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Google QUIC performance over a public SATCOM access

Google QUIC accounts for almost 10 % of the Internet traffic and the protocol is not standardized at the IETF yet. We distinguish Google QUIC (GQUIC) and IETF QUIC (IQUIC) since there may be differences between the two. Both Google and IETF versions run over UDP and cannot be split the way satellite systems usually do with TCP connections. The need for adapting any-QUIC parameters needs to be evaluated. Since GQUIC is available, we analyze its behavior over a satellite communication system. In our evaluations, GQUIC quick connection establishment does not compensate an inappropriate congestion control. The resulting page downloading time doubles when using GQUIC as opposed to the performance with optimized split TCP connections. This paper concludes that specific tuning are required when any-QUIC runs over a high BDP network. * TCP PEP deployement has been brought to light based on: (a) computations of TCP-level and TLS-level Round Trip Time (RTT); (b) TCP sequence number evolution compared to expected slow start profile and (c) the traceroute tool.

Introduction

Quick UDP Internet Connections (QUIC) is a transport-layer protocol running on top of User Datagram Protocol (UDP) [START_REF] Langley | The quic transport protocol: Design and internet-scale deployment[END_REF] developed by Google since 2012 and currently under discussion at Internet Engineering Task Force (IETF) [8]. We distinguish Google QUIC (GQUIC) and IETF QUIC (IQUIC). At the time of writing (December 2018), most of the milestones that are related to a first specification of IQUIC (also called QUIC v1) are expected in July 2019 while extansions on e.g. multipath IQUIC are expected in 2019 and 2020. Even if IQUIC is not standardized yet, Google has deployed services over QUIC: GQUIC accounts for 2.6 % to 9.1 % of the Internet traffic with rapidly changing versions [START_REF] Rüth | A first look at quic in the wild[END_REF]. To contribute to the specifications of the protocol at IETF, we need to assess the performance of the actually deployed version to justify the need for modifications for high Bandwidth Delay Product (BDP) networks.

Any-QUIC benefits from years of development, rapid deployment and large scale testing. Despite evolving versions, several properties are expected to remain invariant such as encryption of both application data and transport parameters. Fully-encrypted any-QUIC might lead to discrepancies between Over-The-Top (OTT) protocol design choices and Internet Service Provider (ISP) policing mechanisms. While OTT and ISP may not always be seen as competitors [START_REF] Antonopoulos | Internet service providers vs. over-the-top companies: Friends or foes? -short talk[END_REF], the deployment of any-QUIC could lead to some ISP issues: [START_REF] Ahmed | Software-defined satellite cloud ran[END_REF] to select the appropriate Qualityof-Service (QoS) policy for the applications carried out; [START_REF] Antonopoulos | Internet service providers vs. over-the-top companies: Friends or foes? -short talk[END_REF] to enable the right shaping policy according to both end user's contracts and access network characteristics; or [START_REF] Boudec | Performance Evaluation of Computer and Communication Systems[END_REF] to optimize the use of the constrained resources such as on cellular networks.

As a matter of fact, operational ISP networks do not evolve at the same pace as End-to-End (E2E) protocols. Furthermore, they should not only be influenced by new emerging protocols, but also with existing and potentially old fashioned protocol stacks. Indeed, both the low Transmission Control Protocol (TCP) Initial congestion Window (IW) values measured in [START_REF] Rüth | On the use of TCP's Initial Congestion Window in IPv4 and by Content Delivery Networks[END_REF] and the analysis of TCP variants in the wild [START_REF] Yang | Tcp congestion avoidance algorithm identification[END_REF] highlight that some web services are still using outdated transport protocol flavours. Any-QUIC could balance the part of old stacks currently used which is a great illustration of the impact OTT have over Internet traffic.

SATellite COMmunication (SATCOM) networks typically break the TCP connections to adapt the transport protocol for long delay links. Although recent E2E protocols may exhibit decent performance over high BDP paths, splitting TCP allows for adaptation of both TCP slow-start and loss-recovery mechanisms. This results in lower page load times [START_REF] Kuhn | MPTCP and BBR performance over Internet satellite paths[END_REF]. Moreover, older stacks would anyway need specific acceleration. It is worth pointing out that cellular networks may also introduce the same kind of Performance Enhancing Proxy (PEP) to adapt e.g. TCP for the upcoming Fifth-Generation Mobile Communications System (5G): this is not only seen through research papers [START_REF] Jiang | Driving linux tcp congestion control algorithms around the lte network highway[END_REF][START_REF] Kim | Enhanced split tcp with end-to-end protocol semantics over wireless networks[END_REF] but also in 3rd Generation Partnership Project (3GPP) study items [START_REF] Provvedi | New SID on Study on NR Enhancements for TCP[END_REF]. In this context, the trend towards the deployment of protocols like any-QUIC questions the actual E2E protocols' adaptations. This motivates this study that assesses the performance obtained by GQUIC when it comes to downloading two different web pages over a geostationnary satellite.

To the best of our knowledge, this paper reports the first evaluations of GQUIC using a real public SATCOM access by assessing the web browsing QoE. Our main findings are:

• for a large web page, the page load time is approximately twice longer with GQUIC compared to Transport Layer Security (TLS)/TCP (section 3.1);

• this difference in larger page load time resides in the poor performance of the non-delegated Congestion Controller (CC) in GQUIC (section 3.2);

• although faster, GQUIC connection establishment does not compensate the above issue (section 3.3).

Experiment setup

We exploit a public SATCOM Internet access and repeatedly download two pages with different profiles. We report raw Quality-of-Experience (QoE) metrics, such as Page Load Time (PLT), that represent today's end user experience. We do not pretend to properly assess the QoE of web browsing since it depends a lot on the page that is downloaded. We mainly report trends on some QoE-related web browsing parameters.

Our approach provides a fair comparison between GQUIC and a SATCOM-optimized TCP. Controlled experiments could hardly be envisioned since the operator's ground segment implements specific optimizations and IQUIC available frameworks may not be relevant [START_REF] Molavi Kakhki | Taking a long look at QUIC[END_REF].

For the sake of reproducible science, we have released the scripts that have been used to generate our results [START_REF] Thomas | Quic user experience assesment -public repo[END_REF].

SATCOM and 4G Internet accesses

To better explain the behavior of GQUIC over a SATCOM access, we also perform some tests with a 4G access as a reference. This section focuses on the description of the SATCOM Internet access.

The public SATCOM operates in Europe with geostationary satellites. We have used a KA-SAT PRO25Go access. To roughly estimate the likely performance of this access and provide an initial sanity check, we have measured that the network is less congested between 2 pm and 4 pm and have decided to run our evaluations at that moment of the day. Early evaluations have showed that TCP is split both at the gateway and at the terminal * . However, we can not have much more information on the stacks that are used within the operator network or at the terminal.

The data plan of our contract limits the variety of performed experiments, but our tests let us assess the estimated SATCOM end-users' QoE. Furthermore, we reckon this also illustrates the impact of OTT protocol design decisions over a SATCOM provider.

A description of a generic SATCOM architecture can be found in [START_REF] Ahmed | Software-defined satellite cloud ran[END_REF][START_REF] Kuhn | Network coding and satellites[END_REF]. 

Web pages and QoE

To assess the QoE of a web browsing user, we measure the Page Load Time (PLT), defined as the elapsed time between the connectStart and loadEventEnd events [START_REF] Wang | Navigation timing. W3C recommendation[END_REF]. For an extensive assessment, other metrics could have been considered such as the time to render or the time to first paint. However, the relevance of these metrics depends on the page that is downloaded and we could not consider many web pages characteristics since the pages needed to be available via GQUIC. Our objective is to identify trends and high level comparison of the two protocol stacks.

As shown in Figure 1, the PLT can be decomposed into (1) the time needed to complete the handshake and send the request and (2) the time required to download the content and to process it. In addition to the PLT, we measure the Time To responseStart (TTR), the moment at which the user receives the first byte of the Hypertext Transfer Protocol (HTTP) response from the server. This helps us assess the contribution of the connection establishment and the request transmission in PLT. Host resolution is not considered. Metrics are measured when accessing two different targets :

• Target A : one picture with a 5.3 MB total size;

• Target B : one Google's 404 page with two objects and 11 kB of total size. Both page are hosted on Google's GQUIC capable servers. We acknowledge that selecting these targets has an impact on the relevance of our conclusions. We do not aim at assessing the performance of GQUIC for any page download but rather expect to compare its behaviour when it comes to downloading large web objects.

Scenario configuration

Involved protocols collect network and server information using parameters caching, TCP Fast Open (TFO) [START_REF] Cheng | TCP Fast Open[END_REF], GQUIC discovery [START_REF] Hamilton | Quic discovery[END_REF] and GQUIC connection resumption † mechanisms. The cached parameters are then used to improve the following loads ‡ . To analyze their impact on PLT and TTR, each test unit is composed of three web pages downloads before purging the browser profile. For each load, the client fetches one of the web pages and then closes the browser when the page is retrieved. Elapsed time between two loads is uniformly distributed between 5 and 15 seconds.

Automated weather and link quality reports are linked to the test units. Measures were performed during good weather conditions, with no rain and few clouds. Average link characteristics are presented in Table 1. We also provide worth-noting comparison of the size of the targets with the BDP and the IW in Table 2. We assume servers' default IW is set to 32 TCP Maximum Segment Size (MSS) as observed in GQUIC source code [START_REF]Google Chromium Projects[END_REF]. The actual IW may not be exactly 32, but the main point of this discussion is to highlight the differences between the size of the file and the expected IW. We use the Selenium automation tools to control the browser and retrieve PLT and TTR. Tests are operated on a laptop with 4.15.0-29-generic Linux. 

Few words on the browsers

An analysis of Chrome's behavior combined with [START_REF] Langley | The quic transport protocol: Design and internet-scale deployment[END_REF][START_REF] Hamilton | Quic discovery[END_REF] has provided us with the following expectations:

• When Chrome starts, it opens connections with several servers. If GQUIC is enabled, we have identified that Chrome benefits from those loads to open several GQUIC connections.

To ensure the same start point whether GQUIC is enabled or not, we have decided to block any GQUIC traffic not intended to the server holding the web-page or its objects.

We have done that since we do not want Chrome's specific implementation of Chromium to have an impact on the conclusions that are proposed in this article.

• Before using GQUIC, Chrome needs to learn about its availability. GQUIC discovery procedure is described in more details in [START_REF] Hamilton | Quic discovery[END_REF][START_REF] Langley | The quic transport protocol: Design and internet-scale deployment[END_REF]. Important to note here is that Chrome always use TCP for the first time it contacts a server.

• Since Chrome is restarted between each load, it will neither use GQUIC nor TLS connection resumption. This is due to the way Chrome deals with certificates, not to any limitation in the two protocols. We thus expect only 1RTT GQUIC connections.

For each test unit, we use two instances of Google Chrome 67.0.3396.99:

• ChromeQuic: GQUIC is enabled with Bottleneck Bandwidth and Round-trip propagation time (BBR) congestion control instead of CUBIC § . We request BBR on the server side via flags during the handshake, but cannot assess the BBR version used by Google servers. However, we can expect that Google had deployed the last version at the time of testing.

• ChromeNoQuic: GQUIC is disabled.

ChromeNoQuic will always use a HTTP2-TLS1.2-(split)TCP (HTT) stack, whereas ChromeQuic starts with HTT and switches to HTTP2-GQUICv39-UDP (HQU) whenever possible. For both instances, TFO is enabled and content caching is disabled. Changes described in this section are the only ones performed on publicly available Google Chrome.

Results

PLT for a large page

We denote by HTT the HTTP2-TLS1.2-(split)TCP stack and by HQU the HTTP2-GQUICv39-UDP stack. Figure 2 presents the PLT for target A as a function of the load index since last For the first load, we expect similar performance for both browser versions as they use the same protocol stack (HTT). The two distributions are indeed located at the same time values and they both show low dispersion. However, with ChromeQuic learning about GQUIC availability, HQU is then permanently used for that browser starting from the second load.

We observe the worst performance with HQU where PLT is up to twice longer than ChromeNoQuic which uses HTT. The extremely low p values confirm the statistical relevancy of that observation. Each of ChromeNoQuic and ChromeQuic exhibits a higher PLT dispersion and an intersection of the confidence intervals for loads 2 and 3. It substantiates that above mentioned optimization mechanisms are all performed within one load and we do not expect any further evolution of the PLT with additional loads.

Packet sequence numbers rate

To understand the performance gap between HQU and HTT, we first focus on the second load of target A and more particularly on the second phase of a PLT, i.e., the time elapsed between the reception of the first response byte and the reception of its last.

To mitigate the issue of encryption keys, we define a sequence number equivalent for GQUIC connections. It is defined as the cumulative sum of the bytes received over the connection, scaled in order to reach the same last value as with TCP. We recognize that the value may present local differences compared to stream offsets embedded in GQUIC packets. Nonetheless, we do believe that global behaviors can be compared.

Figure 3 presents those computations on a subset of HTT and HQU connections. Downward [resp. upward] triangles report the location of TTR [resp. PLT] measurements. We observe that the HQU stack fires the responseStart event before HTT. However, the download is completed way after. This can be explained by HTT getting "up-to-speed" and showing a stable and high goodput, while HQU ramps up its transmission rate slowly.

We first focus on HQU. To discriminate the origin of this slow increase between (a) a UDP throughput control from the ISP or (b) the BBR Congestion Controller (CC) itself, we can compute the duration of the BBR Startup phase ¶ : t s = ln 2 (B/W i )R, with B the BDP of ¶ Note that BBR Startup phase uses the same exponential increase profile as Slow Start or Hystart and only the link, R its RTT and W i the IW. For the given parameters of the whole E2E link we obtain t s ≈ 3.5s. Compared to expected behavior of BBR we can note on Figure 3 a Startup phase of approximatively 4s (between 2s and 6s), followed by three constant-rate segments. The observation is in line with the computed value. With target A only four times bigger than the BDP (Table 2), we can note that the CC above GQUIC spends more than two third of the download in its Startup phase. It means that we can expect a similar performance for any other CC using a binary search including TCP New Reno and CUBIC, as long as they are implemented above GQUIC.

In comparison, HTT achieves a near-constant downloading rate, as noted by the quasi-linear increase of sequence numbers. As explained in Section 2.1, the TCP path is split into three connections. One for the satellite link and one at each of its edges: connecting the server to the GateWay (GW) and the Satellite Terminal (ST) to the client (see Figure 5). Let's suppose the segment P EP GW → P EP ST uses proprietary protocols and does not require any startup probing phase. The TCP slow start can be neglected for the segment P EP ST → Client since its RTT is around 1 ms. Finally, the binary search is also expected to last less than 1 RTT for the segment Server → P EP GW before the later toggle down the emission with its flow control * * . Computations are again in line with the observed values as we note that the final constant TCP throughput is reached in less than 50ms on the row data of Figure 3. In our scenario, splitting TCP and using proprietary protocols in the central segment allows each outer segment to present low BDP and thus permit a fast binary search. On the contrary, GQUIC cannot be split because of transport-level encryption.

To better explain the poor performances of GQUIC, we run the same computations on a comparative 4G access link. Results are shown in Figure 4. First, we note the HQU stack fires the responseStart event before HTT and the median gap is around 90ms. Section 3.3 provides insights for that difference. Second, we can note that the BDP of the path is here lower than the IW. Thus, the Startup phase is completed in less than 1 RTT. And last, the CCs spend the most part of the load in their Steady state because target A is significantly bigger than the BDP (Table 2). On that state, GQUIC shows better performances which is consistent with studies performed on non-split paths [START_REF] Molavi Kakhki | Taking a long look at QUIC[END_REF]. On the geostationary link, the gap in TTR was weak and GQUIC was penalized in its slow start compared to split TCP.

Focus on the handshake

We just saw that GQUIC encryption prevents any proxy to split the connection, which results in long CC Startup phase. But GQUIC was also designed to reduce the handshake duration. In this section, we focus on that phase of the download: from the first packet sent by the client to the first HTTP response bytes received. Results are shown in Figure 6 that presents the notch boxes for the TTR metric.

Loads 2 and 3 show a high dispersion for ChromeNoQuic and incompatible confidence intervals for ChromeQuic. It questions the hypothesis that learning mechanisms are performed within one load. On a 4G access network (Figure 7), this behavior cannot be seen : we note a gain between load 1 and the followings but loads 2 and 3 show low dispersion and compatible confidence intervals. We assume that the SATCOM ISP policy might disturb the results based on recent traffic history.

One could expect that HQU would gain at least one RTT during the handshake, our results do not reflect that expectation. To understand why, we first need to note that neither GQUIC nor TLS1.2 use connection resumption since the browser is restarted each time. However, analysis of traffic indicates that Chrome is using TLS1.2 False Start [START_REF] Langley | Transport Layer Security (TLS) False Start[END_REF]. The observed HTT handshake is presented in Figure 5. The TCP handshake is performed with the immediate PEP on the path. Its duration can be neglected compared to the rest of the sequence. The TLS1.2 Client Hello differs in the exit condition.

Measured throughput : 25Mbps. Measured RTT : 750ms. Default IW : 32. * * Throughput before reaching flow control limitation : 25Mbps. Computed RTT based on the difference of the RTT with the Server and with the GW : 30 ms. Default IW : 32. packet does not suffer any extra delay. So, it appears that the middle segment use a proprietary protocol or already existing connections and no handshake is required between the two PEP. As a consequence we expect to receive the first byte with the HTT stack (i.e. T T R HT T ) within twice the E2E RTT. In reality, we observe a high-dispersion extra-delay before receiving the HTTP answer (see Figure 5). We put those results in relation with the same dispersive delay observed in [START_REF] Molavi Kakhki | Taking a long look at QUIC[END_REF][START_REF] Zhang | How quick is quic in satellite networks[END_REF] and we could not identify with certainty its origin. That being said, the analysis can rely on the median and maximum values of the metric to drive trends. For the HQU stack, since connection resumption is not used, GQUIC will perform 1 RTT handshakes (Figure 4 of [START_REF] Langley | The quic transport protocol: Design and internet-scale deployment[END_REF]). Here again we can expect : T T R HQU ≈ 2RT T E2E . In conclusion, thanks to the distributed PEP, to TLS False Start and despite the 1 RTT handshake in GQUIC, both the HTT and the HQU stacks present the same theoretical TTR. In practice, HQU is here slightly faster.

Client PEP ST PEP GW Server

To further justify our analysis, we compare the TTR on a 4G access network (Figure 7). In this network, the TCP handshake cannot be neglected anymore because PEP are not deployed. Thus, T T R HT T = 3RT T E2E , i.e., HQU is faster by at least one E2E RTT which is consistent with Figure 4 and Table 1 as the measured TTR gap is around 90 ms. It explains why, when compared to HTT, HQU might present better performances on a mobile network than on a SATCOM access.

PLT for a small page

In this section, we aim at assessing the impact of the target size on the above mentioned conclusions and further analyze the impact of the ratio between the BDP, the IW. Figure 8 presents those results.

Target B can be sent within an initial congestion window (See Table 2). ChromeQuic exhibits a better PLT for loads 2 and 3 of target B than ChromeNoQuic. Indeed, the CC does not need to probe the link and the main contributor of the PLT should be the TTR. Moreover, as we saw in section 3.3, HQU generally fires the responseStart event slightly before HTT.

That being said, as opposed to target A, objects of target B are located on www.google.com † † . These objects are downloaded by ChromeQuic using an already existing GQUIC connection. This is due to the initial connections to www.google.com that Chrome opens when starting. † † Given by analysis of the internal log of Chrome They enable ChromeQuic to discover GQUIC support and even to reuse the previously opened GQUIC connection to fetch the two objects of page B. I.e., by reducing the duration of several handshakes to several servers, the gains are summed up and the PLT is reduced. However, we note that the gain is limited compared to the PLT difference with target A.

Contribution and related work

Performance comparisons of GQUIC and TCP have already been conducted under various network conditions and for various applications [START_REF] Molavi Kakhki | Taking a long look at QUIC[END_REF][START_REF] Carlucci | HTTP over UDP[END_REF]. For instance, the authors in [START_REF] Zhang | How quick is quic in satellite networks[END_REF] have performed an evaluation of GQUIC on an emulated platform with scenarios involving SATCOM in LEO and GEO contexts. They concluded that GQUIC outperforms TCP but their testbed did not include any PEP. On the contrary, our study demonstrates that transparent proxying is the cornerstone of better Page Load Time with TCP when compared to GQUIC. The impossibility for GQUIC to benefit from the PEP technology has already been identified in [START_REF] Molavi Kakhki | Taking a long look at QUIC[END_REF]. Here again, the authors concluded that GQUIC continues to outperform TCP even when the later is split by a proxy. Our tests on a real access highlight the influence of complex PEP deployment schemes on the comparative performance of both protocols.

This paper completes the related work by reporting the first evaluations of GQUIC using a real public SATCOM access. We consider two web-pages: one picture with a 5.3 MB total size and one Google's 404 page with two objects and 11 kB of total size. The main conclusions are the following:

• for a large web page, the page load time is approximately twice longer with GQUIC compared to TCP;

• this difference in larger page load time resides in the poor performance of the non-delegated Congestion Controller in GQUIC;

• although faster, GQUIC connection establishment does not compensate the above issue.

As it is, GQUIC may result in poor end user experience on a high BDP network. However, inducing specific tuning for SATCOM networks in the standards and in actual deployments may be complicated.

Discussion

The important variability in applications' requirements makes it hard to define a transport protocol that suits them all. The relevance of application and transport layers protocols depends on both (a) how application data packets are generated and carried out and (b) the network underneath. Taking as example a SATCOM Internet access, the performance of different web applications highly depends on the web pages characteristics [START_REF] Secchi | Performance analysis of next generation web access via satellite[END_REF]. There is no "transport layer silver bullet", i.e. a transport protocol that would suit to any application and any network conditions [START_REF] Sivaraman | No silver bullet: Extending sdn to the data plane[END_REF].

ISP point-of-view

For a SATCOM ISP, the deployment of any-QUIC could be seen as interesting:

• we can expect interesting gains for short flows,

• we would not need PEP that are expensive and sometimes complicated to maintain and operate.

However, the performance gains for large files transmissions, the inadequacy of the end-to-end congestion control to SATCOM links and the rapid evolutivity of the protocol may be seen as a threat to good end-user quality of experience. Moreover, such as illustrated by the discussions on the spin-bit at the IETF, ISP could encounter issues in identifying where the loss occurs in the network.

Towards a middlebox-friendly any-QUIC

To date, GQUIC does not seem to be blocked by ISP companies, according to [START_REF] Rüth | A first look at quic in the wild[END_REF] and our experiments. It may not be the case when this UDP traffic becomes a greater proportion of the total traffic. Indeed, for the reasons mentioned in 5.1, quickly evolving protocols may not be easy to deal with, from an ISP point-of-view. Interactions between the end-to-end protocol and the operator middle-boxes could be enabled, such as discussed in [START_REF] Kuehlewind | Manageability of the quic transport protocol[END_REF]. Moreover, bits such as the spin-bit could be made available for the ISP operations, such as load-balancing and statistics on the current flows.

To adapt the congestion control and data rate transmission to a specific SATCOM scenario, more important modifications may be required. They may involve changing the advertised receive window, such as in IP-Explicit Rate Notification (IP-ERN) architectures [START_REF] Martin | An ipern architecture to enable hybrid e2e/ern protocol and application to satellite networking[END_REF], delegate the security to the network operator for better quality of experiences or update the browser [27]. These specifications could be negotiated at initialization such as discussed in the transport draft of IQUIC [START_REF] Iyengar | Quic: A udp-based multiplexed and secure transport[END_REF].
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Table 1 :

 1 SATCOM and 4G access networks

	Metric	SATCOM	4G
	Downlink capacity	25 Mbps	5 Mbps
	Uplink capacity	5 Mbps	2.5 Mbps
	RTT	750 ms	80 ms

Table 2 :

 2 Ratios between target sizes, BDP and IW -e.g. Target A is 113 times larger than the IW

	Target	Size / BDP SATCOM 4G	Size / IW
	A (5.3 MB)	4.8	212	113
	B (11 kB)	0.01	0.44	0.2

† Also called zero-RTT and denoted 0RTT in the following. ‡ For instance: caching the certificates reduces the handshake duration both with GQUIC and with TCP/TLS; caching the RTT estimate prevents spurious retransmissions during the GQUIC handshake; etc.

§ This is performed following the method described in[START_REF] Mo | Best practice to test congestion control part of quic[END_REF]. The objective is to get a consistent comparison as BBR is expected to be deployed for TCP on Google's infrastructures[START_REF] Cardwell | Bbr: Congestion-based congestion control[END_REF].