
HAL Id: hal-02401946
https://hal.science/hal-02401946v1

Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Google QUIC performance over a public SATCOM
access

Ludovic Thomas, Emmanuel Dubois, Kuhn Nicolas, Emmanuel Lochin

To cite this version:
Ludovic Thomas, Emmanuel Dubois, Kuhn Nicolas, Emmanuel Lochin. Google QUIC performance
over a public SATCOM access. International Journal of Satellite Communications and Networking,
2019, 37 (6), pp.601-611. �10.1002/sat.1301�. �hal-02401946�

https://hal.science/hal-02401946v1
https://hal.archives-ouvertes.fr


�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/21973

https://doi.org/10.1002/sat.1301

Thomas, Ludovic and Emmanuel, Dubois and Nicolas, Kuhn and Lochin, Emmanuel Google QUIC performance over

a public SATCOM access. (2019) International Journal of Satellite Communications and Networking, 37 (6). 601-611.

ISSN 1542-0973



Google QUIC performance over a public SATCOM access

Ludovic Thomas∗, Emmanuel Dubois†, Nicolas Kuhn† , Emmanuel Lochin∗

∗ ISAE-SUPAERO, Toulouse, France
† CNES, Toulouse, France

Abstract

Google QUIC accounts for almost 10 % of the Internet traffic and the protocol is not
standardized at the IETF yet. We distinguish Google QUIC (GQUIC) and IETF QUIC
(IQUIC) since there may be differences between the two. Both Google and IETF ver-
sions run over UDP and cannot be split the way satellite systems usually do with TCP
connections. The need for adapting any-QUIC parameters needs to be evaluated. Since
GQUIC is available, we analyze its behavior over a satellite communication system. In our
evaluations, GQUIC quick connection establishment does not compensate an inappropriate
congestion control. The resulting page downloading time doubles when using GQUIC as
opposed to the performance with optimized split TCP connections. This paper concludes
that specific tuning are required when any-QUIC runs over a high BDP network.

1 Introduction

Quick UDP Internet Connections (QUIC) is a transport-layer protocol running on top of User
Datagram Protocol (UDP) [17] developed by Google since 2012 and currently under discussion
at Internet Engineering Task Force (IETF) [8]. We distinguish Google QUIC (GQUIC) and
IETF QUIC (IQUIC). At the time of writing (December 2018), most of the milestones that
are related to a first specification of IQUIC (also called QUIC v1) are expected in July 2019
while extansions on e.g. multipath IQUIC are expected in 2019 and 2020. Even if IQUIC is not
standardized yet, Google has deployed services over QUIC: GQUIC accounts for 2.6 % to 9.1 %
of the Internet traffic with rapidly changing versions [23]. To contribute to the specifications
of the protocol at IETF, we need to assess the performance of the actually deployed version to
justify the need for modifications for high Bandwidth Delay Product (BDP) networks.

Any-QUIC benefits from years of development, rapid deployment and large scale testing. De-
spite evolving versions, several properties are expected to remain invariant such as encryption of
both application data and transport parameters. Fully-encrypted any-QUIC might lead to dis-
crepancies between Over-The-Top (OTT) protocol design choices and Internet Service Provider
(ISP) policing mechanisms. While OTT and ISP may not always be seen as competitors [2], the
deployment of any-QUIC could lead to some ISP issues: (1) to select the appropriate Quality-
of-Service (QoS) policy for the applications carried out; (2) to enable the right shaping policy
according to both end user’s contracts and access network characteristics; or (3) to optimize the
use of the constrained resources such as on cellular networks.

As a matter of fact, operational ISP networks do not evolve at the same pace as End-to-End
(E2E) protocols. Furthermore, they should not only be influenced by new emerging protocols,
but also with existing and potentially old fashioned protocol stacks. Indeed, both the low
Transmission Control Protocol (TCP) Initial congestion Window (IW) values measured in [11]
and the analysis of TCP variants in the wild [30] highlight that some web services are still using
outdated transport protocol flavours. Any-QUIC could balance the part of old stacks currently
used which is a great illustration of the impact OTT have over Internet traffic.

SATellite COMmunication (SATCOM) networks typically break the TCP connections to
adapt the transport protocol for long delay links. Although recent E2E protocols may exhibit

1



decent performance over high BDP paths, splitting TCP allows for adaptation of both TCP
slow-start and loss-recovery mechanisms. This results in lower page load times [19]. Moreover,
older stacks would anyway need specific acceleration. It is worth pointing out that cellular
networks may also introduce the same kind of Performance Enhancing Proxy (PEP) to adapt
e.g. TCP for the upcoming Fifth-Generation Mobile Communications System (5G): this is
not only seen through research papers [10, 13] but also in 3rd Generation Partnership Project
(3GPP) study items [22]. In this context, the trend towards the deployment of protocols like
any-QUIC questions the actual E2E protocols’ adaptations. This motivates this study that
assesses the performance obtained by GQUIC when it comes to downloading two different web
pages over a geostationnary satellite.

To the best of our knowledge, this paper reports the first evaluations of GQUIC using a real
public SATCOM access by assessing the web browsing QoE. Our main findings are:

• for a large web page, the page load time is approximately twice longer with GQUIC
compared to Transport Layer Security (TLS)/TCP (section 3.1);

• this difference in larger page load time resides in the poor performance of the non-delegated
Congestion Controller (CC) in GQUIC (section 3.2);

• although faster, GQUIC connection establishment does not compensate the above issue
(section 3.3).

2 Experiment setup

We exploit a public SATCOM Internet access and repeatedly download two pages with different
profiles. We report raw Quality-of-Experience (QoE) metrics, such as Page Load Time (PLT),
that represent today’s end user experience. We do not pretend to properly assess the QoE of
web browsing since it depends a lot on the page that is downloaded. We mainly report trends
on some QoE-related web browsing parameters.

Our approach provides a fair comparison between GQUIC and a SATCOM-optimized TCP.
Controlled experiments could hardly be envisioned since the operator’s ground segment imple-
ments specific optimizations and IQUIC available frameworks may not be relevant [12].

For the sake of reproducible science, we have released the scripts that have been used to
generate our results [26].

2.1 SATCOM and 4G Internet accesses

To better explain the behavior of GQUIC over a SATCOM access, we also perform some tests
with a 4G access as a reference. This section focuses on the description of the SATCOM Internet
access.

The public SATCOM operates in Europe with geostationary satellites. We have used a KA-
SAT PRO25Go access. To roughly estimate the likely performance of this access and provide
an initial sanity check, we have measured that the network is less congested between 2 pm and
4 pm and have decided to run our evaluations at that moment of the day. Early evaluations
have showed that TCP is split both at the gateway and at the terminal∗. However, we can not
have much more information on the stacks that are used within the operator network or at the
terminal.

The data plan of our contract limits the variety of performed experiments, but our tests let
us assess the estimated SATCOM end-users’ QoE. Furthermore, we reckon this also illustrates
the impact of OTT protocol design decisions over a SATCOM provider.

A description of a generic SATCOM architecture can be found in [1, 15].

∗TCP PEP deployement has been brought to light based on: (a) computations of TCP-level and TLS-level
Round Trip Time (RTT); (b) TCP sequence number evolution compared to expected slow start profile and (c)
the traceroute tool.

2



Figure 1: Steps of a page load [28]

2.2 Web pages and QoE

To assess the QoE of a web browsing user, we measure the Page Load Time (PLT), defined as
the elapsed time between the connectStart and loadEventEnd events [28]. For an extensive
assessment, other metrics could have been considered such as the time to render or the time to
first paint. However, the relevance of these metrics depends on the page that is downloaded and
we could not consider many web pages characteristics since the pages needed to be available
via GQUIC. Our objective is to identify trends and high level comparison of the two protocol
stacks.

As shown in Figure 1, the PLT can be decomposed into (1) the time needed to complete
the handshake and send the request and (2) the time required to download the content and
to process it. In addition to the PLT, we measure the Time To responseStart (TTR), the
moment at which the user receives the first byte of the Hypertext Transfer Protocol (HTTP)
response from the server. This helps us assess the contribution of the connection establishment
and the request transmission in PLT. Host resolution is not considered. Metrics are measured
when accessing two different targets :

• Target A : one picture with a 5.3 MB total size;

• Target B : one Google’s 404 page with two objects and 11 kB of total size.

Both page are hosted on Google’s GQUIC capable servers. We acknowledge that selecting
these targets has an impact on the relevance of our conclusions. We do not aim at assessing
the performance of GQUIC for any page download but rather expect to compare its behaviour
when it comes to downloading large web objects.

2.3 Scenario configuration

Involved protocols collect network and server information using parameters caching, TCP Fast
Open (TFO) [6], GQUIC discovery [7] and GQUIC connection resumption† mechanisms. The
cached parameters are then used to improve the following loads‡. To analyze their impact on
PLT and TTR, each test unit is composed of three web pages downloads before purging the
browser profile. For each load, the client fetches one of the web pages and then closes the
browser when the page is retrieved. Elapsed time between two loads is uniformly distributed
between 5 and 15 seconds.

Automated weather and link quality reports are linked to the test units. Measures were
performed during good weather conditions, with no rain and few clouds. Average link charac-
teristics are presented in Table 1. We also provide worth-noting comparison of the size of the
targets with the BDP and the IW in Table 2. We assume servers’ default IW is set to 32 TCP
Maximum Segment Size (MSS) as observed in GQUIC source code [21]. The actual IW may
not be exactly 32, but the main point of this discussion is to highlight the differences between
the size of the file and the expected IW. We use the Selenium automation tools to control the
browser and retrieve PLT and TTR. Tests are operated on a laptop with 4.15.0-29-generic Linux.

†Also called zero-RTT and denoted 0RTT in the following.
‡For instance: caching the certificates reduces the handshake duration both with GQUIC and with TCP/TLS;

caching the RTT estimate prevents spurious retransmissions during the GQUIC handshake; etc.

3



Table 1: SATCOM and 4G access networks
Metric SATCOM 4G

Downlink capacity 25 Mbps 5 Mbps
Uplink capacity 5 Mbps 2.5 Mbps

RTT 750 ms 80 ms

Table 2: Ratios between target sizes, BDP and IW - e.g. Target A is 113 times larger than the
IW

Target
Size / BDP

Size / IW
SATCOM 4G

A (5.3 MB) 4.8 212 113
B (11 kB) 0.01 0.44 0.2

2.4 Few words on the browsers

An analysis of Chrome’s behavior combined with [17, 7] has provided us with the following
expectations:

• When Chrome starts, it opens connections with several servers. If GQUIC is enabled, we
have identified that Chrome benefits from those loads to open several GQUIC connections.
To ensure the same start point whether GQUIC is enabled or not, we have decided to
block any GQUIC traffic not intended to the server holding the web-page or its objects.
We have done that since we do not want Chrome’s specific implementation of Chromium

to have an impact on the conclusions that are proposed in this article.

• Before using GQUIC, Chrome needs to learn about its availability. GQUIC discovery
procedure is described in more details in [7, 17]. Important to note here is that Chrome

always use TCP for the first time it contacts a server.

• Since Chrome is restarted between each load, it will neither use GQUIC nor TLS connection
resumption. This is due to the way Chrome deals with certificates, not to any limitation
in the two protocols. We thus expect only 1RTT GQUIC connections.

For each test unit, we use two instances of Google Chrome 67.0.3396.99:

• ChromeQuic: GQUIC is enabled with Bottleneck Bandwidth and Round-trip propagation
time (BBR) congestion control instead of CUBIC§. We request BBR on the server side via
flags during the handshake, but cannot assess the BBR version used by Google servers.
However, we can expect that Google had deployed the last version at the time of testing.

• ChromeNoQuic: GQUIC is disabled.

ChromeNoQuic will always use a HTTP2-TLS1.2-(split)TCP (HTT) stack, whereas ChromeQuic
starts with HTT and switches to HTTP2-GQUICv39-UDP (HQU) whenever possible. For both
instances, TFO is enabled and content caching is disabled. Changes described in this section
are the only ones performed on publicly available Google Chrome.

3 Results

3.1 PLT for a large page

We denote by HTT the HTTP2-TLS1.2-(split)TCP stack and by HQU the HTTP2-GQUICv39-
UDP stack. Figure 2 presents the PLT for target A as a function of the load index since last

§This is performed following the method described in [18]. The objective is to get a consistent comparison as
BBR is expected to be deployed for TCP on Google’s infrastructures [4].

4



Load 1 Load 2 Load 3

Load count

4000

5000

6000

7000

8000

9000

10000

E
la
p
se
d
ti
m
e
(m

s)

p = 5.0e-01 p = 8.5e-61 p = 8.0e-53

ChromeNoQuic

ChromeQuic

Percentile

5th

25th

50th

75th

95th

Median 95%
confidence
interval

Figure 2: PLT for target A (large picture) on a SATCOM access

profile purge. Metrics are computed according to [3] over 40 test units. At the bottom of the
figure, we also provide the Welch’s t-test p parameter [29] of the two distributions under the null
hypothesis. For the first load, we expect similar performance for both browser versions as they
use the same protocol stack (HTT). The two distributions are indeed located at the same time
values and they both show low dispersion. However, with ChromeQuic learning about GQUIC
availability, HQU is then permanently used for that browser starting from the second load.

We observe the worst performance with HQU where PLT is up to twice longer than ChromeNoQuic

which uses HTT. The extremely low p values confirm the statistical relevancy of that observation.
Each of ChromeNoQuic and ChromeQuic exhibits a higher PLT dispersion and an intersection of
the confidence intervals for loads 2 and 3. It substantiates that above mentioned optimization
mechanisms are all performed within one load and we do not expect any further evolution of
the PLT with additional loads.

3.2 Packet sequence numbers rate

To understand the performance gap between HQU and HTT, we first focus on the second load
of target A and more particularly on the second phase of a PLT, i.e., the time elapsed between
the reception of the first response byte and the reception of its last.

To mitigate the issue of encryption keys, we define a sequence number equivalent for GQUIC
connections. It is defined as the cumulative sum of the bytes received over the connection, scaled
in order to reach the same last value as with TCP. We recognize that the value may present
local differences compared to stream offsets embedded in GQUIC packets. Nonetheless, we do
believe that global behaviors can be compared.

Figure 3 presents those computations on a subset of HTT and HQU connections. Downward
[resp. upward] triangles report the location of TTR [resp. PLT] measurements. We observe that
the HQU stack fires the responseStart event before HTT. However, the download is completed
way after. This can be explained by HTT getting “up-to-speed” and showing a stable and high
goodput, while HQU ramps up its transmission rate slowly.

We first focus on HQU. To discriminate the origin of this slow increase between (a) a UDP
throughput control from the ISP or (b) the BBR Congestion Controller (CC) itself, we can
compute the duration of the BBR Startup phase¶ : ts = ln2(B/Wi)R, with B the BDP of

¶Note that BBR Startup phase uses the same exponential increase profile as Slow Start or Hystart and only

5



0 2 4 6 8 10
Time since connectStart (s)

0

1

2

3

4

5

Se
qu

en
ce

 n
um

be
r (

by
te

s)

1e6
tcp
gquic
responseStart
loadEventEnd

Figure 3: Evolution of the sequence number for the flows downloading the target A on a SAT-
COM access

0 2 4 6 8 10 12
Time since connectStart (s)

0

1

2

3

4

5

Se
qu

en
ce

 n
um

be
r (

by
te

s)

1e6

tcp
gquic
responseStart
loadEventEnd

Figure 4: Evolution of the sequence number for the flows downloading the target A on a 4G
access network

6



the link, R its RTT and Wi the IW. For the given parameters of the whole E2E link‖ we
obtain ts ≈ 3.5s. Compared to expected behavior of BBR we can note on Figure 3 a Startup
phase of approximatively 4s (between 2s and 6s), followed by three constant-rate segments. The
observation is in line with the computed value. With target A only four times bigger than
the BDP (Table 2), we can note that the CC above GQUIC spends more than two third of
the download in its Startup phase. It means that we can expect a similar performance for any
other CC using a binary search including TCP New Reno and CUBIC, as long as they are
implemented above GQUIC.

In comparison, HTT achieves a near-constant downloading rate, as noted by the quasi-linear
increase of sequence numbers. As explained in Section 2.1, the TCP path is split into three
connections. One for the satellite link and one at each of its edges: connecting the server to
the GateWay (GW) and the Satellite Terminal (ST) to the client (see Figure 5). Let’s suppose
the segment PEPGW → PEPST uses proprietary protocols and does not require any startup
probing phase. The TCP slow start can be neglected for the segment PEPST → Client since its
RTT is around 1 ms. Finally, the binary search is also expected to last less than 1 RTT for the
segment Server → PEPGW before the later toggle down the emission with its flow control∗∗.
Computations are again in line with the observed values as we note that the final constant
TCP throughput is reached in less than 50ms on the row data of Figure 3. In our scenario,
splitting TCP and using proprietary protocols in the central segment allows each outer segment
to present low BDP and thus permit a fast binary search. On the contrary, GQUIC cannot be
split because of transport-level encryption.

To better explain the poor performances of GQUIC, we run the same computations on a
comparative 4G access link. Results are shown in Figure 4. First, we note the HQU stack fires
the responseStart event before HTT and the median gap is around 90ms. Section 3.3 provides
insights for that difference. Second, we can note that the BDP of the path is here lower than
the IW. Thus, the Startup phase is completed in less than 1 RTT. And last, the CCs spend the
most part of the load in their Steady state because target A is significantly bigger than the BDP
(Table 2). On that state, GQUIC shows better performances which is consistent with studies
performed on non-split paths [12]. On the geostationary link, the gap in TTR was weak and
GQUIC was penalized in its slow start compared to split TCP.

3.3 Focus on the handshake

We just saw that GQUIC encryption prevents any proxy to split the connection, which results
in long CC Startup phase. But GQUIC was also designed to reduce the handshake duration. In
this section, we focus on that phase of the download: from the first packet sent by the client to
the first HTTP response bytes received. Results are shown in Figure 6 that presents the notch
boxes for the TTR metric.

Loads 2 and 3 show a high dispersion for ChromeNoQuic and incompatible confidence intervals
for ChromeQuic. It questions the hypothesis that learning mechanisms are performed within one
load. On a 4G access network (Figure 7), this behavior cannot be seen : we note a gain between
load 1 and the followings but loads 2 and 3 show low dispersion and compatible confidence
intervals. We assume that the SATCOM ISP policy might disturb the results based on recent
traffic history.

One could expect that HQU would gain at least one RTT during the handshake, our results do
not reflect that expectation. To understand why, we first need to note that neither GQUIC nor
TLS1.2 use connection resumption since the browser is restarted each time. However, analysis of
traffic indicates that Chrome is using TLS1.2 False Start [16]. The observed HTT handshake is
presented in Figure 5. The TCP handshake is performed with the immediate PEP on the path.
Its duration can be neglected compared to the rest of the sequence. The TLS1.2 Client Hello

differs in the exit condition.
‖Measured throughput : 25Mbps. Measured RTT : 750ms. Default IW : 32.
∗∗Throughput before reaching flow control limitation : 25Mbps. Computed RTT based on the difference of

the RTT with the Server and with the GW : 30 ms. Default IW : 32.

7



Client PEP ST PEP GW Server

SYN

ACK

Client Hello

Server Hello

Key share, Client Finished

Server F
inished

HTTP2 GET

expected
answer

observe
d answer

connectStart

responseStart

Variable
delay

1ms
∼ 360ms

∼ 15ms

Figure 5: HTT handshake sequence. TCP handshake duration can be neglected thanks to PEP

Load 1 Load 2 Load 3
Load count

1800

2000

2200

2400

2600

2800

3000

El
ap

se
d 

tim
e 

(m
s)

p = 7.2e-01 p = 2.5e-01 p = 1.5e-08

ChromeNoQuic
ChromeQuic

Figure 6: Time to responseStart (first HTTP byte) for target A on a SATCOM access

8



Load 1 Load 2 Load 3
Load count

400

500

600

700

800

900

El
ap

se
d 

tim
e 

(m
s)

p = 6.8e-01 p = 1.2e-02 p = 2.1e-03

ChromeNoQuic
ChromeQuic

Figure 7: Time to responseStart (first HTTP byte) for target A on a 4G access

packet does not suffer any extra delay. So, it appears that the middle segment use a proprietary
protocol or already existing connections and no handshake is required between the two PEP. As
a consequence we expect to receive the first byte with the HTT stack (i.e. TTRHTT ) within
twice the E2E RTT. In reality, we observe a high-dispersion extra-delay before receiving the
HTTP answer (see Figure 5). We put those results in relation with the same dispersive delay
observed in [12, 31] and we could not identify with certainty its origin. That being said, the
analysis can rely on the median and maximum values of the metric to drive trends.

For the HQU stack, since connection resumption is not used, GQUIC will perform 1 RTT
handshakes (Figure 4 of [17]). Here again we can expect : TTRHQU ≈ 2RTTE2E . In conclusion,
thanks to the distributed PEP, to TLS False Start and despite the 1 RTT handshake in GQUIC,
both the HTT and the HQU stacks present the same theoretical TTR. In practice, HQU is here
slightly faster.

To further justify our analysis, we compare the TTR on a 4G access network (Figure 7). In
this network, the TCP handshake cannot be neglected anymore because PEP are not deployed.
Thus, TTRHTT = 3RTTE2E , i.e., HQU is faster by at least one E2E RTT which is consistent
with Figure 4 and Table 1 as the measured TTR gap is around 90 ms. It explains why, when
compared to HTT, HQU might present better performances on a mobile network than on a
SATCOM access.

3.4 PLT for a small page

In this section, we aim at assessing the impact of the target size on the above mentioned
conclusions and further analyze the impact of the ratio between the BDP, the IW. Figure 8
presents those results.

Target B can be sent within an initial congestion window (See Table 2). ChromeQuic exhibits
a better PLT for loads 2 and 3 of target B than ChromeNoQuic. Indeed, the CC does not need
to probe the link and the main contributor of the PLT should be the TTR. Moreover, as we saw
in section 3.3, HQU generally fires the responseStart event slightly before HTT.

That being said, as opposed to target A, objects of target B are located on www.google.com††.
These objects are downloaded by ChromeQuic using an already existing GQUIC connection.
This is due to the initial connections to www.google.com that Chrome opens when starting.

††Given by analysis of the internal log of Chrome

9



Load 1 Load 2 Load 3
Load count

2250

2500

2750

3000

3250

3500

3750

4000

El
ap

se
d 

tim
e 

(m
s)

p = 5.0e-03 p = 1.8e-02 p = 4.5e-02

ChromeNoQuic
ChromeQuic

Figure 8: PLT for target B

They enable ChromeQuic to discover GQUIC support and even to reuse the previously opened
GQUIC connection to fetch the two objects of page B. I.e., by reducing the duration of several
handshakes to several servers, the gains are summed up and the PLT is reduced. However, we
note that the gain is limited compared to the PLT difference with target A.

4 Contribution and related work

Performance comparisons of GQUIC and TCP have already been conducted under various net-
work conditions and for various applications [12, 5]. For instance, the authors in [31] have
performed an evaluation of GQUIC on an emulated platform with scenarios involving SATCOM
in LEO and GEO contexts. They concluded that GQUIC outperforms TCP but their testbed
did not include any PEP. On the contrary, our study demonstrates that transparent proxying
is the cornerstone of better Page Load Time with TCP when compared to GQUIC.

The impossibility for GQUIC to benefit from the PEP technology has already been identified
in [12]. Here again, the authors concluded that GQUIC continues to outperform TCP even when
the later is split by a proxy. Our tests on a real access highlight the influence of complex PEP
deployment schemes on the comparative performance of both protocols.

This paper completes the related work by reporting the first evaluations of GQUIC using a
real public SATCOM access. We consider two web-pages: one picture with a 5.3 MB total size
and one Google’s 404 page with two objects and 11 kB of total size. The main conclusions are
the following:

• for a large web page, the page load time is approximately twice longer with GQUIC
compared to TCP;

• this difference in larger page load time resides in the poor performance of the non-delegated
Congestion Controller in GQUIC;

• although faster, GQUIC connection establishment does not compensate the above issue.

As it is, GQUIC may result in poor end user experience on a high BDP network. However,
inducing specific tuning for SATCOM networks in the standards and in actual deployments may
be complicated.

10



5 Discussion

The important variability in applications’ requirements makes it hard to define a transport
protocol that suits them all. The relevance of application and transport layers protocols depends
on both (a) how application data packets are generated and carried out and (b) the network
underneath. Taking as example a SATCOM Internet access, the performance of different web
applications highly depends on the web pages characteristics [24]. There is no “transport layer
silver bullet”, i.e. a transport protocol that would suit to any application and any network
conditions [25].

5.1 ISP point-of-view

For a SATCOM ISP, the deployment of any-QUIC could be seen as interesting:

• we can expect interesting gains for short flows,

• we would not need PEP that are expensive and sometimes complicated to maintain and
operate.

However, the performance gains for large files transmissions, the inadequacy of the end-to-end
congestion control to SATCOM links and the rapid evolutivity of the protocol may be seen as
a threat to good end-user quality of experience.

Moreover, such as illustrated by the discussions on the spin-bit at the IETF, ISP could
encounter issues in identifying where the loss occurs in the network.

5.2 Towards a middlebox-friendly any-QUIC

To date, GQUIC does not seem to be blocked by ISP companies, according to [23] and our
experiments. It may not be the case when this UDP traffic becomes a greater proportion of the
total traffic. Indeed, for the reasons mentioned in 5.1, quickly evolving protocols may not be
easy to deal with, from an ISP point-of-view. Interactions between the end-to-end protocol and
the operator middle-boxes could be enabled, such as discussed in [14]. Moreover, bits such as
the spin-bit could be made available for the ISP operations, such as load-balancing and statistics
on the current flows.

To adapt the congestion control and data rate transmission to a specific SATCOM scenario,
more important modifications may be required. They may involve changing the advertised
receive window, such as in IP-Explicit Rate Notification (IP-ERN) architectures [20], delegate
the security to the network operator for better quality of experiences or update the browser [27].
These specifications could be negotiated at initialization such as discussed in the transport draft
of IQUIC [9].

References

[1] Toufik Ahmed, Emmanuel Dubois, Jean-Baptiste Dupé, Ramon Ferrùs, Patrick Gélard,
and Nicolas Kuhn. Software-defined satellite cloud ran. International Journal of Satellite
Communications and Networking, 36(1):108–133, 2018.

[2] Angelos Antonopoulos, Chiara Perillo, and Christos Verikoukis. Internet service providers
vs. over-the-top companies: Friends or foes? - short talk. volume 44, pages 37–37, New
York, NY, USA, January 2017. SIGMETRICS Perform. Eval. Rev., ACM.

[3] Jean-Yves Le Boudec. Performance Evaluation of Computer and Communication Systems.
EFPL Press, 2011.

[4] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Ja-
cobson. Bbr: Congestion-based congestion control. Queue, 14(5):50:20–50:53, October
2016.

11



[5] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. HTTP over UDP. In Proceedings of
the 30th Annual ACM Symposium on Applied Computing. Proceedings of the 30th Annual
ACM Symposium on Applied Computing, 2015.

[6] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP Fast Open. RFC 7413, IETF,
December 2014.

[7] Ryan Hamilton. Quic discovery. https://www.chromium.org/quic, October 2014.

[8] IETF QUIC Working Group. Quic working group website. https://quicwg.org, sept 2018.

[9] Jana Iyengar and Martin Thomson. Quic: A udp-based multiplexed and secure transport.
Work-in-Progress, Internet-Draft, draft-ietf-quic-transport-16, IETF Secretariat, October
2018.

[10] Xiaoxiao Jiang Jae Won Chung, Feng Li. Driving linux tcp congestion control algorithms
around the lte network highway. In NETDEV 2.1. NETDEV 2.1, 2017.

[11] Jan Rüth, Christian Bormann, Oliver Hohlfeld. On the use of TCP’s Initial Congestion
Window in IPv4 and by Content Delivery Networks. Presentation to Measurement and
Analysis for Protocols Research Group, Internet Research Task Force, IETF 101, London,
2018.

[12] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and Alan Mis-
love. Taking a long look at QUIC. Proceedings of the 2017 Internet Measurement Conference
on - IMC, 2017.

[13] B. H. Kim, D. Calin, and I. Lee. Enhanced split tcp with end-to-end protocol semantics
over wireless networks. pages 1–6. 2017 IEEE Wireless Communications and Networking
Conference (WCNC), March 2017.

[14] Mirja Kuehlewind and Brian Trammell. Manageability of the quic transport protocol.
Work-in-Progress, Internet-Draft, draft-ietf-quic-manageability-03, IETF Secretariat, Oc-
tober 2018.

[15] Nicolas Kuhn and Emmanuel Lochin. Network coding and satellites. Work-in-Progress,
Network Coding Internet Research Task Force, draft-irtf-nwcrg-network-coding-satellites-
03, IETF, November 2018.

[16] A. Langley, N. Modadugu, and B. Moeller. Transport Layer Security (TLS) False Start.
RFC 7918, IETF, August 2016.

[17] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang,
Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman,
Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The quic transport protocol: Design
and internet-scale deployment. SIGCOMM ’17, pages 183–196, New York, NY, USA, 2017.
Proceedings of the Conference of the ACM Special Interest Group on Data Communication,
ACM.

[18] Dong Mo, Ian Swett, and Nimrod Aviram. Best practice to test congestion control part of
quic. Online, jan 2015.

[19] Nicolas Kuhn. MPTCP and BBR performance over Internet satellite paths. Presentation
to Internet Congestion Control Research Group, Internet Research Task Force, IETF 100,
Singapore, 2017.

[20] Dino Martin Lopez Pacheco, Tuan Tran Thai, Emmanuel Lochin, and Fabrice Arnal. An ip-
ern architecture to enable hybrid e2e/ern protocol and application to satellite networking.
Computer Networks, 56(11):2700 – 2713, 2012.

12



[21] Google Chromium Projects. Chromium source. Online, sept 2018.

[22] Simone Provvedi. New SID on Study on NR Enhancements for TCP. RP-181061, 3GPP
Study Item, 2018.

[23] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. A first look at quic in
the wild. In Robert Beverly, Georgios Smaragdakis, and Anja Feldmann, editors, Passive
and Active Measurement, pages 255–268, Cham, 2018. Springer International Publishing.

[24] R. Secchi, A. C. Mohideen, and G. Fairhurst. Performance analysis of next generation web
access via satellite. International Journal of Satellite Communications and Networking,
36(1):29–43, dec 2016.

[25] Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, and Hari Balakrishnan. No
silver bullet: Extending sdn to the data plane. In Twelfth ACM Workshop on Hot Topics
in Networks (HotNets-XII), College Park, MD, November 2013. Twelfth ACM Workshop
on Hot Topics in Networks (HotNets-XII).

[26] Ludovic Thomas. Quic user experience assesment - public repo.
https://forge.net4sat.org/cnes/quxa-public, nov 2018.

[27] Viasat. Browser. https://www.exede.com/viasat-browser/, last accessed: 08/08/2018.

[28] Zhiheng Wang. Navigation timing. W3C recommendation, W3C, December 2012.

[29] Wikipedia. Welch’s t-test. Online, sept 2018.

[30] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu. Tcp congestion avoidance algorithm
identification. pages 310–321. 31st International Conference on Distributed Computing
Systems, June 2011.

[31] Han Zhang, Tianqi Wang, Yue Tu, Kanglian Zhao, and Wenfeng Li. How quick is quic in
satellite networks. In Qilian Liang, Jiasong Mu, Min Jia, Wei Wang, Xuhong Feng, and
Baoju Zhang, editors, Communications, Signal Processing, and Systems, pages 387–394.
Springer Singapore, 2019.

13


