recognition of implicit discourse relations [START_REF] Liu | Recognizing implicit discourse relations via repeated reading: Neural networks with multi-level attention[END_REF], information distillation for compressive summarization [START_REF] Li | Cascaded attention based unsupervised information distillation for compressive summarization[END_REF], and extraction of documentlevel context for machine translation [START_REF] Zhang | Improving the transformer translation model with document-level context[END_REF]. Extracting semantic contents in spoken conversations is complicated due to the T. Parcollet and X. Bost are with ORKIS, Aix-en-Provence, FRANCE, (email: titouan.parcollet@alumni.univ-avignon.fr, xbost@orkis.com).

T. Parcollet, M. Morchid and G. Linarès are with Avignon Université, Laboratoire Informatique d'Avignon, 339 Chemin des Meinajariès, 84000 Avignon, FRANCE (emails: titouan.parcollet@alumni.univ-avignon.fr, {firstname.lastname}@univ-avignon.fr) .

R. De Mori is with McGill University, Montréal, QC, CANADA (email: rdemori@cs.mcgill.ca).

This work was funded by the AISSPER project supported by the French National Research Agency (ANR) under contract AAPG 2019 ANR-19-CE23-0004-01. localisation and characterisation of acoustic correlations of relevant acoustic features as reported in [START_REF] Tur | Spoken language understanding: Systems for extracting semantic information from speech[END_REF]. An important component of this research area is the task of topic identification, for which an ample review of the state-of-the-art can be found in [START_REF] Tur | Spoken language understanding: Systems for extracting semantic information from speech[END_REF].

The task of inferring the topics discussed in a real-life human-human telephone conversation is particularly difficult. This paper deals with customer care services (CCS) in which an agent interacts with a customer to address her/his concerns and to provide a solution. An automatic system is developed for automatically detecting the topic of concern, called here the theme of the conversation, allowing the agent to concentrates only on solving problems and retrieving necessary information. Automatically annotated themes are employed to perform useful statistics. Human-human telephone conversations are a type of spoken documents involving at least two speakers, suggesting that topics and other semantic contents may have multiple views in a conversation. For example, there may be a view for each speaker and a global view including both speakers. Another view may be the voice of other speakers briefly consulted for obtaining external information, such as a different service of the CCS. Another possibility can be to consider views that describe the formulation of a problem, the solution, or simply views of different segments of a conversation such as speech turns. Indeed, one can consider that the agent is following a very specific path that evolves during the conversation. Unfortunately, appropriate views of a conversation cannot always be inferred with prior knowledge. This paper therefore proposes to learn these views without supervision from any real-valued representation of the document. As views cannot be localized with prior knowledge, it is appropriate to start with real vector features computed with latent Dirichelet allocation (LDA). The use of LDA is motivated by the observation that accurate topic classification for human-human telephone conversations has been obtained with a sophisticated integration of features in a large number of hidden spaces [START_REF] Morchid | Latent topic model based representations for a robust theme identification of highly imperfect automatic transcriptions[END_REF]. The possibility of learning, without any supervision, nor manual data segmentation, latent view representations from any real-valued representation of the document, in a single hidden topic space, is investigated in this paper. A satisfactory result would be to achieve performances close to the best results obtained with multiple topic spaces or manually segmented views. With the purpose of reducing computational complexity in a test phase, staked denoising autoencoders using LDA features were proposed on the same task in [START_REF] Janod | Deep stacked autoencoders for spoken language understanding[END_REF]. To represent these multiple views, multidimensional algebras such as quaternion numbers have been considered with neural networks. Nonetheless, all these multiviews are extracted based on prior assumptions and may differ in their forms depending on the context of the humanhuman interactions.

In this paper a new neural architecture based on hyper complex numbers is proposed for unsupervised inference of new representations, made of quaternion number vectors, from a global set of real-valued feature vectors, embedding the whole conversation. Each inferred quaternion is estimated to integrate, in an abstract representation, multiple views to solve the task. A list of the contributions of this work is:

• Detail previously investigated quaternion-valued neural networks models in a comprehensive way (Section IV). The experiments show that the R2H-QCNN architecture outperforms all the previous models on the French DECODA framework, highlighting the efficiency of unsupervised quaternion features extraction made by R2H. Furthermore, we show that quaternion-valued models always outperform real-valued comparable architectures with up to four times fewer neural parameters.

II. RELATED WORK

Recently, neural architectures have been proposed for extracting semantic content from documents. Interesting results have been obtained in the extraction of global textual document features of latent semantic relations. In [START_REF] Liu | Recognizing implicit discourse relations via repeated reading: Neural networks with multi-level attention[END_REF], a neural model is proposed that gradually focus on more fine-grained parts of a document, after grasping the global information of a relation between two arguments. In [START_REF] Xiong | Dynamic coattention networks for question answering[END_REF], a dynamic attention neural model is introduced to capture the interactions between a question and a document. In [START_REF] Ryant | Enhancement and analysis of conversational speech: Jsalt 2017[END_REF], existing approaches to diarization, an important automatic speech analysis task, are reviewed and novel approaches are proposed to improve automatic speech recognition for this task. A review on non-automatic conversation analysis and models of conversational interactions applicable to speech can be found in [START_REF] Hoey | Conversation analysis[END_REF]. Multiple views are not explicitly mentioned, but the possibility of considering them has motivations in this review. In [START_REF] Pappagari | Joint verification-identification in end-to-end multi-scale cnn framework for topic identification[END_REF], an end-to-end framework for topic identification using multi-scale convolutional neural networks (CNN) is proposed, with an algorithmic approach for integrating verification and identification tasks, without taking into account the possible expression of semantic contents. The input is raw text, but the approach could also be applied to speech documents. Then, [START_REF] Esteve | Integration of word and semantic features for theme identification in telephone conversations[END_REF] proposed to integrate different types of word and semantic features with the latent Dirichlet allocation (LDA) method, jointly used with a deep neural network for the task of topic identification in telephone conversations. A deep bottleneck features extractor is investigated in [START_REF] Janod | Denoised bottleneck features from deep autoencoders for telephone conversation analysis[END_REF], on the same task of theme identification of telephone conversations. In the latter, the authors proposed various deep denoising autoencoders to build robust representations of automaticaly transcribed conversations, for better classification performances. In [START_REF] Sun | Topic detection in conversational telephone speech using cnn with multi-stream inputs[END_REF] two automatic speech recognition (ASR) systems, based on word and grapheme embeddings, are proposed to transcribe speech for topic identification. Distributed representation of speech are obtained with CNNs, with an average pooling layer to integrate the outputs of the two ASR systems. These hidden representations do not take into account the possibility that topic mentions may express domain dependent and multiple semantic views. In [START_REF] Mobin | Auditory separation of a conversation from background via attentional gating[END_REF], a gating attention model is proposed for separating a set of voices out of a sound mixture, containing an unknown number of sources during a conversation. Individual speaker embeddings are learned to separate a single speaker, while superpositions of the individual speaker embeddings are used to separate sets of speakers. Different speakers in a conversation could be viewed as expressing different views, but this specific aspect is not considered in the paper. For human-human telephone conversations analysis, novel conversation features represented by vectors of quaternions were introduced in [START_REF] Parcollet | Quaternion neural networks for spoken language understanding[END_REF].

Quaternions are an extension of complex-numbers, and are defined as hypercomplex numbers that contain a real and three separate imaginary components, perfectly fitting to three and four dimensional feature vectors [START_REF] Hamilton | Ii. on quaternions; or on a new system of imaginaries in algebra[END_REF], such as for image processing, robot kinematics or computer graphics [START_REF] Sangwine | Fourier transforms of colour images using quaternion or hypercomplex, numbers[END_REF], [START_REF] Pei | Color image processing by using binary quaternion-moment-preserving thresholding technique[END_REF], [START_REF] Aspragathos | A comparative study of three methods for robot kinematics[END_REF]. Contrary to traditional homogeneous representations, quaternion networks bundle sets of features together. Thereby, quaternions allow neural network based models to code latent inter-dependencies between groups of input features during the learning process with fewer parameters than real-valued neural networks, by taking advantage of the Hamilton product as the equivalent of the mere dot product. Early applications of quaternion-valued backpropagation algorithms [START_REF] Arena | Neural networks for quaternion-valued function approximation[END_REF], [START_REF] Arena | Multilayer perceptrons to approximate quaternion valued functions[END_REF] have efficiently solved quaternion functions approximation tasks. More recently, neural networks of complex and hyper complex numbers have received an increasing attention [START_REF] Hirose | Generalization characteristics of complexvalued feedforward neural networks in relation to signal coherence[END_REF], [START_REF] Tygert | A mathematical motivation for complex-valued convolutional networks[END_REF], [START_REF] Danihelka | Associative long short-term memory[END_REF], [START_REF] Wisdom | Fullcapacity unitary recurrent neural networks[END_REF], and some efforts have shown promising results in different applications. In particular, a deep quaternion network [START_REF] Parcollet | Quaternion neural networks for spoken language understanding[END_REF], [START_REF] Parcollet | Quaternion denoising encoder-decoder for theme identification of telephone conversations[END_REF], [START_REF]Deep quaternion neural networks for spoken language understanding[END_REF], a deep quaternion convolutional network [START_REF] Gaudet | Deep quaternion networks[END_REF], [START_REF] Parcollet | Quaternion convolutional neural networks for end-toend automatic speech recognition[END_REF], and a quaternion recurrent neural network [START_REF] Parcollet | Quaternion recurrent neural networks[END_REF], [START_REF] Parcollet | Bidirectional quaternion long short-term memory recurrent neural networks for speech recognition[END_REF] have been employed for challenging tasks such as images classification, compression and reconstruction, or speech recognition and natural language processing.

Motivations to use quaternion neural networks over real valued ones are numerous and well documented [START_REF] Isokawa | Quaternionic neural networks: Fundamental properties and applications[END_REF], [START_REF] Parcollet | Quaternion recurrent neural networks[END_REF]. The major advantage of QNNs is the more efficient and natural representation of the multidimensional input information, compared to traditional real-valued NNs. Indeed, a good neural network model has to represent, encode, and learn the relations charactarizing the input data. Many realistic tasks involve multi-dimensional features, with input elements composed with multiple internally related components. These applications are image processing, with three channels describing a single pixel, or speech recognition, with three values (Mel filter banks and deltas) for a unique time frequency, or human motion recognition, with outputs and inputs to be represented in the 3D space with 3D coordinates. To succeed in such multidimensional tasks, the employed model needs a specific representation and processing of the features. Indeed, traditional real-valued NNs consider internal relations at the same level than contextual and global dependencies. As an example, relations between different pixels are considered equivalently to the relation that links the three channels composing each pixel, and it is not clear if both relations are accurately learned. More precisely, composed entities are processed by traditional real-valued NNs as a bag of independent and smaller components, while a natural solution is to process such entities as multidimensional and internally related elements with quaternion neural networks. QNNs have shown to be effective to learn internal relations describing the multidimensional features, with much less neural parameters [START_REF] Matsui | Quaternion neural network with geometrical operators[END_REF]. Indeed, a 4-number quaternion weight linking two 4number quaternion units only has 4 degrees of freedom, whereas a standard neural net parametrization has 4x4 = 16, i.e., a 4-fold saving in memory.

While quaternion neural networks have been used in a wide range of domain applications, they have mostly been limited to tasks that are easily interpretable in the three and four dimensional spaces. In the latter context, it has been demonstrated that QNNs offer superior performances with a reduction by a factor of four of the number of neural parameters over real-valued neural networks. In this paper, we propose to bridge the gap of the input representation, by introducing an unsupervised technique to extract meaningful quaternion features from any type of input signal, making it feasible to benefit from the better internal representation of QNNs regardless of the space domain of the task.

III. QUATERNION ALGEBRA

Quaternion numbers H have been discovered by William Rowan Hamilton [START_REF] Hamilton | Ii. on quaternions; or on a new system of imaginaries in algebra[END_REF], and are part of the hyper-complex numbers as a non-commutative extension of complex numbers. One of the remarkable property of quaternion numbers is a solution to the well known Gimbal lock problem for Euler angles [START_REF] Diebel | Representing attitude: Euler angles, unit quaternions, and rotation vectors[END_REF]. A quaternion Q is written as:

Q = r + xi + yj + zk, (1)
with 1, i, j, and k the four bases of the four-dimensional vector space, that follow the mathematical relations:

i 2 = j 2 = k 2 = ijk = -1. (2)
Such relations are at the heart of quaternions, and make the H algebra an efficient tool to represent spatial rotations. In a quaternion, r is the real part or scalar part named s while xi, yj, and zk is the imaginary part or vector part also noted -→ v .

Therefore, Q can be summarized as:

Q = (s, - → v). (3)
One of the quaternion polar representation is:

Q = ||Q||(cosθ + nsinθ) = ||Q||e nθ (4) with cosθ = s ||Q|| , sinθ = || - → v || ||Q|| , n = - → v || - → v || (5)
Considering R and the complex plane C as subsets of the hyper-complex algebra, Q can be projected back to either of these spaces following:

Q mat =     r -x -y -z x r -z y y z r -x z -y x r     , (6)
for the real plane and:

Q mat = (r + xi) (y + zi) (-y + zi) (r -yi) , (7)
for the complex one. The real-valued matrix representation turns out to be particularly efficient for computations, due to the parallelization capabilities of modern graphic processing units (GPU). The conjugate Q * is an involution of Q and is noted as:

Q * = r1 -xi -yj -zk. (8)
The norm of Q denoted ||Q|| is the same as Euclidean norm in R but in the four dimensional space H:

||Q|| = r 2 + x 2 + y 2 + z 2 . (9)
Therefore, a normalized quaternion or unit quaternion Q can be easily expressed as:

Q = Q ||Q|| . (10)
In the same manner as for complex numbers, unit quaternions lie on a unit sphere and are used to precisely describe rotations. The inverse Q -1 of Q is written as:

Q -1 = Q * ||Q|| 2 . (11
)
The unit quaternion Q represents a rotation by an angle θ around a unit axis vector (of length 1) -→ v as:

Q = (cos θ 2 + - → v sin θ 2). (12)
The conjugate p of p by Q is the new position vector of the point after the rotation of p = (x, y, z) by Q defined as:

p = Q ⊗ p ⊗ Q -1 , (13)
with ⊗ the Hamilton product between two quaternions Q 1 and Q 2 defined as:

Q 1 ⊗ Q 2 =(r 1 r 2 -x 1 x 2 -y 1 y 2 -z 1 z 2)+ (r 1 x 2 + x 1 r 2 + y 1 z 2 -z 1 y 2)i+ (r 1 y 2 -x 1 z 2 + y 1 r 2 + z 1 x 2)j+ (r 1 z 2 + x 1 y 2 -y 1 x 2 + z 1 r 2)k. (14
)
The Hamilton product is used to performs composition of rotations in R 3 . Consequently, the quaternion

Q 3 = Q 1 ⊗ Q 2 is equivalent to the rotation Q 1 followed by the rotation Q 2 .
It is also worth underlying that the product commutativity does not hold in the quaternion space:

Q 1 ⊗ Q 2 = Q 2 ⊗ Q 1 . (15)
Indeed, an object rotated by Q 1 and Q 2 will not be in the same position as it was rotated by Q 2 and Q 1 .

IV. QUATERNION NEURAL NETWORKS

Since the initial proposal of a quaternion-valued multilayer perceptron neural network [START_REF] Arena | Neural networks for quaternion-valued function approximation[END_REF], many new quaternion-based architectures have been developed to benefit from modern, more efficient and powerful neural networks. This section proposes to summarize all the milestones needed to build the proposed R2H-QCNN in a comprehensive way. First, the fundamentals of a basic quaternion-valued neural network (Section IV-A) are presented. Then, the quaternion encoderdecoder neural network (QAE), also known as autoencoder neural network is introduced (Section IV-B), while a quaternion convolutional neural network (QCNN) used for classification is depicted (Section IV-C). Finally, a discussion on the computational complexity of quaternion neural networks is provided (Section IV-D).

A. Basics of quaternion multilayer perceptrons

The multilayer perceptron (MLP) was the first artificial neural network architecture extended to the quaternion algebra (QMLP) [START_REF] Arena | Neural networks for quaternion-valued function approximation[END_REF]. Since then, all the proposed quaternion-valued NNs have been derived from these fundamental equations. [START_REF] Arena | Neural networks for quaternion-valued function approximation[END_REF] have first proposed an adapted backpropagation algorithm that takes into account the specificities of the Hamilton product (Eq. 14). This section introduces the basic building blocks of a QMLP, including activation functions (Section IV-A1), the forward (Section IV-A2), backward and update (Section IV-A3) steps.

1) Activation functions: Activation functions are at the heart of neural networks. Indeed, non-linearity allows NNs to solve complex tasks. Common activation functions are the sigmoid, the hyperbolic tangent (tanh), or the more recent rectified linear unit (ReLU) [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF], [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF]. In fact, realvalued activation functions are a well established research area in the machine learning community with an important number of previous researches on various solutions [START_REF] Karlik | Performance analysis of various activation functions in generalized mlp architectures of neural networks[END_REF], [START_REF] Trottier | Parametric exponential linear unit for deep convolutional neural networks[END_REF]. Quaternion-valued activation functions are not as straighforward as their real-valued counterpart. Indeed, based on the Cauthy-Riemann-Fueter (CRF) equation, the only functions that are analytic in the quaternion domain are either linear or constant. Fortunately, it has been demonstrated that locally analytic functions are suitable to train a neural network with the backpropagation algorithm [START_REF] Leo | Local hypercomplex analyticity[END_REF]. Consequently, two classes of quaternion-valued activation functions have emerged. Fully quaternion-valued functions are extensions to the hypercomplex domain of real-valued activation functions, such as sigmoid or tanh functions. Our work does not rely on this class of functions that are harder to train due to many singularities [START_REF] Ujang | Quaternion valued neural networks and nonlinear adaptive filters[END_REF]. In fact, the most widely spread quaternion activation functions are called split activation functions [START_REF] Ujang | Quaternion-valued nonlinear adaptive filtering[END_REF]. Split activations rely on a simpler implementation and in a more stable training phase due to the decorrelation of the four components composing a quaternion. Unfortunately, they are also reported to obtain slightly worst results [START_REF] Mandic | A quaternion gradient operator and its applications[END_REF] depending on the task. Indeed, split activation functions map quaternion numbers back to the real-valued space by ignoring the nature of the relation that exists between the components. Let α(Q) be a split activation function applied to the quaternion Q:

α(Q) = f (r) + f (x)i + f (y)j + f (z)k, (16)
with f corresponding to any standard and real-valued activation function (e.g, sigmoid, tanh, ReLU, eLU,...,). The split approach is adopted in the rest of the QMLP equations considering its usage in the first proposition of the QMLP [START_REF] Arena | Neural networks for quaternion-valued function approximation[END_REF] alongside with its higher number of applications.

2) Forward step: In a quaternion-valued neural network layer, all parameters are quaternions, including inputs, weights, biases and outputs. Let us introduce the QMLP first described by [START_REF] Arena | Neural networks for quaternion-valued function approximation[END_REF]. The model is made of M layers of N nodes or neurons, whose number depends on the layer. Let x be the input to a node. Let N l be the number of neurons contained in the layer l (1 ≤ l ≤ M) and M be the number of layers of the QMLP. b l n is the bias of the neuron n (1 ≤ n ≤ N l) from the layer l. Given a set of P quaternion input patterns x p (1 ≤ p ≤ P) and a set of labels t p associated to each x p , the output γ l n (γ 0 n = x n p) of the neuron n of the layer l is:

γ l n = α(S l n), (17)
with

S l n = N l-1 m=0 w l nm ⊗ γ l-1 m + b l n , (18)
and α any split activation function. Finally, the output layer of a QMLP is either quaternion-valued, such as for quaternion approximation [START_REF] Arena | Multilayer perceptrons to approximate quaternion valued functions[END_REF], or real-valued to obtains a posterior distribution based on a softmax function [START_REF] Parcollet | Quaternion neural networks for spoken language understanding[END_REF]. Indeed, target classes are often expressed as real numbers.

3) Backward and update steps: The loss function E is a crucial element that quantifies how far the inferred predictions S M are from the target distribution t p . Numerous real-valued loss functions have been defined and used for different tasks. In its original paper, [START_REF] Arena | Neural networks for quaternion-valued function approximation[END_REF] proposed an extension of the mean squared error (MSE) [START_REF] Willmott | Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance[END_REF] to quaternions (QMSE) by solely replacing real-numbers by hyper-complex numbers:

E = 1 N N n=1 (t pn -S M n) 2 (19)
One may notice that any traditional and real-valued loss function can be applied to a real-valued QMLP output layer.

Starting from the QMSE, the backpropagation of QNNs is an extension of the standard backpropagation for real-valued NNs. Its full version is derived by [START_REF] Nitta | A quaternary version of the back-propagation algorithm[END_REF], while a brief summary is introduced below. The gradient with respect to the loss E is expressed for each w l that composes the weight matrix W l : The output gradient (l = M) for each neuron n is expressed as follows:

∆ l = ∂E ∂W l . (20)
∆ l=M n = (t pn -S l=M n). (21)
And the gradients of the hidden layers parameters are derived following the chain rules:

∆ l n = N l+1 n=1 w * l+1 h,n ⊗ (∆ l+1 h α (S l+1 n)). (22)
Finally, biases and each weight w that connects the neuron n to m of the layer l are updated as:

w l nm = w l nm + λ∆ l n ⊗ S * l-1 m , b l n = b l n + λ∆ l n , (23)
with λ the learning rate.

B. Quaternion autoencoder neural networks

As described in [START_REF] Isokawa | Quaternion neural network and its application[END_REF] and [START_REF] Parcollet | Quaternion denoising encoder-decoder for theme identification of telephone conversations[END_REF], the quaternion-valued encoder-decoder or quaternion autoencoder (QAE) is a threelayered (M = 3) neural network made of an encoder and a decoder where N 1 = N 3 , as depicted in Figure 2. The QAE has the same algorithm than the real-valued AE but with quaternion numbers, and with the Hamilton product to replace the standard dot product. Given a set of P normalized inputs Q p (1 ≤ p ≤ P), the encoder computes a hidden representation h = l 2 of Q p following:

h n = α(P m=0 w l2 nm ⊗ Q m + b l2 n), (24)
with α any split activation function. Then, the decoder attempts to reconstruct the input vector Q p from this h n = l 2 hidden vector to obtain the output vector Qp :

Qn = α(N l 2 m=0 w l3 nm ⊗ h m + b l3 n). (25
)
The learning phase follows the algorithms previously described in Section IV-A. Indeed, the QAE attempts to reduce the reconstruction error between Qp and Q p based on the QMSE loss (Eq. 19).

C. Quaternion convolutional neural networks

The quaternion convolutional neural network (QCNN) [START_REF] Parcollet | Quaternion convolutional neural networks for end-toend automatic speech recognition[END_REF] is an extension of the widely investigated real-valued CNN to the quaternion algebra. As for QMLP and QAE, the QCNN only contains quaternion numbers and relies on the backpropagation algorithm at learning time. From a formal point of view, the convolution process can easily be extended to the quaternion domain. Let S l ab be the pre-activation quaternion output at layer l and at the indexes (a, b) of the new feature map, and w the weight filter map of size f × f . The forward equation of a QCNN can be derived based on Eq. 18 as:

γ l ab = α(S l ab), (26)
with

S l ab = f -1 c=0 f -1 d=0 w l ⊗ γ l-1 (a+c)(b+d) . (27)
with α any split activation function. More practically, the quaternion-valued convolution process is implemented in the real-valued space as proposed in [START_REF] Trabelsi | Deep complex networks[END_REF] and [START_REF] Gaudet | Deep quaternion networks[END_REF]. In this extent, a traditional 2D convolutional layer, with a kernel that contains f feature maps, is split into four parts: the first part equal to r, the second one to xi, the third one to yj and the last one to zk of a quaternion Q = r1 + xi + yj + zk. Then, the quaternion-valued matrix is projected back to the realvalued space following Eq. 6 before being convolved with the quaternion-valued input signal as depicted in Figure 1.

D. Notes on computational complexity

The computational complexity remains unchanged with quaternion neural networks compared to real-valued ones, due to the fact that QNNs do not add any depth to the computation graph. Indeed, quaternions are manipulated following the realvalued matrix representation (Eq. 6). Nonetheless, and due to the Hamilton product, a single forward propagation between two quaternion neurons uses 28 operations, compared to a single one for two real-valued neurons, implying a longer training time (up to 3 times slower). However, such worst speed performances could easily be alleviated with a proper engineered cuDNN kernel implementation for the Hamilton product, that would helps QNNs to be more efficient than realvalued ones. Indeed, a well-adapted CUDA kernel would allow QNNs to perform more computations, with fewer parameters, and therefore less memory copy operations from the CPU to the GPU.

V. R2H AUTOENCODER

For many real-life problems, prior knowledge suggests that there are input features that have a limited number of related components. In certain cases, decomposition of input documents can be precisely defined by prior knowledge. For example, it is possible to assume that there are two different speakers for certain types of telephone services, suggesting that an input token could be represented with separate but related speaker views. Furthermore, the semantic content of a conversation may be represented by a limited number of high level abstractions, such as problem types, expressed by a limited number of views that are not precisely defined. In this case, it is appropriate to represent related view features with quaternion numbers, but it is necessary to learn to generate each component composing a quaternion. In this section, a method is proposed for learning this mapping with a real-toquaternion autoencoder (R2H).

The R2H is a fusion of a real-valued AE and a QAE. The computation of the R2H is composed with two simple steps: 1) map any real-valued input vector to a hidden space with a real-valued encoder; 2) reconstruct the input data with a quaternion-valued decoder. The quaternion-valued decoder is expected to force the hidden representation of the real-valued encoder to project the input features into the quaternion space. Formally, the R2H has the same equations as QAEs, except for the encoder (Eq. 24) that is redefined in the real valued space as:

h n = α(P m=0 w l2 nm × X m + b l2 n), (28)
with X the real-valued input vector of size P , and α any split activation function. Note that contrary to the QAE, all the parameters but h are real numbers. Indeed, h n is processed by a standard QAE decoder (Eq. 25) and is therefore defined in the quaternion space. The learning process of the R2H follows the QAE (Section IV-B), with the optimization of the QMSE loss. It is important to notice the use of the split activation function in the output layer, since it is mandatory to allow the R2H to reconstruct a real-valued signal with decorrelated components. More practically, and as for QCNNs, the hidden layer h (l 2) is split into four parts that are equivalent to the four components of quaternion numbers as depicted in Figure 2. Therefore, the real-valued encoder uses different weight matrices to generate the real and the imaginary components of the quaternion hidden vector, while the quaternion-valued decoder will use a unique quaternion weight for each generated quaternion. Finally, the number of neurons of h and the number of input features must be divisible by four to be intepreted as quaternion vectors. Nevertheless, it is crucial to distinguish the difference in term of input representation between QAEs and R2H autoencoders. Indeed, QAEs must receive quaternion features as inputs, due to the Hamilton product that considers quaternion components to be related. In the case of decorrelated components, QAEs (or any quaternion neural network) might suffer from bad performances, due to the difficulty induced by the abscence of internal relations. More precisely, QAEs offer an elegant way to generate a quaternion embedding from a quaternion input signal, while the R2H autoencoder allows the generation of quaternion embeddings regardless of the input signal domain, making it feasible to use R2H autoencoders in any real-world task.

VI. EXPERIMENTAL PROTOCOL

As depicted in Figure 4, a textual document is first projected in a basic representation, based on word frequencies (Section VI-C) or latent Dirichlet allocation (LDA, Section VI-D) [START_REF] Blei | Latent dirichlet allocation[END_REF], before being fed to an autoencoder. In the case of a quaternion-valued autoencoder, documents must be first manually segmented following a proper quaternion scheme as detailed in Section VI-B. Different classifiers, AE and realvalued state-of-the-art architectures are proposed in Section VI-E.

A. Spoken conversations dataset

The corpus of spoken conversations is a set of automatically transcribed and annotated human-human telephone conversations of the Paris transportation system CCS (RATP), an example of which is shown in Figure 3. This corpus comes from the first version of the DECODA project [START_REF] Bechet | Decoda: a call-centre human-human spoken conversation corpus[END_REF], [START_REF] Lailler | Enhancing the ratp-decoda corpus with linguistic annotations for performing a large range of nlp tasks[END_REF] and is employed to evaluate the effectiveness of the proposed R2H-QCNN on a conversation theme identification task. The DE-CODA corpus is composed of 1, 242 telephone conversations recorded during heavy traffics days in the capital, which is equivalent to about 74 hours of signal. The data set was split into 8 categories or dominant themes as described in Table I. The LIA-Speeral Automatic Speech Recognition (ASR) system [START_REF] Linares | The lia speech recognition system: from 10xrt to 1xrt[END_REF] is used to extract textual content of dialogues from the DECODA corpus. Acoustic model parameters were estimated from 150 hours of speech in telephone conditions. The vocabulary contains 5, 782 words. A 3-gram language model (LM) was obtained by adapting a basic LM with the training set transcriptions.

As conversations are collected in noisy environments the overall word error rate (WER) of the system is of 45.8% on the training set, 59.3% on the development set, and 58.0% on the test set. A "stop list" of 126 words1 was used to remove unnecessary words (mainly function words) which results in

B. User-Agent-Document segmentation

The user-agent-document segmentation (UAD) proposed in [START_REF] Parcollet | Quaternion neural networks for spoken language understanding[END_REF] provides speaker dependent features encoded in quaternions. The initial idea is to construct a purely imaginary quaternion based on the speech turns of the different speakers. In this way, a dialogue quaternion Q = r + xi + yj + zk can be composed with the speech turns of the user in xi, the speech turns of the agent in yj and the whole document in zk. As for image processing [START_REF] Isokawa | Quaternionic neural networks: Fundamental properties and applications[END_REF] the real component r is set to zero, and will change to any other value after the computation performed with the Hamilton product to obtain the first layer latent features. The quaternion features obtained with UAD feeding a quaternion classifier have shown superior theme identification accuracies for the DECODA corpus compared with results obtained with other types of features [START_REF] Parcollet | Quaternion neural networks for spoken language understanding[END_REF], [START_REF]Deep quaternion neural networks for spoken language understanding[END_REF].

C. Word frequency-based representations

In information retrieval, textual documents are often considered as bag-of-words in which many basic statistical methods can be applied [START_REF] Van Asch | Macro-and micro-averaged evaluation measures[END_REF]. In this work, we propose to consider both a straightforward representation of the DECODA spoken documents called binary representation, and the more sophisticated and investigated term frequency-inverse document frequency also known as TF-IDF [START_REF] Van Asch | Macro-and micro-averaged evaluation measures[END_REF], as first baselines. First, the 500 most occurring words are extracted from the training set of DECODA to compose the reference vocabulary. The binary representation is obtained by composing a binary vector of size 500 (vocabulary size), denoting the occurrence (1) or the absence (0) of each word for a given spoken document. Such binary representation does not consider any information about the relevance of a given word considering a given document. In this extent, we propose to also use the frequency-inverse document frequency (TF-IDF) features [START_REF] Robertson | Understanding inverse document frequency: on theoretical arguments for idf[END_REF]. Indeed, the TF-IDF is intended to reflect how important a word is to a document considering a corpus. Let w i be a word contained in the document d j containing |d j | words of a corpus C of size |C|, f (w i , d j) is the frequency of w i in the document d j , and n(w i) is the number of document containing w i . The tf (w i , d f), and idf (w i) are calculated following:

tf (w i , d j) = f (w i , d j) |d j | , idf (w i) = log |C| n(w i) . (29)
Finally, the TF-IDF is expressed as:

tf idf (w i , d j) = tf (w i , d j) × idf (w i). (30
)
During the experiments, documents are projected according to the segmentation. In the case of the UAD segmentation, each part is projected and concatenated to obtain a 500 × 3 = 1500 input vector. If no segmentation is applied, the final input vector only contains the projection of the entire document and is of size 500.

D. Latent Dirichlet Allocation

The latent Dirichlet allocation (LDA) is a more complex and commonly used method, to represent documents in an unsupervised manner, as probability distributions of hidden topics in a document [START_REF] Blei | Latent dirichlet allocation[END_REF], [START_REF] Krestel | Latent dirichlet allocation for tag recommendation[END_REF]. For the experiments described in this section, the LDA model is trained over the training set of DECODA following the standard hyper-parameters heuristic [START_REF] Blei | Latent dirichlet allocation[END_REF]. Consequently, α = 50 T , with T the number of topics, and β = 0.01. The number T has been previously investigated for this task in [START_REF] Parcollet | Quaternion neural networks for spoken language understanding[END_REF], [START_REF]Deep quaternion neural networks for spoken language understanding[END_REF], and is set to 25. More precisely, 10 runs of the T = 25 LDA model are concatenated to obtain a final vector of size 25 × 10 = 250, to alleviate any variation. It is important to notice that the input vector size in the case of a LDA inference of the UAD segmentation for a given document is 750. Indeed, each part is project in 10 differents T = 25 LDA models. Finally, 250 zeros are added for a quaternion-valued processing to build purely imaginary quaternions as described in section VI-B.

E. Models architectures

As depicted in Figure 4, the model architecture is made of two core components: 1) An autoencoder to extract the input features; 2) A convolutional classifier. Autoencoders are real-valued (AE), straightforward quaternion-based (QAE) or hybrid (R2H) and trained during 100 epochs with the Adam learning rate optimizer with a learning rate of 0.005, a momentum of 0.9, and a weight decay of 0.001. This number of epoch ensure that all models have converged to a minimal loss. Then, CNNs and QCNNs are trained using the features extracted with these autoencoders (AE-CNN, QAE-QCNN, and R2H-QCNN) with the same optimizer and hyperparameters during 10 epochs. The ReLU activation function is used across all the layers for both the autoencoders and the classifiers, except for the output layers that are based on the tanh function for the autoencoders, and the softmax function for the classifiers. No regularization techniques are employed. It is important to notice that the tanh function is a better fit than ReLU in the case of a bottleneck layer, due to its bounded nature. Indeed, the ReLU might produces very high and positive values, while projecting the negative space to zero, creating a poorly distributed internal representation to be used as input features. Conversely, the tanh function offers a smooth distribution of the features in a bounded interval, suiting particularly well to classifiers. At the end of the training, the results on the test dataset are saved with respect to the best results observed on the validation dataset. It is worth noticing that the results are averaged over five runs (5-folds), to alleviate any variation due to the parameters initialization.

1) AE & QAE: Baseline models involve straightforward autoencoders. Due to the quaternion representation of the basic QAE, the latter needs the input features to already represent quaternion numbers. Therefore, AE and QAE are trained using the UAD segmentation followed by binary, TF-IDF or LDA representations. The hidden layer of both autoencoders is fixed to a size of 100 neurons, that are equivalents to 25 quaternion numbers.

2) R2H: For a fair comparison, the hidden dimension of the R2H is also set to 100 values that are equivalent to 25 quater-nion numbers. Due to the nature of the R2H, the input features representation does not require any particular segmentation, and can be defined in the real-valued space. The encoder part is initialized randomly following the Glorot criterion [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF], while the quaternion-valued decoder parameters are initialized following the scheme described in [START_REF] Parcollet | Quaternion convolutional neural networks for end-toend automatic speech recognition[END_REF], alongside with the quaternion version of the Glorot criterion.

3) CNN and QCNN: It is first important to note that CNNs and QCNNs are designed so the internal dimensions are equivalents. Consequently, a real-valued convolutional layer of 256 filter maps (FM) corresponds to a quaternion-valued convolutional layer of 64 quaternion filter maps. In the case of a QCNN, these 64 filter maps will represent 64 × 4 = 256 real values. Both CNNs and QCNNs contain three 1D convolutional layers of size 256 FM (64 for the QCNN) followed by two dense layers of size 512 and 8, corresponding to the number of classes. The last dense layer of the QCNN is realvalued to classify the document in the space.

4) Word2Vec baselines: For a fair comparison, the experiments incorporate results obtained with the same conditions but with traditional and state-of-the-art words representations, known as words to vectors (word2vec). In this extent, a continuous bag-of-words (CBoW) [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF], a skip-gram [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF], and a fastText [START_REF] Joulin | Bag of tricks for efficient text classification[END_REF] models are tested with DECODA. More precisely, these models assume that it is feasible to learn the meaning of a word, by looking at the words that tend to appear near it. The CBoW model trains each word against its context, while skip-gram trains each context against the word. Consequently, skip-gram is often prefered with small datasets, or corpora that contain a lot of rare words (i.e. not occurring frequently). FastText [START_REF] Joulin | Bag of tricks for efficient text classification[END_REF] is an extension of CBoW and skip-gram, that proposes to decompose the vocabulary with smaller entities, named n-grams. The intuition is that a very rare word might be better represented if we consider smaller pieces as fundamental units. Indeed, while the word elephant may appears once in the DECODA framework, the elements el, le, or ph might be more frequent and thus be used to better train the context.

The word2vec baselines rely on a training phase of 10 epochs, based on the non-segmented automatic transcriptions of the train set of the DECODA dataset. The context window is fixed to 10, while a number of negative samples of 20 is used to smooth the training. The fastText model relies on the skip-gram approach, due to better results observed over CBoW, and processes bi-gram units. Finally, the word embedding size is fixed to 100, to match the dimensions of our previously introduced techniques.

VII. EXPERIMENTS

To evaluate the performances of the R2H, we first introduce the results observed with a simple QAE compared to the real-valued AE using the manual UAD segmentation (Section VII-A). Then the R2H is compared to the AE when no segmentation is applied (Section VII-B), before being compared to the QAE that uses the UAD segmentation (Section VII-C). In this extent, the performances of the quaternionvalued neural networks are investigated in all the testing conditions. Finally, a summary of all the results obtained so far on the DECODA framework with various neural architectures, including word2vec, are reported in Section VII-D.

A. AE-CNN vs QAE-CNN with UAD document segmentation

Due to the quaternion nature of the QAE and for fair comparison, both QAEs and AEs are trained with the UAD document segmentation to obtain a proper quaternion input representation. Table II shows the results observed for both QAE-QCNN and AE-CNN models. It is worth underlying the important difference with respect to the number of neural parameters between the two models. This is easily explained by considering the content of the quaternion algebra. Indeed, for a fully-connected layer with 2, 048 input values and 2, 048 hidden units, a real-valued NN has 2, 048 2 ≈ 4.2M parameters, while to maintain equal input and output dimensions the quaternion equivalent has 512 quaternions inputs and 512 quaternion hidden units. Therefore, the number of parameters for the quaternion-valued model is 512 2 × 4 ≈ 1M. In fact, quaternion neural networks need four times less neural parameters to deal with the same internal signal dimension, compared to real-valued ones, leading to a lower number of parameters to manipulate and save. Such a complexity reduction turns out to produce better performances and results in a smaller memory footprint while saving models on budget memory systems. It can also have an impact on the generalization ability of the network, since reducing the number of parameters can act as a regularizer.

As expected, the binary representation of the textual document gives the worst results with both models, and the more complex LDA representation the best ones. Nonetheless, the QAE-QCNN consistently outperform the AE-CNN regardless of the input representation. Indeed, best tests of 80.0%, 82.1%, 84.0% are reported for the quaternionic solution with the binary, TF-IDF and LDA representations respectively, compared to 78.9%, 81.1%, 83.4% for the real-valued model. This represent an average gain of 1% in accuracy with four times less neural parameters.

B. AE-CNN vs R2H-QCNN without document segmentation

Maintaining high performance with a drastic reduction of the parameters to be estimated is an important objective, especially when limited resources are available as for the application considered in this paper. Consequently, the R2H-QCNN is compared to the traditional AE-CNN without any segmentation of the textual documents. Input features of both models are real-valued and correspond to common document representations (Section VI). Table III first shows that the R2H-QCNN substantially outperforms its real-valued counterpart in all the testing conditions. Therefore, results of 82.6%, 83.6%, 86.3% are reported on the test set for the R2H-QCNN with the binary, TF-IDF and LDA representations, compared to 78.5%, 80.5%, 84.0% for the real-valued model. This is an average gain of 3.1% in accuracy with the same factor of reduction of the number of parameters equal to four. Consequently, the R2H-QCNN outperforms the AE-CNN, while processing real-valued input features and with less neural parameters.

C. R2H-QCNN vs QAE-QCNN

While previous experiments have demonstrated the superiority of quaternion-valued neural networks over real-valued ones on the DECODA classification task, Table IV compares the unsupervised R2H to a QAE using the manual UAD segmentation, to highlight the meaningfulness of the latent representation learned by the R2H, compared to a manually designed segmentation. It is first important to mention that the R2H-QCNN always outperforms the QAE-QCNN. Indeed, test results of 82.6%, 83.6%, 86.3% are reported for the R2H-QCNN with the binary, TF-IDF and LDA representations, compared to 80.0%, 82.1%, 84.0% for QAE-QCNN and the UAD document segmentation. The average gain is of 2.1% with an almost identical number of free parameters. Indeed, both QCNN classifiers are equivalent and the R2H only has few parameters more due to the real-valued encoder. According to the results, the quaternionic representation learned in an unsupervised manner by the R2H is more meaningful than the one manually created by the user-agent document segmentation. More precisely, the R2H learns a multidimensional projection of the text input features that is optimal in the quaternion space, while the previously introduced UAD segmentation makes a strong assumption by manually providing a representation that might not be a perfect fit to the quaternion algebra, resulting in worst performances.

D. Overview of the DECODA results and discussions

Table V summarizes the recent accuracies observed on the test set of the DECODA corpus with various quaternion and real-valued neural network architectures. Three word2vec models (Section VI-E4) are used as baselines for a fair comparison with respect to modern approaches. As for previous experiments, QNNs consistently outperform equivalent real-valued neural networks in the DECODA framework. Input features representations also have a great impact on the final accuracies of all the tested models. Indeed, models fed with LDA features outperformed by far models fed with word frequency representations. This is explained by the nature of the LDA algorithm. LDA is much more complex than the straightforward statistical TF-IDF method. It provides information about latent relations between the words composing a corpus. In fact, LDA performs an unsupervised classification over each document by giving the probability of each topic with respect to the document.

It is worth underlying the lower standard deviation over the five runs observed with the R2H model compared to QAE and AE architectures. Indeed, the standard deviation of R2H-QCNN experiments with LDA input features is 0.004 compared to 0.005 and 0.008 for the QAE and AE respectively. In fact, all the models are very robust to the random initialization of the parameters, due to the nature of the input representation induced by the embedding transformation.

Then, it is important to notice that word2vec models are trained with the binary representation of the vocabulary, and manage to achieve significantly better results that the ones reported with traditional real-valued autoencoders on the same input features (Table III). This is easily explained by the fact that word2vec methods are an improved version of the mere autoencoder, to specifically take into consideration the meaning of a word. Then, it is well-known that the skip-gram variation is preferable over CBoW with small datasets, or with documents that contain a lot of rare words. Both conditions are validated with the DECODA dataset, and the initial assumption is confirmed with an average accuracy of 82.6% reported for the skip-gram, compared to 77.8% for CBoW. In the same manner, the more robust representation obtained by decomposing words into smaller n-grams allows fastText to reach an accuracy of 83.4%, while operating with binary input features, yielding the best accuracy observed so far with the latter representation. Interestingly, such performances are also superior to the ones observed with the TF-IDF input representation and real-valued classifiers (83.0%). Nevertheless, transformations obtained with LDA offer higher accuracies across all the tested models. An explanation comes from the size of the vocabulary considered. Indeed, the vocabulary size of DECODA is barely superior to 3, 000 words, with many meaningless words for the classification task. Consequently, word2vec approaches might suffer from both the lack of training samples, and the lack of diversity in the vocabulary.

Based on the LDA input features, the proposed R2H obtains the best observed accuracies so far on the DECODA dataset, outperforming the word2vec baselines, and the previously investigated manual and quaternion-valued document segmentations. Overall, the R2H provides a bridge to project any real-valued source to a quaternion-valued representation that fit perfectly to QNNs. Indeed, the conduced experiments have demonstrated that the latent multi-view representation learn by the R2H, allows a quaternion-valued classifier to performs better than real-valued representations, or manually adapted quaternion segmentations.

VIII. CONCLUSION

This work addresses an important issue raised by previous researches on quaternion-valued neural networks. Indeed, it provides an efficient and unsupervised tool based on a hybrid autoencoder called real-to-quaternion autoencoder (R2H), to extract a quaternion-valued representation from any realvalued input vector, for a better processing by quaternionvalued neural networks (QNN). This is an important step forward for researchers that are not able to benefit from the efficiency of QNNs due to a non-adapted input vector representation. Indeed, the R2H allows the use of any QNNs with any task, regardless of the input features domain. The conduced experiments on the classification task of the DECODA dataset, have shown that the R2H outperformed all the previously investigated models, even when compared to an adapted manual segmentation of textual document for quaternion neural networks. Finally, it is also demonstrated that QNNs always outperform equivalent real-valued NNs on this task with four times fewer parameters.

Fig. 1 .

 1 Fig.1. Illustration of the quaternion-valued convolution process. First, the initial quaternion-valued filter map W is transformed into its real-valued representation. Then, each part of this new representation is convolved with the input signal Qp. As for the traditional convolution process, rows of the simulated W represents the channels, while columns define the depth of the feature maps.

2 .

 2 Fig.

Fig. 3 .

 3 Fig. 3. Example of a manualy transcribed dialogue from the DECODA corpus for the SLU task of theme identification.

Fig. 4 .

 4 Fig. 4. Illustration of the complete architecture including the autoencoder (AE, QAE or R2H, left) and the classifier (CNN or QCNN, right).

TABLE I DECODA

 I DATASET.

	Class		Number of samples	
	label	training development testing
	problems of itinerary	145	44	67
	lost and found	143	33	63
	time schedules	47	7	18
	transportation cards	106	24	47
	state of the traffic	202	45	90
	fares	19	9	11
	infractions	47	4	18
	special offers	31	9	13
	Total	740	175	327

TABLE II RESULTS

 II OBSERVED WITH THE UAD DOCUMENT SEGMENTATION FOR BOTH QAE-QCNN AND AE-CNN MODELS ON THE DECODA DATASET. EXPRESSED PERCENTAGES REPRESENT THE ACCURACY. RESULTS ARE FROM A 5-FOLDS AVERAGE.

	Models	Type Features Dev. %	Test %	Params
	AE-CNN	R	Binary	80.4	78.9	4.2M
	QAE-QCNN	H	Binary	81.4	80.0	1.1M
	AE-CNN	R	TF-IDF	86.1	81.1	4.2M
	QAE-QCNN	H	TF-IDF	86.6	82.1	1.1M
	AE-CNN	R	LDA	86.1	83.4	4.0M
	QAE-QCNN	H	LDA	86.1	84.0	1.0M

TABLE III RESULTS

 III OBSERVED WITHOUT DOCUMENT SEGMENTATION FOR BOTH AE-CNN AND R2H-QCNN MODELS ON THE DECODA DATASET. EXPRESSED PERCENTAGES REPRESENT THE ACCURACY. RESULTS ARE FROM A 5-FOLDS AVERAGE.

	Models	Type Features Dev. %	Test %	Params
	AE-CNN	R	Binary	80.4	78.5	4.2M
	R2H-QCNN	RH	Binary	82.4	82.6	1.1M
	AE-CNN	R	TF-IDF	82.9	80.5	4.2M
	R2H-QCNN	RH	TF-IDF	86.1	83.6	1.1M
	AE-CNN	R	LDA	88.9	84.0	3.7M
	R2H-QCNN	RH	LDA	91.6	86.3	0.9M

TABLE IV RESULTS

 IV OBSERVED FOR THE QAE-QCNN WITH THE UAD SEGMENTATION AND THE R2H-QCNN WITHOUT DOCUMENT SEGMENTATION ON THE DECODA DATASET. EXPRESSED PERCENTAGES REPRESENT THE ACCURACY. RESULTS ARE FROM A 5-FOLDS AVERAGE.

	Models	Type	Seg.	Features Test %
	QAE-QCNN	H	UAD	Binary	80.0
	R2H-QCNN	RH	None	Binary	82.6
	QAE-QCNN	H	UAD	TF-IDF	82.1
	R2H-QCNN	RH	None	TF-IDF	83.6
	QAE-QCNN	H	UAD	LDA	84.0
	R2H-QCNN	RH	None	LDA	86.3

TABLE V RESULTS

 V OBSERVED FOR VARIOUS NEURAL NETWORKS ON THE TEST SET OF THE DECODA DATASET. EXPRESSED PERCENTAGES REPRESENT THE ACCURACY.

	Models	Type Features Test %
	MLP[32]	R	LDA	83.4
	QMLP[32]	H	LDA	84.6
	CBoW-CNN	R	Binary	77.8
	skipgram-CNN	R	Binary	82.6
	fastText-CNN	R	Binary	83.4
	AE[11]	R	TF-IDF	81
	DSAE[11]	R	TF-IDF	82.0
	DAE[31]	R	TF-IDF	83.0
	R2H-QCNN	RH	TF-IDF	83.6
	QAE-QCNN	H	LDA	84
	QDAE[31]	H	LDA	85.2
	R2H-QCNN	RH	LDA	86.3
	DNN[32]	R	LDA	84.0
	QDNN[32]	H	LDA	85.2

http://code.google.com/p/stop-words/