
HAL Id: hal-02401918
https://hal.science/hal-02401918

Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Camera pose estimation based on PnL with a known
vertical direction

Louis Lecrosnier, Rémi Boutteau, Pascal Vasseur, Xavier Savatier, Friedrich
Fraundorfer

To cite this version:
Louis Lecrosnier, Rémi Boutteau, Pascal Vasseur, Xavier Savatier, Friedrich Fraundorfer. Camera
pose estimation based on PnL with a known vertical direction. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Nov 2019, Macau, China. �hal-02401918�

https://hal.science/hal-02401918
https://hal.archives-ouvertes.fr

1

Camera pose estimation based on PnL with a
known vertical direction

Louis Lecrosnier1 , Rémi Boutteau1, Pascal Vasseur 2, Xavier Savatier1, Friedrich Fraundorfer 3

Abstract—In this paper, we address the problem of camera
pose estimation using 2D and 3D line features, also known as
PnL (Perspective-n-Line) with a known vertical direction.

The minimal number of line correspondences required to
estimate the complete camera pose is 3 (P3L) in the general case,
yielding to a minimum of 8 possible solutions. Prior knowledge
of the vertical direction, such as provided by common sensors
(e.g. Inertial Measurement Unit, or IMU), reduces the problem
to a 4 Degree of Freedom (DoF) problem and outputs a single
solution. We benefit this fact to decouple the remaining rotation
estimation and the translation estimation and we present a
two-fold contribution: (1) we present a linear formulation of
the PnL problem in Plücker lines coordinates with a known
vertical direction, including a Gauss-Newton-based orientation
and location refinement to compensate IMU sensor noise. (2) we
propose a new efficient RANdom SAmple Consensus (RANSAC)
scheme for both feature pairing and outliers rejection based solely
on rotation estimation from 2 line pairs. This greatly diminishes
the computational cost compared to a RANSAC3 or RANSAC4
scheme.

We evaluate our algorithms on synthetic data and on our own
real dataset. Experimental results show state of the art results in
term of accuracy and runtime, when facing 2D noise, 3D noise
and vertical direction sensor noise.

Index Terms—Computer Vision for Other Robotic Applica-
tions, Sensor Fusion, Localization

I. INTRODUCTION

Camera pose estimation consists in determining the position
and the orientation of a camera with respect to a reference
frame. This process requires known correspondences between
real world features and their projection onto the image plane.
When these features are points, we refer to the well-studied
Perspective-n-Point (PnP) problem [1] [2] [3] [4] [5]. In the
case of line features, we are facing the challenging, more
recent and less studied Perspective-n-Line (PnL) problem. A
recent review of the latter methods is presented in [6].

Once the 2D and 3D lines extraction process is completed,
feature pairing is not a simple task: lines lack effective
descriptors, and descriptor-based pose estimation methods are
computationally more expensive.

When considered, feature pairing is often tackled with a
RAndom SAmple Consensus method (RANSAC) [7] using 3

This work was carried out as part of the COPTER research project, and
is co-funded by the European Union and the Région Normandie. Europe
is involved in Normandy with the European Regional Development Fund
(ERDF).

1Authors are with Normandie Univ, UNIROUEN, ESIGELEC, IRSEEM,
76000 Rouen, France

2Author is with Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen,
LITIS, 76000 Rouen, France

3Author is with Institute for Computer Graphics and Vision, Graz University
of Technology, 8010 Graz, Austria, and German Aerospace Center (DLR),
Remote Sensing Technology Institute, Germany

or more lines correspondences. This method can be computa-
tionally expensive, regarding the number of pairs required in
the process. For n 2D lines and m 3D lines, we have 6.Cm

3 .Cn
3

possible combinations for 3 pairs of lines and only 2.Cm
2 .Cn

2
combinations for 2 pairs of lines, i.e. for a 20 2D and 3D
lines dataset, we have 7,797,600 possible line combinations
for 3 pairs of lines and 72,200 for 2 pairs of lines. We
easily understand that reducing from 3 to 2 the number of
pairs required in the pairing process, and thus the number of
combinations to evaluate, can greatly improve the speed of the
overall process. Feature pairing is computationally expensive.
Performing this task online is challenging for embedded CPUs.
Increasing the overall speed of the process could leverage this
issue.

Many modern vision-based systems are equipped with rel-
atively cheap and accurate inertial measurement units (IMU),
which provide useful information about the system orientation,
i.e. give a prior knowledge on two of the three rotations of
the camera. This vertical direction vector, or up-vector, can
be accurate from 0.5° for the cheapest embedded sensors to
0.02° for less affordable sensors [8]. Some PnP and PnL
methods rely on the provided up-vector to reduce the number
of potential pose solutions, to reduce the general problem
complexity in case of minimal formulation, or to increase
performance [8] [9] [10] [11].

In this paper, our first contribution is a Linear-formulation-
based PnL with a known vertical direction. Our formulation
relies on the Plücker representation of lines inspired by [12]
and [5], but we benefit the known up-vector of the system
to reduce the PnL problem from 6 DoF to 4 DoF, and to a
unique solution. We also propose a pose refinement process
based on a Gauss-Newton method to sequentially optimize the
estimated rotation and translation.

Our second contribution is a new RANSAC2 algorithm
capable of either line-pairing or outliers rejection by simply
changing its inputs. With our PnL formulation, the translation
estimation requires at least three lines to be solved but the
remaining rotation R can be computed with only 2 pairs of
lines. Thereby, we present a RANSAC2 scheme that is solely
based on the rotation estimation. Our approach doesn’t rely on
a prior pairing, and takes advantage of our PnL formulation to
proceed simultaneously and efficiently to feature-pairing and
pose estimation.

We bring forward a study of the robustness of our PnL for-
mulation and our outliers removal module with both synthetic
and real data.

2

II. RELATED WORK

All PnL methods formulate the pose estimation problem as
a set of linear or polynomial equations and minimize algebraic
or geometric error (such as reprojection error).

[1] and [13] introduced PnL research in 1989. They for-
mulated the problem with a minimum of three 2D-3D line
correspondences, known as P3L. [1] were the first to propose
a closed-form solution to the PnL problem with a polynomial
approach. [13] stated that in the general case, at least 8
solutions exist for the PnL problem.

A decade later, [14] reduced the number of solutions using
4 or more line-correspondences, and employed polynomial
lifting to convert a polynomial system to a linear system
of the elements from the rotation matrix. [15] proposed
more recently a PnL solution using a minimum of 3 line-
correspondences, more robust to noise, but that spans 23
solutions. [16] presented the RLPnL algorithm, requiring at
least 4 line correspondences. This algorithm uses subsets of 3
line correspondences and identifies a solution in the derivatives
of a 16th order polynomial. [6] proposed a modified RLPnL
method named ASPnL (Accurate Subset based PnL), that is
more efficient on small noisy datasets, but is very sensitive to
outliers. ASPnL estimates the complete pose in homogeneous
coordinates, and includes a pose refinement module based on
a Gauss-Newton optimization.

[5] [17] proposed a PnL algorithm based on the DLT (Direct
Linear Transform) algorithm of [18], using the Plücker line
representation. While we use the same coordinates parameter-
ization, we solve the PnL problem differently. They recover
rotation and translation by solving a homogeneous system with
singular value decomposition, where we rely on a linear least
squares solver. Their method is efficient and accurate with a
high number of lines (up to a few thousands), but is inaccurate
for small datasets [6].

On the topic of PnL with a known vertical direction (or up-
vector), [19] proposed two PnL algorithms relying on modified
Plücker coordinates, known as NPnLUpL and NPnLUpC (N-
camera PnL Up-vector Linear and Cubic). The first one solves
the orientation and position from a single system of linear
equations producing a unique solution, while the later recovers
the pose from a cubic polynomial, thus yielding 3 solutions. To
perform accurately these algorithms require a calibrated multi-
camera setup, and known correspondences between 2D-lines.
These assumptions are not suitable for a lightweight robotic
application (eg. UAV with a monocular camera).

Several outliers rejection schemes exist within the littera-
ture. A first category is based on the PnP outliers rejection
scheme by [4], and tends to minimize an algebraic error [6]
[17]. These methods struggle with small and noisy datasets,
but handle efficiently large datasets.

On the other hand, RANSAC methods using 3 or 4 line
correspondences are more efficient with smaller datasets, but
tend to have an unsuitable runtime for real-time applications
with an increasing number of lines in the dataset [6].

Diminishing the number of line correspondences required
for the pairing process is necessary to reduce the runtime of
the latter methods. For this reason, we address in this paper

Fig. 1: The 3D line L is parameterized by its direction V and
a normal U intersecting L and the origin of the world frame
{W}. l is the projection of L onto the image plane Π in the
camera frame {C}.

a novel RANSAC-based pairing process relying on two 2D-
3D line correspondences and a linear formulation of the PnL
problem with the Plücker line representation.

III. THE PERSPECTIVE-N-LINE PROBLEM

We assume in this section that we have a Z-axis-facing
calibrated pinhole camera, with an associated IMU (inertial
measurement unit) giving us the vertical direction of the
camera (i.e. two of the three rotations are known).

A. 3D Line parameterization

As seen in Fig.1, Plücker coordinates define a 3D line L in
the world frame {W} from its direction V and a plane U pass-
ing through the line and the origin, in the form of a homoge-
neous 6-vector. Given two distinct 3D points in homogeneous
coordinates A = (a1,a2,a3,a4)

T and B = (b1,b2,b3,b4)
T , we

define the homogeneous 6-vector L = (UT ,VT)T such as:

L = (L1,L2,L3,L4,L5,L6)
T (1)

where
U = (a1,a2,a3)× (b1,b2,b3)

V = a4.(b1,b2,b3)−b4.(a1,a2,a3),
(2)

and ’×’ being the cross-product. It is important to note that
L must satisfy the bilinear constraint UT .V = 0.

Let LW be the expression of L in the world frame {W}.
LW can be expressed in the camera frame {C} with the line
motion matrix M6×6 as:

LC = M.LW (3)

with
M =

(
R −R.T[×]

03×3 R

)
. (4)

’[×]’ represents the skew symmetric matrix of a 3-vector. T =
(tx, ty, tz)T is a translation vector and R is a 3× 3 rotation
matrix.

3

B. Line projection

The projection of the 3D line L onto the image plane Π

is referred as l. l is defined by the intersection of Π and the
projection plane u passing through the 3D line L and the origin
of the camera frame {C}. For this reason, the 3-vector u is
sufficient to fully represent l. Let lC be the expression of l in
the camera frame. We obtain lC by projecting LW with the
upper part of the line motion matrix M from equation (4),
which is a projection matrix P, with

P =
(
R −R.T[×]

)
(5)

and
lC ∼ P.LW , (6)

where lC = (l1, l2, l3)T . We use here the same parameterization
as [5], derived from [12]. This framework provides a linear
projection, that can easily be used as input for a linear least
squares pose solver. Note that the equality (6) is true up to a
non-zero scale factor.

C. Pose estimation with a known vertical direction

Let li = (li1, li2, li3)T be the 2D projection of the 3D line
Li = (Li1,Li2,Li3,Li4,Li5,Li6)

T , li and Li being the ith element
of a n pairs of lines dataset. We have Li = (UT

i ,VT
i)

T .
Solving the complete P3L problem requires estimating three

rotations ρ , θ , ψ and three translations tx, ty, and tz. IMU
sensors provide a prior knowledge on two out of the three
rotations, which reduces the problem to a 4 DoF problem.

By definition, LC
i lies on the projection plane of the 2D line

li, leading to the constraint

(RCW .VW
i)T .lCi = 0, (7)

where RCW is the rotation matrix composed with the remaining
rotation to be determined, such as

RCW = Rz.Ry.Rx

=

cz −sz 0
sz cz 0
0 0 1

 .

 cy 0 sy
0 1 0
−sy 0 cy

 .

1 0 0
0 cx −sx
0 sx cx


(8)

where cx = cos(ρ) , sx = sin(ρ), cy = cos(θ), sy = sin(θ),
cz = cos(ψ), sz = sin(ψ). Prior knowledge on the vertical
direction provides the values for ρ and θ , i.e. provides the
product matrix Ry.Rx, meaning that only two unknowns cz
and sz remain. For two line correspondences, we obtain a
linear system that can be solved for ψ , with a unique solution,
through a linear least squares solver.

In a noiseless case, we directly obtain RCW . However, when
proceeding with real data, we often obtain a badly scaled
rotation matrix R̃, that requires further refinement. Having
recovered cz and sz, we can recompose a matrix R̃ with
equation (8). Since cz and sz are estimated separately, they
might not satisfy the trigonometric constraint c2

z + s2
z = 1. We

enforce this constraint with a singular value decomposition of
the recomposed R̃ matrix, such as

U.Σ.V∗ = R̃
RCW = U.V∗T (9)

In order to estimate the translation vector TCW , we refor-
mulate (6) into

lC[×].P.L
W = 03×1. (10)

For a 2D/3D line correspondence, we obtain from (10) a sys-
tem of three equations. However, for only one line correspon-
dence, this system is rank deficient [18]. We need to stack the
equations from at least three 2D/3D line correspondences to
obtain a rank 3 linear system and recover the three remaining
unknowns tx, ty and tz. We rearrange this linear system such
as

M.TCW = N, (11)

each column of M being respectively expressed in term of tx, ty
and tz. TCW is the translation matrix such as TCW = (tx, ty, tz)T ,
and N contains all terms independent from tx, ty and tz. We
finally solve (11) using a linear least squares method, i.e.

TCW = (MT .M)−1MT .N. (12)

We refer to this method as VPnL LS (Vertical Perspective-n-
Lines).

D. Gauss-Newton optimization for the rotation and the trans-
lation

In our PnL formulation, the rotation and translation are
sequentially estimated. We propose rotation and translation
refinement methods that can also be sequentially applied to
the estimated pose.

a) Rotation optimization: Our PnL method relies on the
known up-vector to estimate the complete pose. However, the
up-vector is susceptible to sensor error. For this reason, we
propose a rotation optimization scheme to refine the estimated
camera orientation. Let AW

i and BW
i be two 3D points in the

world frame defining the ith 3D line Li of a n line dataset. Let
li be the projection of Li onto the image plane. Vi

W and Vi
C

are respectively the 3D line directions in the world and camera
frames. For this set of n lines, we express the constraint (7)
as a set of n functions f = (f1, ..., fn) depending on the three
rotations ρ , θ and ψ defined as in (8), so that

fi(RCW) = (RCW .VW
i)T .li = 0. (13)

We derive all fi equations into a jacobian matrix JR such
as

JR =


∂ f1

∂ρ

∂ f1

∂θ

∂ f1

∂ψ

...
∂ fn

∂ρ

∂ fn

∂θ

∂ fn

∂ψ

 . (14)

We then iteratively refine the rotation from a step s to the
next step s+1 with

βββ
s+1 = βββ

s− (JT
R.JR)

−1.JT
R.f, (15)

and βββ = [ρ,θ ,ψ]T .

4

b) Translation optimization: Any 3D point Ai lying on
the 3D line Li can be projected onto the 2D line li. We express
this constraint similarly to (13) in a set of n functions g =
(g1, ...,gn) to refine the translation estimation in

gi(TCW) = (RCW .AW
i +TCW)T .li = 0. (16)

We also express the jacobian matrix of (16), which we use as
in (15) to optimize the translation. When coupled to our PnL
algorithm, these two optimizations are referred as VPnL GN.

Because of the non-linear nature of the functions f and g,
the Gauss-Newton algorithm does not guarantee convergence
to the global minimum with a random initialization [20]. How-
ever, convergence to optimal parameters can be achieved with
an initialization close to the global minimum. We observed that
both our methods generally converge within 2 iterations, when
initialized with our linear least square solver VPnL LS. For
this reason, we stop the algorithm when the refined parameters
reach a stationary value over two consecutive iterations, i.e.
convergence is attained, or when a maximum of 20 iterations
is reached, i.e. the parameters are extremely close to a local
minimum and evolution becomes almost stationary.

E. Line pairing and outliers rejection with RANSAC2

Algorithm 1 RANSAC2 Pairing

1: procedure PAIRING
2: input:
3: li : normalized 2D line, i = 1..n
4: Vj : normalized direction of the 3D line, j = 1..m
5: criterion : loop break threshold
6: N : maximum number of iteration
7: x : size of each set of data between each quantile
8: output:
9: inliers

10: internal variables:
11: RCW : Rotation matrix World → Camera
12: εεε : error vector such as liT .RCW.Vj
13: ε : first quantile of εεε

14: Algorithm :
15: do
16: Random sample two 2D-3D pairs
17: Estimate RCW with a linear least square solver
18: Measure εεε = liT .RCW.Vj, ∀ i = 1..n, j = 1..m
19: Split the error vector εεε into

m.n
x+1

quantiles
20: Extract ε

21: while ε > criterion AND iterations counter < N
22: Return inliers for εεε i < criterion

Algorithm 1 presents the line pairing process with outliers
rejection. First, a random sample of two 2D-3D pairs of lines
is used to estimate a rotation matrix R from the world frame to
the camera frame. An error vector εεε is then computed for all
possible pairs of lines. We split εεε into (m.n)/(x+1) quantiles,
m.n being the number of unique 2D/3D line combinations and
x number of lines separated by each quantile. We observe the
value of the first quantile of the error vector. A low value for
the first quantile of the error vector implies that a subset of x

lines generated a low error according to our error function. In
this case, we can assume that the estimated rotation is correct,
and that the line producing an error value under our threshold
are inliers. If not, we iterate until this condition is met, or
the maximum authorized number iterations is obtained. In the
latter case, we still return the pairs that generated the smallest
error over all iterations. Note here that the number of iterations
N is defined as

N =
log(1− p)

log(1− (1− ε)s)
, (17)

where p is the probability of selecting a random sample
containing only inliers (usually set to 0.99), ε the percentage
of outliers in the data, and s the number of data required for
the algorithm to operate (i.e. s = 2 here).

Regarding the number of quantiles (m.n)/(x+ 1), experi-
ments suggest that x should be set close to 35% the theoretical
number of inliers in the dataset.

IV. RESULTS

A. Synthetic data

In this section, we evaluate quantitatively the performance
and robustness of the different steps of our method.

a) Synthetic dataset setup: For the entire synthetic
dataset, we simulate a monocular perspective camera setup
with a 640×480 pixel resolution, a focal length of 655 pixels,
and no radial and tangential distortion.

We generate a set of random 2D lines, each being at least
70 pixels long and defined initially by two endpoints on the
image plane. These lines are given in the camera frame {C}.
We then express these lines in metric coordinates, and add a
random depth from 1 to 3 meters to each endpoint. Finally we
express these 3D points in the world frame {W} by applying
the transform TrCW = [RCW (ρ,θ ,ψ)|TCW] with ρ , θ , ψ being
random rotations between 0 rad and 2π rad, and TCW being a
random translation between 0 to 5m around the camera optical
center.

We evaluate the robustness of our method to 2D and 3D
noises. A normally distributed noise is added on both 2D
endpoints of the lines so that each line endpoint is displaced
of a given distance σ in pixels. This modifies both the position
and direction of the line on the image plane. We add a
gaussian 3D noise to the endpoints of the 3D lines so that
the displacement of each 3D endpoint caused by the noise has
a σ3Dmm norm.

Unless otherwise specified, all tests are run with 20 2D-3D
correspondences, and we run 2000 tests per noise step. Our
formulation requires at least three pairs of lines to work, but is
compatible with a higher number. For this reason, we evaluate
the impact of the number of lines on our algorithms.

We refer to different metrics to evaluate our algorithms.
Since the vertical direction is assumed known, the rotation
error refers to the absolute angular difference between the
estimated angle ψest and the initially applied angle ψ . The
translation error is the Euclidean distance between the esti-
mated location of the camera and the real camera location
divided by the norm of the original translation vector, and is
expressed in percent.

5

In the synthetic dataset, 2D and 3D lines are expressed from
points. For this reason, we can express the reprojection error
as the mean Euclidean distance between all 2D points in pixel
coordinates and the corresponding 3D points projected on the
image plane using the estimated pose.

For the pairing algorithm, we include the recall rate, i.e. the
number of inliers recovered over the total number of inliers.
We also show the precision rate, i.e. the number of inliers
recovered over the number of pairs recovered. Both these
metrics are evaluated with an increasing outliers rate.

b) Linear PnL with Plücker coordinates formulation: We
begin our tests with the pose estimation method. We present
the robustness to 2D and 3D gaussian noises in Fig. 2, and
we evaluate the impact of the number of lines as input in Fig.
3.

We compare both our algorithms with the ASPnL algorithm
from [6], NPnLUpL and NPnLUpC from [19]. While the two
latter are designed for multiview pose estimation, they accept
a single view configuration as input. ASPnL estimates the 6
DoF pose, and both our algorithm and NPnLUpL consider a 4
DoF problem. For a fair comparison between these algorithms,
we introduce a 0.5° constant noise on one of the two rotations
of the up-vector, simulating this way a common noise from a
low-cost orientation sensor.

In term of rotational error, results in Fig. 2 show that
when facing 2D noise, both our algorithm perform similarly.
With noise on the up-vector, we outperform NPnLUpL and
NPnLUpC for small 2D noises, but our methods tend to similar
results facing heavy 2D noises. All these four algorithms
outperform ASPnL when confronting a moderate to high
2D noise. Regarding small 3D noise, our two algorithms
outperform ASPnL, NPnLUpC and NPnLUpL. From 100mm
to higher noise, our VPnL LS is outperformed by NPnLUpC
and NPnLUpL, but VPnL GN competes with the two latter.

Regarding translation error, ASPnL performs better for
small 2D and 3D noise, because not suffering from errors on
the up-vector, but for medium to high noise, our VPnL GN
algorithm outperforms the others, and greatly improves the
translation error when facing 3D noise.

Fig. 3 presents how the number of lines impacts the pose
estimation in presence of noisy 2D or 3D lines. Here, 2D
noise on line endpoints is set to 10 pixels and 3D noise is
set to 100mm. Noise on the up-vector is set to 0.5 °. We
vary the number of lines from 4 to 40. The result shows
that our algorithms VPnL LS and VPnL GN systematically
outperform all other methods, independently of the dataset
size. Note here that NPnLUpC recovers the rotation with a
similar accuracy than our two algorithms, but as a median
translation error above 100% in our test case, for any dataset
size we tested.

We also show that in presence of 2D noise, all methods tend
to perform only slightly better when using more than 25 lines,
while increasing the computational complexity. In case of 3D
noise, we observe a similar phenomenon, apart from ASPnL
whose performances decrease when using more than 17 lines.

c) RANSAC2 as outliers removal module: We present
here the results of our RANSAC2 algorithm used as outliers

0 50 100 150 200

 3D noise (mm)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
e
d
ia

n
 r

o
ta

ti
o
n
 e

rr
o
r

(°
)

VPnL_LS

VPnL_GN

ASPnL

NPnLUpC

NPnLUpL

0 50 100 150 200

 3D noise (mm)

0

1

2

3

4

5

6

7

8

9

10

M
e
d
ia

n
 T

ra
n
s
la

ti
o
n
 e

rr
o
r

(%
)

VPnL_LS

VPnL_GN

ASPnL

NPnLUpC

NPnLUpL

0 5 10 15 20

 2D noise (pixel)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
e
d
ia

n
 r

o
ta

ti
o
n
 e

rr
o
r

(°
)

VPnL_LS

VPnL_GN

ASPnL

NPnLUpC

NPnLUpL

0 5 10 15 20

 2D noise (pixel)

0

1

2

3

4

5

6

7

8

9

10

M
e
d
ia

n
 T

ra
n
s
la

ti
o
n
 e

rr
o
r

(%
)

VPnL_LS

VPnL_GN

ASPnL

NPnLUpC

NPnLUpL

Fig. 2: Rotation and translation errors in case of 2D and 3D
noises. VPnL LS is our PnL formulation with a known vertical
direction and a linear least squares solver only. VPnL GN
is the same method with Gauss-Newton optimization on the
complete pose. ASPnL refers to [6] method, and NPnLUpL is
the PnL linear formulation of [19] workin on a single-camera
setup. Left column evaluates robustness against 2D noise, right
column evaluates robustness against 3D noise.

0 5 10 15 20 25 30 35 40

Nb of lines

0

0.05

0.1

0.15

M
ed

ia
n

ro
ta

tio
n

er
ro

r
(°

)

VPnL_LS, =10p
VPnL_GN, =10p

ASPnL, =10p
NPnLUpC, =10p
NPnLUpL, =10p

0 5 10 15 20 25 30 35 40

Nb of lines

0

1

2

3

4

5

6

7

8

9

10

M
ed

ia
n

T
ra

ns
la

tio
n

er
ro

r
(%

)

VPnL_LS, =10p
VPnL_GN, =10p

ASPnL, =10p
NPnLUpC, =10p
NPnLUpL, =10p

0 5 10 15 20 25 30 35 40

Nb of lines

0

0.01

0.02

0.03

0.04

0.05

0.06

M
ed

ia
n

ro
ta

tio
n

er
ro

r
(°

)

VPnL_LS,
3D

=100

VPnL_GN,
3D

=100

ASPnL,
3D

=100

NPnLUpC,
3D

=100

NPnLUpL,
3D

=100

0 5 10 15 20 25 30 35 40

Nb of lines

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
ed

ia
n

T
ra

ns
la

tio
n

er
ro

r
(%

)

VPnL_LS,
3D

=100

VPnL_GN,
3D

=100

ASPnL,
3D

=100

NPnLUpC,
3D

=100

NPnLUpL,
3D

=100

Fig. 3: Impact of the number of lines on the rotation and
translation errors for 2D and 3D noise. Comparison between
ASPnL, VPnL LS, VPnL GN, NPnLUpL and NPnLUpC.
Left column evaluates the impact of the number of lines with
2D line endpoints having a 10 pixel noise. Right columns
evaluates the impact of the number of lines with a 100mm 3D
noise on all 3D line endpoints.

6

removal module. We evaluate the recall and precision rates of
this outliers rejection module, as well as the runtime.

We combine our RANSAC2 algorithm with both our meth-
ods VPnL LS and VPnL GN to evaluate the overall runtime.
We compare our outliers removal algorithm to RANSAC3,
RANSAC4 and RLPNL Enull from [6]. RANSAC3 and
RANSAC4 propose a combined outliers rejection and pose
estimation scheme. RANSAC3 is P3L-based, and RANSAC4
is ASPnL-based. RLPnL Enull is a notably outlier-resistant
pose estimation algorithm.

For these tests, we imposed a 0.5° noise on the up-vector
used in our methods, and used a set of 40 lines with a fixed
5 pixels 2D noise and 50mm for the 3D noise. We measured
the runtime for each method for a range of outliers from 0%
to 60%, and run 2000 tests for each outlier step.

We finally computed the mean runtime over the entire out-
lier range, 2D and 3D noise for each method, since preliminary
results showed that for 40 lines, all methods tend to similar
runtimes independently of the outlier rate. For each outlier
step, we also computed the mean recall and precision rates. All
our runtime results are mesured on a laptop with an Intel Core
i5-6440HQ CPU running at 2.6 GHz with a single threaded
matlab R2017a script, on an Ubuntu 18.04 operating system.

Runtime results in table I show that even with our rotation
and translation optimization enabled, our RANSAC2 algorithm
competes with the non-RANSAC RLPnL Enull method with
a 3.2 ms runtime, while our RANSAC2+VPnL LS is more
than 10 times faster with a 0.21 ms runtime. RANSAC3 and
RANSAC4 have a respective runtime of 341.8 ms and 1,666.7
ms, which is significantly slower than our two methods. For
a fair comparison, we forced the number or iterations for
RANSAC3, RANSAC4 and RANSAC2 to be 10 times the
number of pairs of lines set as input, i.e. 400 iterations here.

RANSAC3 and RANSAC4 find solutions to the PnL prob-
lem in the roots of an 8th degree polynomial, which is
computationally more expensive than the linear formulation
used in both our methods and in RLPnL Enull. This could
explain the important runtime difference.

The outliers removal module in RLPnL Enull relies in the
analysis of the nullspace of a homogeneous linear system and
a Gauss-Newton scheme to find an optimal solution, while our
RANSAC2 algorithm simply relies on a linear least squares
method to solve a 4-lines linear system in a RANSAC scheme.
This explains the runtime difference of the two methods, and
also why our RANSAC2 coupled with our Gauss-Newton
optimization tends to the same runtime than RLPnL Enull.

TABLE I: Mean runtime for combined outliers rejection and
pose estimation methods. For the RANSAC-based methods,
the maximal number of iterations is fixed to 400. Results are
calculated for 2000 tests per outlier step.

Method Runtime(ms)
RANSAC2 (ours) + VPnL LS 0.21
RANSAC2 (ours) + VPnL GN 3.25

RLPnL Enull 2.90
RANSAC3 341.80
RANSAC4 1,666.7

0 10 20 30 40 50 60

Outlier rate (%)

0

10

20

30

40

50

60

70

80

90

100

R
ec

al
l a

nd
 P

re
ci

si
on

 r
at

e
(%

)

Recall rate, =5p,
Precision rate, =5p,

0 10 20 30 40 50 60

Outlier rate (%)

0

10

20

30

40

50

60

70

80

90

100

R
ec

al
l a

nd
 P

re
ci

si
on

 r
at

e
(%

)

Recall rate,
3D

=50mm,

Precision rate,
3D

=50mm,

Fig. 4: Evaluation of RANSAC2 as outliers removal module.
Recall and precision rates with 5 pixels 2D noise and 50mm
3D noise. Constant 0.5° noise on the up-vector. 2000 tests per
outlier step.

Fig. 5: Experimental setup for our dataset. The camera and
camera-support are rigidly attached, but only the camera
support pose is initially known in the Vicon frame. Ground
truth for the camera pose is provided by a calibration step.

Fig. 4 shows the recall and precision rate of our RANSAC2
algorithm. We observe a mean recall rate of about 65% in
the 2D noise case, and 45% in the 3D noise case. The mean
precision rate is 100% in both cases, independently of the
outlier rate.

We observe here that while our algorithm can be improved
in term of recall rate, we obtain a perfect precision. This means
that all inlier propositions returned by our algorithm are valid,
and thus lead to a pose estimation with an accuracy that is
shown in Fig. 2 and Fig. 3.

B. Experiment on real data

a) Experimental setup: To validate our methods with real
data, we created an experimental dataset composed of images
of an indoor scaffolding structure and corresponding camera
poses in a known 3D environment. The 3D environment
is represented in the form of point cloud acquired with a
Leica ScanStation C10 LiDAR. Ground truth for the poses
is provided with a millimetric accuracy by a Vicon motion
capture system, calibrated with the 3D point cloud and the
camera. 3D and 2D lines are extracted respectively from
the 3D point cloud and the images of our dataset. Because

7

we perform the extraction process manually, we limited our
experiment to 6 images acquired from various locations and
orientations.

To acquire images with 6 DoF poses, we mounted a
calibrated 640×480 pixel Logitech Quickcam 4000 camera
on a rigid metallic frame (see Fig.6 (a)), denoted camera
support. We moved and tilted this hand-held camera-setup
in the laboratory, around the scaffolding structure seen in
Fig.6(d) and Fig.7. Note here that the camera support to
camera transform TrCamSupport, as seen in Fig. 5, is initially
unknown.

b) Calibration: To calibrate the camera with respect to
the Vicon system, we acquire images of a chessboard equipped
with Vicon markers (see Fig.6 (b)) with our camera. We obtain
here TrCamChess and TrWChess.

For multiple images and associated poses, we can now
recompose TrCamSupport with:

TrCamSupport = TrCamChess.TrWChess
−1.TrWSupport. (18)

We estimate the rigid transform between the Vicon frame
{W} and the Leica frame {L} using known point features
available in the two frames. We placed several Vicon markers
into the laboratory, and manually selected their correspon-
dences in the point cloud. We obtained two sets of 23 3D
points Ai and Bi (i = 1..n) respectively in Vicon and Leica
frame, linked by a rigid transform TrLW with

TrLW.A = B (19)

Having calibrated the complete system, we know the com-
plete pose of the camera in the world frame.

c) Pose estimation tests and results: For each of the 6
images of our dataset, we estimated the camera pose using
manually matched 2D lines from the images, and 3D lignes
for the point cloud.

(a) (b)

(c) (d)

Fig. 6: a. camera setup equipped with Vicon markers, b.
calibration target template, c. point cloud with extracted 3D
line endpoints, d. image with extracted 2D lines.

Extracted 2D lines

VPnL_GN

Fig. 7: Reprojection of 3D lines extracted from the Leica point
cloud. The pose parameters are estimated with VPnL GN
only. 2D and 3D lines are paired manually.

Results are shown in table II. Regarding the rotation error,
result show that ASPnL has the lowest accuracy with a
median error above 5°. All methods perform similarly with
an accuracy around 0.2°. This result can be explained, since
ASPnL recovers the complete rotation where all the other
method considered benefit the up-vector to only recover one
rotation.

TABLE II: Mean, median and standard deviation for the
translation error (%) and rotation error (°) over 6 poses. 2D
and 3D lines are manually extracted and paired. The camera
is displaced in a 5m radius around the Vicon frame origin.

Rotation error (°) Translation error (%)

Method Med. Mean Std.
dev. Med. Mean Std.

dev.
VPnL LS 0.247 0.207 0.087 2.728 3.064 1.459
VPnL GN 0.276 0.294 0.082 2.786 3.109 1.481
NPnLUpL 0.249 0.267 0.187 3.241 3.894 2.760
NPnLUpC 0.278 0.298 0.108 5.281 27.27 50.47

ASPnL 5.494 13.64 21.72 6.767 6.889 2.702

Regarding the translation error, VPnL LS achieves the
best results with a 2.72% median translation error, followed
by VPnL GN with 2.78%. NPnLUpL and NPnLUpC are
designed for a multi-camera system, which explains a greater
translation error, respectively about 3.24% and 5.28%. ASPnL
is here the less accurate, with 5.76 % translation error. Re-
projection with the parameters estimated with VPnL GN are
shown in Fig. 7.

d) Outliers removal module tests and results: To test
the robustness against outliers with real data, we select a
pose from the 6 poses available in our dataset and ran-
domly introduce 40% of outliers in the line correspondences.
For a given test, each algorithm is given the same data as
input. The selected pose has 25 line correspondences and
the camera is placed 4.3m far from the Vicon frame ori-
gin. We evaluate the rotation and translation errors, as well
as the runtime, for RANSAC3, RANSAC4, RLPnL Enull,
RANSAC2+VPnL LS and RANSAC2+VPnL GN. Results
shown in table III are median values for 1000 tests. The

8

TABLE III: Outliers rejection and pose estimation test on real data. We show the median, mean and standard deviation for
the translation error (%), rotation error (°) and runtime (ms). The camera is placed 4.3m far from the Vicon frame origin and
tilted. For each test, 40% of the 26 line correspondences are shuffled to introduce outliers.

Rotation error (°) Translation error (%) Runtime (ms)

Method Med. Mean Std.
dev. Med. Mean Std.

dev. Med. Mean Std.
dev.

VPnL LS 0.009 0.016 0.353 12.49 16.83 45.52 1.1 2.2 0.95
VPnL GN 0.005 0.006 0.003 12.52 16.88 46.80 4.4 3.8 1.87

RLPnL Enull 1.48 1.454 0.917 106.6 113.4 58.10 1.8 2.4 13.91
RANSAC3 1.90 1.65 0.868 211.8 886.1 3118.6 334.4 262.8 23.67
RANSAC4 1.59 1.47 0.903 166.3 192.3 386.1 2109.6 1465.8 159.66

maximum number of iterations for the RANSAC algorithms
is fixed to 500.

The result shows that when coupled, our outliers rejec-
tion and pose estimation algorithms successfully recover a
valid pose in most of the cases, where RANSAC3+P3L and
RANSAC4+ASPnL fail. We note that RLPnL Enull performs
better than RANSAC3 and RANSAC4 methods for a much
smaller runtime, but is still greatly outperformed by our
methods in term accuracy. We observe a runtime respectively
two and three orders of magnitude faster when comparing
VPnL GN to RANSAC3 and RANSAC4, when RLPnL Enull
has a runtime comparable to both our methods.

Note that for this pose, VPnL GN does not perform better
than VPnL LS, because we are in presence of low 2D and 3D
noises combined with noise on the up-vector. This is consistent
with the simulations results shown in Fig. 2.

Our experiment validates the simulation results, and proves
the advantages of a known vertical direction for outliers
rejection and pose estimation, in term of accuracy and runtime.

V. CONCLUSION

In this paper, we first present a line-based pose estimation
scheme with known vertical direction. Our algorithm follows
a Plücker coordinates formulation, and a unique solution is
estimated with a linear least squares solver. We derive a rota-
tion and translation optimization scheme based on the Gauss-
Newton algorithm. We also present a pairing and outliers
removal module based on the RANSAC2 algorithm, relying
only on the rotation estimation.

Our PnL formulation is well suited for small and noisy
datasets, especially in mobile robotics, where the vertical
direction is often known from integrated sensors (IMU).
However, the use of a linear least squares solver involves a low
robustness to outliers. Our outliers removal module achieves
a 100% precision rate, up to 60% of outliers, in presence of
2D and 3D noise. Its very low runtime enables its use for
real-time robotic applications or as a pairing module.

ACKNOWLEDGMENT

The authors would like to thank Romain Rossi, Pierre
Merriaux and Sophie Ladet for helpful discussions.

REFERENCES

[1] M. Dhome, M. Richetin, J.-T. Lapreste, and G. Rives, “Determination
of the attitude of 3d objects from a single perspective view,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 11,
no. 12, pp. 1265–1278, 1989.

[2] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, pp. 155–166, 2009.

[3] J. A. Hesch and S. I. Roumeliotis, “A direct least-squares (dls) method
for pnp,” in IEEE International Conference on Computer Vision, 2011,
pp. 383–390.

[4] L. Ferraz, X. Binefa, and F. Moreno-Noguer, “Very fast solution to the
pnp problem with algebraic outlier rejection,” in IEEE Conference on
Computer Vision and Pattern Recognition, pp. 501–508.

[5] B. Přibyl, P. Zemčı́k, and M. Čadı́k, “Camera pose estimation from lines
using plucker coordinates,” arXiv:1608.02824, 2016.

[6] C. Xu, L. Zhang, L. Cheng, and R. Koch, “Pose estimation from line
correspondences: A complete analysis and a series of solutions,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 6, pp. 1209–1222, 2017.

[7] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[8] C. Albl, Z. Kukelova, and T. Pajdla, “Rolling shutter absolute pose
problem with known vertical direction,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 3355–3363.

[9] G. H. Lee, M. Pollefeys, and F. Fraundorfer, “Relative pose estimation
for a multi-camera system with known vertical direction,” in IEEE
International Conference on Computer Vision and Pattern Recognition,
2014, pp. 540–547.

[10] N. Horanyi and Z. Kato, “Generalized pose estimation from line corre-
spondences with known vertical direction,” in International Conference
on 3D Vision (3DV), 2017, pp. 244–253.

[11] O. Saurer, P. Vasseur, R. Boutteau, C. Demonceaux, M. Pollefeys,
and F. Fraundorfer, “Homography based egomotion estimation with a
common direction,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 2, pp. 327–341, 2017.

[12] A. Bartoli and P. Sturm, “The 3d line motion matrix and alignment of
line reconstructions,” in IEEE International Conference on Computer
Vision and Pattern Recognition, 2001.

[13] H. H. Chen, “Pose determination from line-to-plane correspondences:
existence condition and closed-form solutions,” in IEEE International
Conference on Computer Vision, 1990, pp. 374–378.

[14] A. Ansar and K. Daniilidis, “Linear pose estimation from points or
lines,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 5, pp. 578–589, 2003.

[15] F. M. Mirzaei and S. I. Roumeliotis, “Globally optimal pose estima-
tion from line correspondences,” in IEEE International Conference on
Robotics and Automation, 2011, pp. 5581–5588.

[16] X. Zhang, Z. Zhang, Y. Li, X. Zhu, Q. Yu, and J. Ou, “Robust camera
pose estimation from unknown or known line correspondences,” Applied
optics, vol. 51, no. 7, pp. 936–948, 2012.

[17] B. Přibyl, P. Zemčı́k, and M. Čadı́k, “Absolute pose estimation from line
correspondences using direct linear transformation,” Computer Vision
and Image Understanding, 2017.

[18] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[19] N. Horanyi and Z. Kato, “Multiview absolute pose using 3d–2d perspec-
tive line correspondences and vertical direction,” in IEEE International
Conference on Computer Vision Workshop, 2017, pp. 2472–2480.

[20] W. F. Mascarenhas, “The divergence of the bfgs and gauss newton
methods,” Mathematical Programming, vol. 147, no. 1-2, pp. 253–276,
2014.

