Toshiyuki Imamura

Daichi Mukunoki

Roman Iakymchuk

Fabienne Jézéquel

Stef Graillat

Numerical Reproducibility based on Minimal-Precision Validation

I. INTRODUCTION

In general, reproducibility refers to a capability of obtaining the identical result, but it often means "re-playability" or "re-traceability." In computational science, reproducibility is considered from several view points depending on the context and demand. For instance, the following definition of reproducibility is actually desired: bit-level reproducibility is the capability to reproduce the bit-wise identical result with the same input on any hardware/software configuration. But, the internal procedure of the computation is not necessarily required to be identical. To establish this bit-level reproducibility, several efforts have been conducted so far. For example, in linear algebra, there are some implementations of Basic Linear Algebra Subprograms (BLAS) such as ReproBLAS [START_REF] Demmel | Efficient Reproducible Floating Point Summation and BLAS[END_REF] and ExBLAS [START_REF] Iakymchuk | ExBLAS: Reproducible and Accurate BLAS Library[END_REF]. However, most such existing efforts rely on a special mechanism designed for each mathematical problem. As far as we know, no general approach for any floating-point computation has been proposed yet. We consider that, in terms of the development cost, it is non-realistic to support bit-level reproducibility on all floating-point computations through such existing approaches.

In this study, we define the notion of weak numerical reproducibility, i.e. the reproducibility, (up to a high probability) of the computation result with a certain accuracy demanded by the user. The underlying numerical validation is performed using a statistical approach that estimates with a high probability the number of correct digits in the computation result. This weak numerical reproducibility can be established through the extension of our minimal-precision computing scheme [START_REF] Mukunoki | Minimumal-Precision Computing for High-Performance[END_REF], which validates the accuracy (demanded by the user) of the result through the minimal-precision use.

II. MINIMAL-PRECISION COMPUTING

The minimal-precision computing has been proposed for realizing high-performance and energy-efficient as well as reliable (accurate, reproducible, and validated) computations. It is a systematic approach combining hardware, software, and algorithmic approaches internally. Specifically, our system combines: i) a precision-tuning method [START_REF] Graillat | Autotuning for floating-point precision with Discrete Stochastic Arithmetic[END_REF], [START_REF] Graillat | Stochastic Arithmetic in Multiprecision[END_REF], [START_REF] Jézéquel | CADNA: a library for estimating round-off error propagation[END_REF] based on Discrete Stochastic Arithmetic (DSA) [START_REF] Vignes | Discrete Stochastic Arithmetic for Validating Results of Numerical Software[END_REF], ii) arbitrary-precision arithmetic libraries, iii) fast and accurate numerical libraries, and iv) Field-Programmable Gate Array (FPGA) with High-Level Synthesis (HLS). Thus, our approach provides the following features: 1) Reliable: Precision Tuning is processed to obtain the accuracy requested by the user based on a numerical validation method. It can meet the demands for accurate and reproducible computation. 2) General: the scheme is applicable to any floating-point computation. It contributes to low development costs and sustainability such as easy maintenance and system portability.

3) Comprehensive: we propose a complete system that emerges from Precision Tuning to the execution of the tuned code, combining heterogeneous hardware and hierarchical software stack. 4) High-performance: our scheme considers utilizing fast numerical libraries and accelerators (FPGAs and GPUs). 5) Energy-efficient: through the minimal-precision as well as energy efficient hardware acceleration with FPGA and GPU 6) Realistic: our system can be realized by combining available technologies.

Figure 1 presents the minimal-precision computing system with the software and hardware stack, and its workflow. The system is a general scheme for any floating-point computations, but we currently target linear algebra computations as the first step (thus, we explain a case for linear algebra computations). Below we explain the total procedure and some key technologies in the system.

• Setup of inputs: The system accepts as input C code using IEEE 754-2008 floating-point numbers. Also, the requested accuracy of the computation result is given by the user. Then, all the floatingpoint variables and operations in the code can be translated to those of the GNU Multiple Precision Floating-Point Reliably (MPFR) [START_REF] Fousse | MPFR: A Multiple-precision Binary Floating-point Library with Correct Rounding[END_REF] -a C library for multiple (arbitrary) precision floating-point computations on CPUs. MPFR is used for precision-tuning with arbitrary-precision and executing operations on FPGAs or CPUs as FPGAs are not necessarily required. For linear algebra operations, we can utilize MPLAPACK [START_REF] Nakata | The MPACK (MBLAS/MLAPACK); a multiple precision arithmetic version of BLAS and LAPACK[END_REF], a multi-precision Linear Algebra PACKage (LAPACK) including BLAS based on some highprecision arithmetic libraries including MPFR, and similar high precision or reproducible numerical libraries such as QPEigenK and QPEigenG [START_REF] Hirota | Performance of quadruple precision eigenvalue solver libraries QPEigenK and QPEigenG on the K computer[END_REF], ExBLAS [START_REF] Iakymchuk | ExBLAS: Reproducible and Accurate BLAS Library[END_REF], and OzBLAS [START_REF] Mukunoki | Accurate and Reproducible BLAS Routines with Ozaki Scheme for Many-core Architectures[END_REF].

Compiler & Tools for FPGA CPU acceleration

Minimal-precision computing system others…

OzBLAS ExBLAS

QPEigen MPLAPACK (MPBLAS)

Fig. 1. System overview of minimal-precision computing system floating-point precisions for all variables in the code, functions, or code segments, which are needed to achieve the computation result with the requested accuracy. Tuning is performed by comparing with a computation result validated by DSA. Thus, the optimized code is reliable. Simply speaking, DSA estimates the rounding errors of floating-point operations with the guarantee of 95% by executing the same code three times with random-rounding (randomly round-down or -up). Then, these three results are used to estimate the number of correct digits. It is a general scheme applicable to any floating-point operation: it requires no special numerical methods and needs only few code modifications that can be automatized. Besides, it can be performed at a reasonable cost in terms of both performance and development cost compared to the other numerical verification or validation methods.

• Acceleration: Before executing the tuned-code, if it is possible to speed up some portions of the code with some fast computation methods (including GPU acceleration), these parts are replaced with them. The method must be at least as accurate as that of the required-precision. We may be able to use hardware-native floatingpoint operations (e.g., FP16/FP32/FP64), some fast high-precision arithmetic libraries, and some accurate numerical libraries. Additionally, we can utilize FPGAs. They enable us to implement and perform arbitrary-precision floating-point operations: FPGAs realize the ultimate minimal-precision computing and achieve better performance and energy-efficiency than software implementations on general processors. Owing to the HLS technology, we can use FPGAs with existing programming languages such as C/C++ and OpenCL [START_REF] Huthmann | Hardware/software co-compilation with the Nymble system[END_REF], [START_REF] Sano | Stream Processor Generator for HPC to Embedded Applications on FPGA-based System Platform[END_REF].

III. WEAK NUMERICAL REPRODUCIBILITY ON MINIMAL-PRECISION COMPUTING

The minimal-precision computing system can be considered from a user perspective as a black box where the user provides input parameters, including the desired accuracy, and invokes an algorithm. Under the hood, we may select different paths for execution due to the fact that different working precisions as well as different hardware devices may be used either to speed up computations and/or ensure energyefficiency. Under any circumstances, scenarios, execution paths, we make sure that the weak numerical reproducibility is guaranteed with the defined input accuracy requirements by using all the tools and features of the system. On the above system, we can guarantee weak numerical reproducibility by validating the requested accuracy of the computation demanded by the user. Here, if the computation method can achieve the required result, any methods, any computation environments, and any computation conditions can be accepted. We no longer need to develop some reproducible variant(s) for each computation method or mathematical problem. On the other hand, some accurate computation methods may be required to achieve the requested accuracy. However, in general, it is easier to develop accurate methods (not necessarily reproducible) than reproducible methods. Comparing with re-playable and re-traceable methods, it is easier to adapt to different (parallel) architectures. Besides, existing methods and software for ensuring bit-level reproducibility are still able to contribute: for instance, to skip the validation of some parts of algorithms and/or to accelerate the accurate computations needed to ensure the demanded accuracy, if such method relies on some accurate method.

IV. SUMMARY

We proposed a new concept of weak numerical reproducibility and a systematic approach for it with a support of minimal-precision tuning and validation. We expect that the concept of weak numerical reproducibility covers most of the demands for reproducibility in computational sciences. Besides, the minimal-precision computing system can address the demands for accuracy, high-performance, and energy efficient computation as well; especially, when the system can be realized with FPGAs. Although the proposed system is still in development, some key components are already available, and many of them have been developed by us.

 The precision-tuner determines the optimal

	System Stack					System Workflow
		FP32, FP64, (FP16, FP128)	Arbitrary-Precision		available in development	Input: C code with MPFR (and MPLAPACK)
	Precision					
	Tuning	PROMISE	with SAM PROMISE			(with PROMISE Precision-Optimizer
						and CADNA/SAM)
	Numerical Validation	Stochastic Arithmetic SAM CADNA	Fast Accurate Methods / Libraries	C code with MPFR (optimized)
	Numerical Libraries	others… LAPACK BLAS				Performance Optimization
	Arithmetic Library		MPFR	DD/QD acceleration	FPGA?	available	A part of the C code with MPFR, which is executed on FPGA
	Hardware			Heterogeneous System		Code Translation for FPGA (SPGen, Nymble, FloPoCo)
		GPU	FloPoCo SPGen Nymble for arbitrary-prec.	GPU	C code with MPFR + other fast accurate methods	Low-level code (VHDL etc.) for FPGA
			FPGA			Compilation and on CPU/GPU Execution	Compilation and Execution on FPGA

• Precision Tuning:

ACKNOWLEDGMENT The authors would like to thank Dr. Kentaro Sano and Dr. Yiyu Tan from RIKEN CCS for their technical supports, and Prof. Taisuke Boku and Dr. Norihisa Fujita from CCS, University of Tsukuba for their fruitful discussions. This research was partially supported by the European Unions Horizon 2020 research, innovation programme under the Marie Skłodowska-Curie grant agreement via the Robust project No. 842528, the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant No. 19K20286, and Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba.