HAL
open science

Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution

John W Davey, Mathieu Chouteau, Sarah L Barker, Luana Maroja, Simon W
Baxter, Fraser Simpson, Mathieu Joron, James Mallet, Kanchon K
Dasmahapatra, Chris D Jiggins

To cite this version:

John W Davey, Mathieu Chouteau, Sarah L Barker, Luana Maroja, Simon W Baxter, et al.. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3, 2016, 10.1534/g3.115.023655 . hal-02401864

HAL Id: hal-02401864
https://hal.science/hal-02401864
Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Major improvements to the Heliconius melpomene genome assembly used to

 confirm 10 chromosome fusion events in $\mathbf{6}$ million years of butterfly evolutionJohn W. Davey ${ }^{1}$, Mathieu Chouteau², Sarah L. Barker¹, Luana Maroja³, Simon W. Baxter ${ }^{4}$, Fraser Simpson5, Mathieu Joron², James Mallet ${ }^{6,5}$, Kanchon K. Dasmahapatra7,2, Chris D. Jiggins ${ }^{1}$

${ }^{1}$ Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
${ }^{2}$ Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS, 1919 route de Mende, 34293 Montpellier 5, France
${ }^{3}$ Department of Biology, Williams College, MA, USA
${ }^{4}$ School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
${ }^{5}$ Department of Genetics, Evolution and Environment, University College London, Darwin
Building, Gower Street, London, WC1E 6BT, United Kingdom
${ }^{6}$ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
${ }^{7}$ Department of Biology, University of York, York, YO10 5DD, United Kingdom

ENA project accessions: PRJEB11288, ERP005954

Running title: Heliconius melpomene chromosomes

Key words: Heliconius, genome assembly, linkage mapping, chromosome fusions,

Eueides

Corresponding authors: John. W. Davey, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom, +44(0)1223769022, johnomics@gmail.com; Chris D. Jiggins, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom, +44(0)1223769021, cj107@cam.ac.uk.

Abstract

The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridise in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies produced using short read sequencing. Firstly, we whole genome sequenced a pedigree to produce a linkage map incorporating 99% of the genome. Secondly, we incorporated haplotype scaffolds extensively to produce a more complete haploid version of the draft genome. Thirdly, we incorporated $\sim 20 x$ coverage of Pacific Biosciences sequencing and scaffolded the haploid genome using an assembly of this long read sequence. These improvements result in a genome of 795 scaffolds, 275 Mb in length, with an L50 of 2.1 Mb , an N50 of 34 and with 99% of the genome placed and 84% anchored on chromosomes. We use the new genome assembly to confirm that the Heliconius genome underwent 10 chromosome fusions since the split with its sister genus Eueides, over a period of about 6 million years.

Introduction

Understanding evolution and speciation requires an understanding of genome architecture. Phenotypic variation within a population can be maintained by chromosome inversions (Lowry and Willis 2010; Joron et al. 2011; Wang et al. 2013) and may lead to species divergence (Noor et al. 2001; Feder and Nosil 2009) or to the spread of phenotypes by introgression (Kirkpatrick and Barrett 2015). Genetic divergence and genome composition is affected by variation in recombination rate (Nachman and Payseur 2012; Nam and Ellegren 2012). Gene flow between species can be extensive (Martin et al. 2013) and varies considerably across chromosomes (Via and West 2008; Weetman et al. 2012).

Describing chromosome inversions, recombination rate variation and gene flow in full requires as close to chromosomal assemblies of the genomes of study species as possible. Recombination rate varies along chromosomes and is influenced by chromosome length (Fledel-Alon et al. 2009; Kawakami et al. 2014), and inversions are often hundreds of kilobases to megabases long. However, many draft genomes generated with short read technologies contain thousands of scaffolds, often without any chromosomal assignment (Bradnam et al. 2013; Michael and VanBuren 2015; Richards and Murali 2015). Where scaffolds are assigned to chromosomes, often a substantial fraction of the genome is left unmapped, and scaffolds are often unordered or unoriented along the chromosomes.

To date, there are 9 published Lepidopteran genomes (Bombyx mori (Duan et al. 2010), Danaus plexippus (Zhan et al. 2011), Heliconius melpomene (Heliconius Genome Consortium 2012), Plutella xylostella (You et al. 2013), Melitaea cinxia (Ahola et al. 2014), Papilio glaucus (Cong et al. 2015a), Papilio polytes and Papilio xuthus (both Nishikawa et
al. 2015), Lerema accius (Cong et al. 2015b)) and several more available in draft (Bicyclus anynana, Chilo suppressalis, Manduca sexta, Plodia interpunctella; see LepBase version 1.0 at http://ensembl.lepbase.org). Of these genomes, only B. mori, H. melpomene, P. xylostella and M. cinxia have scaffolds with chromosome assignments.

The published Heliconius melpomene genome (Heliconius Genome Consortium, 2012; version 1.1 used throughout, referred to as Hmel1.1) contained 4,309 scaffolds ("Hmel1.1", Figure 1, Table 1), 1,775 of which were assigned to chromosomes based on a linkage map built using 43 RAD-Sequenced F2 offspring (Heliconius Genome Consortium 2012, Supplemental Information S4). The total length of the genome was 273 Mb , including 4 Mb of gaps, with 226 Mb (83%) of the genome assigned to chromosomes. The resulting map has been good enough for many purposes, including estimation of introgression of 40% of the genome between H. melpomene and H. cydno (Martin et al. 2013) and identifying breakpoints between Heliconius, Melitaea cinxia and Bombyx mori (Heliconius Genome Consortium 2012; Ahola et al. 2014). However, for understanding these features and mapping inversions and recombinations, Hmel1.1 has several limitations.

The original RAD Sequencing linkage map used to place scaffolds on chromosomes in Hmel1.1 was built using the restriction enzyme Pstl (cut site CTGCAG), which cuts sites ~10kb apart in the H. melpomene genome (32% GC content). Scaffolds shorter than 10kb often did not contain linkage map SNPs and could not be placed on chromosomes. Also, misassemblies could be identified but only corrected to within $\sim 10 \mathrm{~kb}$. With only 43 offspring used in the cross, the average physical distance between recombinations for Hmel1.1 was 320 kb . Scaffolds that could be mapped to a single linkage marker but not more (and so did not span a recombination) could be placed on the linkage map but could not be anchored. Either only one scaffold would be placed at a single marker and could
not be oriented, or multiple scaffolds would be placed at a single marker and could not be ordered or oriented. While $226 \mathrm{Mb}(83 \%)$ of the genome was placed on chromosomes, only 73 Mb (27\%) of the genome could be anchored (ordered and oriented). As 17\% (46 Mb) of the genome could not be placed on the map, consecutive anchored scaffolds were not joined, as unplaced scaffolds may have been missing in between.

Although the primary Hmel1.1 assembly contained 4,309 scaffolds, an additional 8,077 scaffolds (69 Mb) were identified as haplotypes and removed from the assembly (Heliconius Genome Consortium 2012, Supplemental Information S2.4; "Hmel1.1 with haplotypes", Figure 1, Table 1). These scaffolds contained 2,480 genes and have been used in several cases to manually bridge primary scaffolds and assemble important regions of the genome (including the Hox cluster, Heliconius Genome Consortium 2012, Supplemental Information S10). It seemed plausible that the assembly would be improved by better genome-wide incorporation of these haplotype scaffolds, rather than their removal.

Since Hmel1.1 was published, long read technologies have matured to the point where high coverage with long reads can be used to produce very high quality assemblies for small or haploid genomes (Berlin et al. 2015). Several tools are also available for scaffolding existing genomes with Pacific Biosciences (PacBio) sequence (English et al. 2012; Boetzer and Pirovano 2014). However, these methods are limited by requiring single reads to connect scaffolds, whereas it is likely that many gaps sequenced by PacBio sequencing but missed by Illumina and 454 sequencing (Ross et al. 2013) are longer than single reads. An alternative approach is to assemble the PacBio sequence, so that PacBio-unique sequence is retained, and then combine the PacBio assembly with the existing assembly, but tools for doing this have previously been lacking.

Here, we present Hmel2, the second version of the H. melpomene genome, which benefits from the use of three techniques to make substantial improvements to the genome assembly: whole genome sequencing of a pedigree, merging of haplotypic sequence, and incorporation of assembled PacBio sequence into the genome.

We have used Hmel2 to test the hypothesis that the Heliconius genome underwent 10 chromosome fusions since Heliconius split from the neighbouring genus Eueides over a period of about 6 million years. It has been known for several decades that all 11 Eueides species have 31 chromosomes, whereas Heliconius vary from 21 to 56 (Brown et al. 1992). It was previously thought that Heliconius gradually lost or fused 10 chromosomes via the Laparus and Neruda genera, which have chromosome numbers between 20 and 31 and had unresolved relationships with Eueides and Heliconius (Beltrán et al. 2007). However, the most recent molecular taxonomy of the Heliconiini (Kozak et al. 2015) places Laparus and Neruda as clades within Heliconius, implying that the ancestral chromosome number of Heliconius is 21 and suggesting there are no extant species with intermediate chromosome numbers between Eueides and Heliconius. The change in chromosome number is due to fusions rather than loss, because the 31 chromosomes of Melitaea cinxia can be mapped to the 21 chromosomes of H. melpomene (Ahola et al. 2014). As Eueides butterflies also have 31 chromosomes, it seems most likely that these fusions happened since the split between Eueides and Heliconius, but this has not yet been confirmed. Here, we use a small pedigree of Eueides isabella to test whether fusion points between Eueides and Heliconius match those between Melitaea and Heliconius.

Methods

Preparation of cross

The cross used to build a linkage map for Hmel2 was the same cross used in the original Heliconius melpomene genome project (Heliconius Genome Consortium 2012, Supplemental Information section S4). A fourth generation male H. melpomene melpomene from an inbred strain was crossed with a female H. melpomene rosina (F0 grandmother) from a laboratory strain, both raised in insectaries in Gamboa, Panama. The male was from the same lineage used to produce the Hmel1.1 genome sequence, to ensure the cross was close to the assembly; the female was from a different subspecies to ensure many SNPs were available for use as markers. Two siblings from this F1 were crossed to produce F2 progeny, many of which were frozen at a larval stage. Where possible, sex was determined from wing morphology of individuals that successfully eclosed. Sex of the larval offspring was determined later using sex-linked markers (identified using offspring with known sexes). DNA from the F0 grandmother (the F0 grandfather was lost), two F1 parents and 69 of their F2 offspring was extracted using the DNeasy Blood and Tissue Kit (Qiagen). All samples were prepared as 300 bp insert size Illumina TruSeq libraries except for offspring 11, 16, 17 and 18, which were prepared as Nextera libraries due to low DNA quantities. Libraries were sequenced using 100-bp paired-end reads on an Illumina HiSeq2500 at the FAS Centre for Systems Biology genomics facility, Harvard University. Samples were sequenced over three HiSeq runs. Sequencing failed during sequencing of the second read for two libraries together containing 24 individuals; these libraries were resequenced, but the first run data was still used, with the second read truncated to 65 bases.

Alignment and SNP calling

Reads for parents and offspring were aligned to Hmel1.1 using Stampy (Lunter and Goodson 2011) version 1.0 .23 with options --substitutionrate $=0.01$ and gatkcigarworkaround and converted from SAM to BAM format with the SortSam tool from Picard version 1.117 (http://broadinstitute.github.io/picard). Reads were aligned to the primary scaffolds (Hmel1-1_primaryScaffolds.fa) and haplotype scaffolds (Hmel_haplotype_scaffolds.fas) separately. Duplicate reads were removed using the Picard MarkDuplicates tool. Indels were realigned using the RealignerTargetCreator and IndelRealigner tools from GATK version 3.2.2 (DePristo et al. 2011). SNPs were called for each individual using the GATK HaplotypeCaller and combined into one final VCF file using GATK GenotypeGVCFs with options --annotateNDA and --max_alternate_alleles 30.

Conversion of SNPs to marker regions

SNPs were assigned to a marker type according to the calls for the two F1 parents and F0 grandmother (see Table S1 for valid marker types and expected offspring genotypes) or rejected if no valid marker type could be found. SNPs were then rejected if any offspring had an invalid call for the assigned marker type; if the offspring calls failed a root-meansquare test for goodness of fit to expected segregation for the marker type (Perkins et al. 2011); if parental genotype quality fell below 99 for heterozygous calls or 60 for homozygous calls; if parental sequencing depth was greater than 85 reads for any parental call; if the SNP had FS (Fisher Strand bias) value greater than 5; or if the SNP had MQ (Mapping Quality) value less than 90. SNP genotypes were converted from GATK format $(0 / 0,0 / 1,1 / 1)$ to single letters (A, H, B) for homozygous for allele $A(0)$, heterozygous for alleles $A(0)$ and $B(1)$, and homozygous for allele B (1). Calls were concatenated across all offspring to form a segregation pattern, and phased for each marker type to ensure segregation patterns of each type could be compared.

With millions of remaining markers and low sequencing depth per marker for most offspring, it was impractical to build a linkage map without further reducing the number of SNPs and genotyping errors. Consecutive valid markers of each marker type on each scaffold were therefore converted into consensus markers spanning regions of the scaffold. Scaffolds were split into different regions if more than 25% of offspring differed in their genotype between two consecutive SNPs. For each offspring, the defined scaffold regions were then split into sub-regions by consecutive identical genotype calls, rejecting sub-regions shorter than 100bp (likely due to mis-mapping or poor quality reads). Consensus genotypes were called for each offspring along each sub-region, allowing at most one recombination per offspring per region. At this point, each scaffold features a set of overlapping regions for each valid marker type with consensus genotype calls for each offspring. Valid marker types were grouped into three classes; maternal, where the F1 mother is heterozygous and the F1 father is homozygous; paternal, where the F1 father is heterozygous and the F1 mother is homozygous; and intercross, where both F1 parents are heterozygous (see Table S1 for further details on valid marker types).

Identification of maternal chromosome prints and paternal markers

As recombination is absent in Heliconius females (Turner and Sheppard 1975), a maternal H. melpomene linkage map consists of 21 chromosome prints, as all maternal genotypes on the same chromosome are in complete linkage (Jiggins et al. 2005). The chromosome prints for Hmel2 were identified by finding scaffold regions with consistent maternal, paternal and intercross markers and then extracting the maternal markers. Markers were labelled consistent when combining maternal and paternal markers and phasing appropriately produced a marker identical to the corresponding intercross marker (because combining markers where only one of each of the parents was heterozygous can
result in the pattern produced when both parents are heterozygous). This does not remove all errors, as the same error can occur in multiple marker types. To collapse errors and identify the chromosome prints, log odds (LOD) scores were calculated between each pair of maternal markers and, if a pair of markers had a LOD score below 6 , the markers were joined together into one print. 19 of 21 chromosome prints could be identified in this way. By comparing to the set of valid maternal, paternal and intercross markers, scaffold regions with only a valid paternal marker could then be assigned to their corresponding maternal chromosome print; scaffold regions with only a valid intercross marker could be assigned both maternal and paternal markers.

Two chromosomes segregated identically in both F1 parents and so only produced intercross markers, because both parents shared the same variants and so both parents were heterozygous at all loci. These chromosome prints were identified by collapsing intercross markers without matching maternal markers into sets of markers with 6 or fewer different homozygous calls and calculating a consensus of homozygous calls for each set. This produced two sets each with one consensus marker. Paternal markers for regions with one of these markers could then be inferred from the intercross and maternal markers together. This produced a set of 21 maternal chromosome prints and a set of consistent paternal markers with assignments to regions across all scaffolds.

Linkage map construction

Linkage maps were constructed for each chromosome by ordering paternal markers assigned to each of the 21 maternal chromosome prints iteratively using MSTMap (Wu et al. 2008). MSTMap was run with the following options: population_type RIL2, distance_function kosambi, cut_off_p_value 0.000001, no_map_dist 0, no_map_size 0,
missing_threshold 1, estimation_before_clustering yes, detect_bad_data yes, objective_function ML.

For each chromosome, an initial map was built using paternal markers each covering more than 200,000 base pairs. If MSTMap returned 2 or more linkage groups, markers were phased to match the first linkage group and the map was built again to produce a single linkage group. Remaining paternal markers were then ordered by the number of base pairs they covered, largest first, and added to the map one by one, rebuilding the map each time. If the new marker was incorporated and introduced a double recombination at that marker in one offspring, that offspring was corrected and the marker was merged into the correct neighbouring marker. If the new marker created a disordered map, or it was added at either end of the map, or it could not be incorporated at all, it was rejected. After all markers had been processed once, further attempts were made to incorporate the rejected markers using the same rules, until an iteration added no new markers to the map.

Preprocessing and fixing misassemblies in Hmel1.1
The primary and haplotype scaffolds of Hmel1.1 were concatenated together and then repeat masked using RepeatMasker 4.0.5 (Smit, AFA, Hubley, R. \& Green, P.

RepeatMasker Open-4.0. 2013-2015 http://www.repeatmasker.org) with the H. melpomene version 1.1 repeat library (Hmel.all.named.final.1-31.lib, Lavoie et al. 2013) as input and with options -xsmall and -no_is. Candidate misassemblies in Hmel1.1 were identified by detecting discontinuities in linkage map markers across genomic scaffolds, and then manually validated to identify the smallest possible breakpoint based on marker SNPs, including SNPs that were rejected from linkage map construction but could be assigned to one of the two markers around the breakpoint. Long misassembled regions ($\sim 5 \mathrm{~kb}$ or
greater) were retained as separate scaffolds but most misassembled regions were discarded. Breakpoints that spanned two contigs or contained an entire contig were likely due to scaffolding errors; in these cases the scaffold was broken at the gap. If an entire contig was contained within a breakpoint, with no additional SNP to link it to the markers on either side, it was discarded.

Misassemblies corrected in version 1.1 were also revisited (Heliconius Genome Consortium 2012, Supplementary Information S4.6). The linkage map used to place scaffolds for version 1.1 was built using RAD Sequencing data, with samples cut with the Pstl restriction enzyme. This produces sites roughly 10 kilobases apart, which meant that many breakpoints were not identified accurately. Each of the misassemblies was reconsidered here, with all of the previously broken scaffolds remerged and new breakpoints defined based on the whole genome mapping data.

Errors in the linkage map were identified during the merging and reassembly processes described below. A list of linkage map errors was constructed and erroneous blocks removed and corrected using a script, clean_errors.py.

Merging genome

HaploMerger version 20120810 (Huang et al. 2012) was used to collapse haplotypes in the H. melpomene genome. A scoring matrix for LASTZ (as used within HaploMerger) was generated using the lastz_D_Wrapper.pl script with --identity=94. This scoring matrix was used for all runs of HaploMerger, including for the PacBio genome (see below).

HaploMerger was run with default settings except for setting --size=20 in all_lastz.ctl, targetSize=5000000 and querySize=400000000 in hm.batchA.initiation_and_all_lastz, and
haploMergingMode="updated" in
hm.batchF.refine_haplomerger_connections_and_Ngap_fillings.

Several scripts were written to make running HaploMerger easier. The new script runhm.pl executes one iteration of HaploMerger, running batch scripts A, B, C, E, F and G, renaming output scaffolds with a given prefix, producing a final FASTA file concatenating merged scaffolds and unmerged scaffolds, and generating summary statistics (using summarizeAssembly.py in PBSuite 14.9.9, http://sourceforge.net/projects/pb-jelly/, English et al. 2012) and an AGP file for the final FASTA (using bespoke script agp_from_fasta.py). The HaploMerger script hm.batchG.refine_unpaired_sequences was not used for the initial Hmel1.1 and PacBio assembly merges, retaining all potentially redundant scaffolds in case they could be used for scaffolding later, but it was used to merge the haploid Hmel1.1 assembly with the haploid PacBio assembly. The new script batchhm.pl runs runhm.pl iteratively until HaploMerger fails to merge any further scaffolds. It also runs a set of additional new scripts map_merge.py, transfer_merge.py and transfer_features.py, that document where the original genome parts are in the new genome. The map_merge.py script takes HaploMerger output and documents where the input genome scaffolds are in the merged output genome. The transfer_merge.py script takes this transfer information and another transfer file, for example between the original version 1.1 H . melpomene genome and the input genome, and computes the transfer from the original genome to the output genome. The transfer_features.py script then transfers linkage map markers, genes and misassembly information to the new genome.

HaploMerger sometimes merges scaffolds incorrectly, but has several mechanisms for users to manually edit its output. The hm.nodes file, which contains detected overlaps between scaffolds, can be manually annotated, with incorrect merges marked to be
rejected. The revised hm.nodes file is then passed through the batchE script to update the merged scaffolds to ignore the incorrect merges. Incorrect merges in the Heliconius genome could be detected by comparing against the linkage map data. A list of scaffolds that should not be merged was constructed over multiple merge attempts and runhm.pl was used to edit the hm.nodes and run the batchE script automatically.

HaploMerger merges scaffolds based on overlaps and reports the parts contributing to merged scaffolds in the hm.new_scaffolds file, including which of the two overlapping parts has been included in the new genome. These choices sometimes broke genes, whereas choosing the other part would retain the annotated gene. runhm.pl can also take a GFF file as input and check for broken genes in hm.nodes and hm.new_scaffolds, rejecting nodes if they break manually curated genes, and swapping parts in an overlap if it prevents gene breakage. It then runs the batchE and batchF to update the merged scaffolds. The Hmel1.1 GFF files (heliconius_melpomene_v1.1_primaryScaffs_wGeneSymDesc.gff3 and Hmel1-0_HaplotypeScaffolds.gff) were concatenated and passed to runhm.pl to avoid as many breakages of Hmel1.1 genes as possible.

Pacific Biosciences sequencing, error correction and assembly

A pupa from the H. melpomene genome strain from Gamboa, Panama was dissected and DNA extracted using the QIAGEN HMW MagAttract kit. This pupa was taken after four generations of inbreeding, and came from the same generation as the F0 father used to construct the pedigree reported here, and the generation before the individuals used for the genome sequence itself. A Pacific Biosciences (PacBio) SMRTbell 25 kb needle sheared library was constructed, size selected with $0.375 \times$ SPRI beads and sequenced using P4/C2 chemistry (180 minute movie).

PacBio subreads were self-corrected with PBcR (in Celera assembly v8.3, Berlin et al. 2015), run with options -length 200, -genomeSize 292000000) and separately corrected with the original genome strain Illumina (Sequence Read Archive accession SRX124669), 454 shotgun (SRX124544) and 454 3kb mate-pair (SRX124545) sequencing data (using option -genomeSize 292000000). Self-corrected and genome-strain-corrected reads were concatenated into one read set and assembled with FALCON (https://github.com/ PacificBiosciences/falcon, commit bb63f20d500efa77f930c373105edb5fbe37d74b, 2 April 2015) with options input_type=preads, length_cutoff=500, length_cutoff_pr=500, pa_HPCdaligner_option="-v -dal4 -t16 -e.70-I1000 -s1000", ovlp_HPCdaligner_option="-v -dal32 -t32 -h60 -e. 95 -I500 -s1000, pa_DBsplit_option="-x500 -s50",
ovlp_DBsplit_option="-x500 -s50", falcon_sense_option="--output_multi --min_idt 0.70 -min_cov 4 --local_match_count_threshold 2 --max_n_read 100 --n_core 6", overlap_filtering_setting="--max_diff 40 --max_cov 60 --min_cov 2 --bestn 10".

The FALCON assembly was merged iteratively to exhaustion using batchhm. pl as with version 1.1 of the H. melpomene genome (see previous section). Misassemblies in the PacBio assembly were identified using the same methods as Hmel1.1 and the merge was repeated several times to remove these misassemblies.

Scaffolding and gap filling with PacBio assembly

The final, 'haploid' merged Hmel1.1 and PacBio genomes were merged together using runhm.pl. For this final merge, gap filling in hm.batchF.refine_haplomerger_connections_and_Ngap_fillings was turned on, and runhm. pl edited hm.new_scaffolds to always select portions from the Hmel1.1 genome over portions from the PacBio genome, to preserve as much of the Hmel1.1 genome as possible and use the PacBio genome for scaffolding only. Also,
hm.batchG.refine_unpaired_sequences was run and the refined FASTA output used, to remove as many redundant sequences from the resulting merged genome as possible. Finally, runhm.pl was run on the merged Hmel1.1+PacBio genome, to generate a set of nodes for use in scaffolding. Linkage map markers and genes were transferred to this final merged genome with transfer_features.py.

Cleaning merged assembly and ordering scaffolds along chromosomes

The Hmel1.1+PacBio merged genome was cleaned and ordered with reference to the linkage map markers. Scaffolds coming from the PacBio assembly alone were removed. If HaploMerger incorporates some portion P of a scaffold S into a merged scaffold, it retains the remaining portions of the scaffold as new scaffolds. These remaining portions were labelled offcuts. Offcuts were removed from the genome if they contained no markers on the linkage map, or if they mapped to the same chromosomal location as the merged scaffold containing their original portion P , assuming that the offcut is part of a haplotype. However, some offcuts that mapped to different chromosomal locations were retained, as they were often long portions of scaffolds that had been misassembled. Scaffolds were also removed if they mapped to a marker that mapped within a larger scaffold that featured surrounding markers; for example, if scaffold A has markers $1,2,3$, and scaffold B has marker 2 only, scaffold B was removed as an assumed haplotype.

Scaffolds were ordered along chromosomes based on their linkage markers. Pools of scaffolds were defined containing one or more scaffold. If a pool contained a single scaffold that bridged multiple consecutive markers, the scaffold could be ordered and oriented and so was labelled 'anchored'. A pool containing a single scaffold spanning only a single marker could be ordered on the chromosome but not oriented, and so was
labelled 'unoriented'. A pool containing multiple scaffolds at a single marker was labelled 'unordered', as the scaffolds could be neither ordered or oriented against each other.

This order was refined by using the nodes (overlaps between pairs of scaffolds) identified by HaploMerger in the merged Hmel1.1+PacBio genome. HaploMerger does not use all the nodes it identifies, relying on a scoring threshold to reject low-affinity overlaps. While this is sensible when merging over a whole-genome, many of these nodes proved to be useful when considering single pools or neighbouring pools of scaffolds. Scaffolds that had a connecting node in a scaffold in a neighbouring pool that would mean that the scaffold was completely contained in the neighbouring scaffold were removed as likely haplotypes, providing that candidate haplotype scaffolds longer than 10kb had a \%alignment greater than 50% and candidate haplotype scaffolds shorter than 10 kb had \%alignment greater than 25%. If neighbouring scaffolds had an overlapping node at their ends, or were bridged via nodes to a PacBio scaffold, they were ordered and oriented next to each other in the genome, connecting the scaffolds with a 100bp gap.

Consecutive anchored scaffolds were connected together into one scaffold. This was not done during scaffolding for Hmel1.1, as with only 86% of the genome scaffolded it was assumed that large scaffolds may have been missing between anchored scaffolds.

However, with 98% of the genome mapped for version 2, it was felt the connection of anchored scaffolds with a gap was reasonable.

After each chromosome was assembled, a set of unmapped scaffolds remained. These scaffolds were retained if they had a maternally informative marker but no paternally informative marker (and so could be placed on the chromosome but not ordered on it), or if they featured a gene. Otherwise, they were removed from the final genome.

Annotation transfer

Using transfer_features.py (see above), the Hmel1.1 gene annotation could be transferred directly to Hmel2. However, this revealed a number of avoidable gene breakages, where a haplotype scaffold had been incorporated in place of a primary scaffold, but the sequence was still the same or similar. CrossMap (version 0.1.8, http://crossmap.sourceforge.net) was used to transfer as many remaining annotations by alignment as possible, using HaploMerger to produce a chain map of Hmel1.1 against Hmel2 to use as input to CrossMap.

Identifying Eueides and Melitaea chromosome fusion points

Eueides isabella subspecies (male dissoluta, female eva) were crossed in insectaries in Tarapoto, Peru. Parents were whole genome sequenced and 21 F1 offspring were RAD sequenced using the Pstl restriction enzyme on an Illumina HiSeq 2500. Offspring were separated by barcode using process_radtags from version 1.30 of Stacks (Catchen et al. 2011). Parents and offspring were aligned to Hmel2 using the same alignment pipeline described above except using GATK version 3.4-0 and Picard tools version 1.135. UnifiedGenotyper was used for SNP calling rather than HaplotypeCaller as HaplotypeCaller does not perform well with RAD sequencing data. SNPs where the father was homozygous, the mother was heterozygous (or, for the Z chromosome, had a different allele to the father) and the offspring all had genotypes were identified. The resulting segregation patterns were sorted by number of SNPs. The most common segregation patterns and mirrors of these patterns were identified as chromosome prints, as no other patterns appeared at large numbers of SNPs, except for where all offspring were homozygous, or where the patterns were genotyping errors from the chromosome prints. The positions of the SNPs for each chromosome print were then examined to identify
fusion points, with clear transitions from one segregation pattern to another visible for all ten fused chromosomes.

The fusion points in Heliconius relative to Melitaea cinxia were identified by running HaploMerger on a merge of Hmel2 and the M. cinxia version 1 genome superscaffolds (Melitaea_cinxia_superscaffolds_v1.fsa.gz, downloaded from http://www.helsinki.fi/ science/metapop/research/mcgenome2 downloads.html on 14 July 2015). Overlaps (nodes) detected by HaploMerger between Hmel2 scaffolds and M. cinxia superscaffolds were used to confirm synteny based on known chromosomal assignments of M. cinxia superscaffolds. All fusion points could be identified using this method except for Heliconius chromosome 20, which was confirmed using progressiveMauve (as used by Ahola et al. (2014) to confirm synteny between H. melpomene, M. cinxia and B. mori; Mauve version 2.4.0 Linux snapshot 2015-02-13 used, Darling et al. 2010).

Lepidopteran genome statistics

Lepidopteran genomes compared in Table 2 were downloaded from LepBase v1.0 (http:// ensembl.lepbase.org) on October 2, 2015, except for Danaus plexippus version 3 (http:// monarchbase.umassmed.edu/download/Dp genome v3.fasta.gz), Papilio polytes (http:// papilio.nig.ac.jp/data/Ppolytes genome.fa.gz) and Papilio xuthus (http://papilio.nig.ac.jp/ data/Pxuthus genome.fa.gz). Summary statistics were calculated using summarizeAssembly.py in PBSuite 14.9.9 (http://sourceforge.net/projects/pb-jelly/, English et al. 2012) and bespoke script genome_kb_plot.pl, used to calculate N50s and make plots for Figure 1 and Figure S3. BUSCO values were calculated using BUSCO v1.1b1 with the set of 2675 arthropod genes (Simão et al. 2015).

Data availability

The Hmel2 genome is available from LepBase v1.0 (http://ensembl.lepbase.org). A distribution containing the genome and many supplementary files will be made available from butterflygenome.org but if not available at time of review can be found on Dropbox at https://www.dropbox.com/sh/ke92gsnts5gbp5g/AAAoWOJTgBP6Sxu7EIPBQ usa?dl=0. Sequence reads from the H. melpomene and E. isabella crosses are available from European Nucleotide Archive (ENA) accession PRJEB11288. Pacific Biosciences data is available from ENA accession ERP005954. All bespoke code is available on GitHub at https://github.com/johnomics/Heliconius melpomene version 2. A Dryad repository containing the Hmel2 distribution, a frozen version of the GitHub repository, VCF files for the H. melpomene and E. isabella crosses, marker databases, and intermediate genome versions for Hmel1-1 and the PacBio assemblies will be made available on acceptance of the manuscript, but can currently be found on Dropbox at https://www.dropbox.com/sh/ |4xp1r920zjuuvm/AAAOq9cl46HKfDrliP3lhtmma?dl=0.

Results

Whole genome sequence genetic map
A genetic map of a full-sib cross between H. melpomene melpomene $\times H$. melpomene rosina was constructed to place scaffolds from version Hmel1.1 of the H. melpomene genome on to chromosomes. The F0 grandmother, F1 parents and 69 offspring were whole genome sequenced and aligned to Hmel1.1 (Table S2). 17.2 million raw SNPs were filtered down to 2.9 million SNPs and converted into 919 unique markers (Table S1). The linkage map built from these markers has 21 linkage groups and a total map length of $1,364.23 \mathrm{cM}$ (Figure 2). 2,749 of 4,309 primary scaffolds and 4,062 of 8,077 haplotype scaffolds contained marker SNPs, adding up to 268 Mb (98\%) of the primary sequence and $57 \mathrm{Mb}(83 \%)$ of the haplotype sequence.

In addition to mapping the majority of the genome sequence to chromosomes, whole genome sequencing of a pedigree allows very accurate detection of crossovers and misassemblies. Identical SNPs could be concatenated into linkage blocks across scaffolds. For example, across the scaffold containing the B/D locus, which controls red patterning in Heliconius (Baxter et al. 2008; Reed et al. 2011), 6 crossovers were called with an average gap of 344 bp between linkage blocks; a misassembly at the end of the scaffold was called with a gap of 2.9 kb (Figure 3). Across the genome, crossover and misassembly gaps have a mean size of 2.2 kb (SD 3.7 kb), all unmapped regions (crossover and misassembly gaps, unmapped scaffold ends or whole unmapped scaffolds) have mean size 2.5 kb (SD 5.1 kb), whereas mapped regions have mean size 28.4 kb (SD 62.7 kb) (see Figure S1 for distributions).

Based on this linkage information, 380 misassemblies were corrected in the genome. This included revisiting the 149 misassemblies fixed for Hmel1.1 (Heliconius Genome

Consortium 2012, Supplementary Information S4.6) to more accurately identify the breakpoints for these misassemblies, and fixing 231 new misassemblies.

Haplotype merging and scaffolding with PacBio sequencing

The Hmel1.1 primary and haplotype scaffolds were merged together using HaploMerger, iterating 9 times until no further scaffolds could be merged, avoiding gene breakages where possible and reverting merges where they conflicted with the linkage map. This produced a haploid genome containing 6,689 scaffolds, length 289 Mb , L50 214 kb ("Hmel1.1 haploid", Figure 1, Table 1).
$23 x$ coverage of the H. melpomene genome was generated using PacBio sequencing.
These sequence reads were error-corrected once using the original Illumina and 454 data from the genome and again using self-correction (Table S3). The two error-corrected read sets were combined and assembled together using FALCON to produce an initial assembly of 11,121 scaffolds with L50 96 kb and total length 325 Mb ("PacBio FALCON", Figure 1, Table 1).

The initial PacBio assembly was merged to itself iteratively using HaploMerger to produce a haploid PacBio assembly ("PacBio haploid", Figure 1, Table 1). The haploid Hmel1.1 genome and haploid PacBio genome were then merged using HaploMerger to scaffold the two genomes together. This final merge was checked against the linkage map and 470 misassemblies in the original PacBio assembly were fixed, requiring the two PacBio merging steps to be repeated several times. The final haploid PacBio genome had 4,565 scaffolds, L50 178 kb, total length 256 Mb ; the Hmel1.1+PacBio merged assembly had 2,961 scaffolds, L50 629 kb, total length 283 Mb (Figure 1, Table 1).

Ordering of scaffolds on chromosomes

Linkage information was transferred to the Hmel1.1+PacBio merged assembly and used to place the resulting scaffolds on chromosomes, anchoring scaffolds wherever possible, connecting consecutive anchored scaffolds, and removing remaining haplotypic scaffolds (see Methods for details). Further scaffolds were joined by searching for connections to PacBio scaffolds unused by HaploMerger during the merge process. This left 641 scaffolds (274 Mb) placed on chromosomes (98.7% of the genome), with a further 869 scaffolds (3.6 Mb) unplaced. $154(1.1 \mathrm{Mb}$) of the unplaced scaffolds were retained as they contained genes or had chromosome assignments (but no placement within the chromosome), and the remaining 715 scaffolds ($2.5 \mathrm{Mb}, 0.9 \%$) were discarded.

The final genome assembly, Hmel2, has 795 scaffolds, length 275.2 Mb, L50 2.1 Mb (Figure 1, Table 1, Figure 2, Table 2), with 231 Mb (84\%) anchored and 274 Mb (99\%) placed on chromosomes (Figure S2). This compares well with the other published Lepidopteran genome assemblies to date (Table 2, Figure S3).

Improved assembly of major loci

The assembly of major adaptive loci is greatly improved in Hmel2, with all scaffolds containing known adaptive loci substantially extended and most gaps filled. The yellow colour pattern locus Yb , previously on a 1.33 Mb scaffold, is now on a 1.96 Mb scaffold; the red pattern BD locus scaffold has increased from 602 kb to 1.89 Mb and is now gapfree; the K locus, previously spread over two scaffolds totalling 173 kb , is now on a single 3 Mb scaffold; the Ac locus, previously on three scaffolds totalling 838 kb is now on a single 7.4 Mb scaffold; and the Hox cluster, previously manually assembled into 7 scaffolds covering 1.4 Mb (Heliconius Genome Consortium 2012, Supplementary Information S10), is now a single scaffold covering 1.3 Mb, with some misassembled
material reassigned elsewhere. Full details of major locus locations in Hmel1.1 and Hmel2 (based on loci from Nadeau et al. 2014) can be found in Table S4, with three previously unmapped minor loci now placed on chromosomes.

Chromosome fusions between Eueides and Heliconius

To identify chromosome fusion points between Eueides and Heliconius, chromosome prints for the 31 Eueides chromosomes were discovered using RAD Sequencing data from an E. isabella cross aligned to the Hmel2 genome (Table S5). Synteny between Heliconius and Eueides is clear on all chromosomes, with 11 unfused and 10 fused Heliconius chromosomes (Figure 4). The Eueides fusion points all fall within the Melitaea fusion points reported by Ahola et al. (2014) and confirmed against Hmel2 here (Table S6), indicating that these fusions occurred since the split between Eueides and Heliconius. Major colour pattern loci and other adaptive loci (Nadeau et al. 2014) are not near to fusion points, with the exception of the H. erato locus Ro, which is 73 kb away from the chromosome 13 fusion point (Figure 4, Table S4).

As noted by Ahola et al. (2014), the shorter Melitaea chromosomes (22-31) are all involved in fusions. The longer Melitaea autosome in each fusion pair in Heliconius (Melitaea 2, 4, 6, 9-15; mean length 10.7 Mb , SD 688 kb) does not, on average, differ substantially in length to unfused autosomes (Melitaea 3, 5, 7, 8, 16-21; mean length 9.9 Mb, SD 894 kb). In contrast, the shorter Melitaea autosomes in each fusion pair in Heliconius (Melitaea 22-31) have mean length 5.4 Mb (SD 1.5 Mb), suggesting a bimodal distribution with the long Melitaea autosomes, both fused and unfused, clustering together into one group and the short fused Melitaea autosomes clustering into a second group.

Discussion

Genome assembly improvements

Many long range technologies are now available for improvement of existing draft genomes. Deep coverage with long reads can be sufficient for producing almost complete de novo assemblies (Berlin et al. 2015) and additional technologies such as optical mapping can substantially improve genome scaffolding and identify complex structural variants (Pendleton et al. 2015, English et al. 2015). However, it remains unclear how well these technologies will work with highly heterozygous non-model organisms.

Here, we show that even a small amount of PacBio data (20 x coverage) was sufficient to substantially improve the H. melpomene genome. Indeed, the assembly of the PacBio data alone was comparable in quality to our initial draft assembly constructed with Illumina, 454 and mate pair sequencing (Heliconius Genome Consortium 2012; compare lines "Hmel1.1 with haplotypes" and "PacBio FALCON" in Table 1 and Figure 1). We expect that increasing this coverage could have produced a very high quality genome with no additional data.

However, this does not deal with heterozygosity across the genome and the resulting generation of many haplotypic scaffolds, a problem for most species and particularly for insects (Richards et al. 2015). As sequencing methods improve and true haplotypes can be assembled, it is hoped that full diploid genomes can be produced, and several efforts are already moving towards this (Church et al. 2015; https://github.com/ekg/vg). We hope that in the near future it will be possible to assemble a diploid reference graph for H. melpomene, perhaps with the haplotypes reported here. However, as we wanted to
preserve contiguity with Hmel1.1, which was already a composite of both haplotypes, Hmel2 remains a composite haploid genome.

HaploMerger has proved to be a very versatile assembly tool. In addition to having many options for varying the merging process and for manually accepting or rejecting merges, HaploMerger is almost unique among similar tools in reporting where it has placed parts of the original genome in the new genome. This has allowed us to write scripts to transfer linkage map information and genes to new genome versions directly and automatically, without having to map the original genome scaffolds to the new genome separately and possibly erroneously (although we have used this approach to map genes that couldn't be transferred directly). We could then accept or reject merges where they introduced misassemblies that conflicted with the linkage map or broke genes, and iterate the use of HaploMerger to collapse as many scaffolds as possible. This allowed us to use HaploMerger to scaffold the existing Heliconius genome with our novel PacBio genome, by treating the two 'haploid' genomes as two haplotypes in one diploid genome. We could then modify the HaploMerger output to prefer the original Hmel1.1 genome over the PacBio genome, only using the PacBio genome for scaffolding, and so preserve our original assembly and annotation wherever possible.

Hmel2 is not complete; it does not contain a W chromosome, and no chromosome is assembled into a single scaffold. The incomplete assemblies may be partially due to errors in haplotype merging. The detailed linkage mapping information available for most scaffolds increases our confidence that primary and haplotype scaffolds have been accurately placed, but it may be that merging haplotypes has collapsed or removed repetitive material. The final genome size of 275 Mb is lower than the flow cytometry estimate of $292 \mathrm{Mb}+/-2.4 \mathrm{Mb}$ (Jiggins et al. 2005). Remaining gaps between scaffolds
and failures to order scaffolds may be due to incorrect assembly of haplotypes at the ends of scaffolds, or due to genuine incompatibilities between the many individual butterflies that have contributed to the genome sequence, making it impossible to find overlaps or connections between these ends. Several hundred small scaffolds remain in the genome, which are likely to be misassemblies of repetitive elements, but no clear metric could be found that excluded or integrated these scaffolds. However, as the positions of removed haplotypes have been recorded, it may be possible to reintegrate this material with further analysis of particular regions of the genome. Further manual inspection of existing data, PCRs across scaffold ends, additional long read sequencing, or additional cross sequencing or optical mapping will hopefully resolve many of these remaining assembly problems.

Is Heliconius speciation rate driven by chromosome fusions?

Chromosome number varies widely in the Lepidoptera (Robinson 1971) and gradual transitions from one number to another occur frequently. Lepidopteran chromosomes are believed to be holocentric (Wolf et al. 1994), which may make it easier for chromosome fusions and fissions to spread throughout a population (Melters et al. 2012). However, the fusion of 20 chromosomes into 10 over 6 million years is the largest shift in chromosome number in such a short period across the Lepidoptera (Ahola et al. 2014, Figure 3A). Also, given the supposed ease of chromosome number transitions, it is unusual that chromosome number in the Nymphalinae and Heliconiinae is stable at 31 chromosomes for the majority of species, in contrast to all other subfamilies where chromosome number tends to fluctuate gradually and widely (Ahola et al. 2014, Figure 3B). While Heliconius species do vary in chromosome number, the majority still have 21 chromosomes, with substantial variations only found in derived clades (Brown et al. 1992; Kozak et al. 2015). It
is not just the transition in chromosome number but also the stability of chromosome number before and after the transition that requires explanation.

The difference in chromosome number confirmed here is a major difference between the Heliconius and Eueides genera which may make these genera an excellent system for studying macroevolution and speciation. Kozak et al. (2015) demonstrated that speciation rate in Heliconius is significantly higher than in Eueides, but the rate in both genera is more or less stable and does not obviously relate to geological events or adaptive traits. The difference in chromosome number may contribute to explaining this difference in speciation rate, and might provide a null hypothesis for comparison with potential adaptive explanations based on colour pattern, host plant preference, geographic ranges and other traits.

Restriction of recombination facilitates speciation in the presence of gene flow (Butlin 2005). One of the major mechanisms for restricting recombination are chromosome inversions, where opposing alleles can become linked together and then become fixed in different populations (Kirkpatrick et al. 2006; Farré et al. 2013; Kirkpatrick et al. 2015). However, other methods of restricting recombination may produce similar effects.

Recombination rate is negatively correlated with chromosome length, although the relationship is complex (Fledel-Alon et al. 2009; Kawakami et al. 2014). In many species, one obligate crossover is required for successful meiosis, inflating recombination rate in short chromosomes. However, beyond a certain length, recombination rate increases roughly linearly with chromosome length (Kawakami et al. 2014). It is unclear whether these relationships will hold in Lepidoptera, which may have no obligate crossovers, as
females do not recombine and meiosis requires the formation of a synaptonemal complex rather than recombination (Wolf et al. 2014).

It is possible that recombination rate along fused chromosomes in Heliconius has decreased considerably compared to their shorter, unfused counterparts in Eueides (and Melitaea), particularly on the shorter chromosomes. This may have enabled linked pairs of divergently selected loci to accrue more easily in Heliconius than in Eueides, making the process of speciation more likely (Nachman and Payseur 2012, Brandvain et al. 2014). This hypothesis could be tested by generating population sequence for Eueides species to compare to existing Heliconius population data (such as Martin et al. 2013), and by modelling speciation rates in the face of different recombination rates. Such a model could predict speciation rate differences between the genera, but full testing would also require the generation of accurate recombination rates in both genera. The system is particularly well suited for testing speciation rate effects because the set of 10 unfused autosomes can act as a control; the hypothesis predicts that recombination rate will not have changed substantially on these chromosomes.

This hypothesis demonstrates the pressing need to generate full, chromosomal genomes for Eueides and other Heliconius species; genome size in H . erato is $\sim 393 \mathrm{Mb}$ (Tobler et al 2005), very similar to M. cinxia, but roughly 100 Mb larger than H. melpomene.

Unpublished draft genome sequences of Eueides tales and other Heliconius species suggest genome sizes similar to H. erato or larger, with H. melpomene being one of the smallest Heliconius genomes (data not shown). Measuring recombination rate for other species against the H. melpomene genome alone is therefore unlikely to be accurate and may not allow for accurate model fitting. However, with additional genomes in hand, we
bioRxiv preprint first posted online October 15, 2015; doi: http://dx.doi.org/10.1101/029199; The copyright holder for this preprint is the author/funder. It is made available under a CC-BY 4.0 International license.
believe these genera may provide a useful test case for the influence of genome architecture on speciation and molecular evolution.

Acknowledgements

JWD is funded by a Herchel Smith Postdoctoral Research Fellowship. PacBio sequencing was carried out by Paul Coupland and Richard Durbin at the Sanger Institute, supported by the ERC grant numbers 339873, the Wellcome Trust grant number 098051 and JWD's Herchel Smith funding. H. melpomene cross sequencing was carried out at the Harvard FAS Center for Systems Biology core facility and funded by BBSRC grant number G006903/1. E. isabella cross sequencing was carried out by Sylviane Moss at the Gurdon Institute. We thank Jenny Barna for computing support. Alignment and SNP calling was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council.

Author contributions

JWD and CJ conceived the study. JWD designed the analyses, wrote the software, extracted DNA for PacBio sequencing, and wrote the paper. FS, KKD and JM extracted DNA, prepared libraries and whole genome sequenced the pedigree. LM and SWB bred the H. melpomene cross. MC and MJ bred the Eueides isabella cross. SLB extracted DNA and made RAD libraries for the E. isabella cross. All authors read and commented on the manuscript.

References

Ahola, V., R. Lehtonen, P. Somervuo, L. Salmela, P. Koskinen et al., 2014 The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Communications 5: 4737.

Baxter, S. W., N. J. Nadeau, L. S. Maroja, P. Wilkinson, B. A. Counterman et al., 2010 Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genetics 6: e1000794.

Beltrán, M., C. D. Jiggins, A. V. Z. Brower, E. Bermingham, and J. Mallet, 2007 Do pollen feeding, pupalmating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biological Journal of the Linnean Society 92: 221-239.

Berlin, K., S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin et al., 2015 Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33: 623-630.

Boetzer, M., and W. Pirovano, 2014 SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics 15: 211.

Bradnam, K. R., J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner et al., 2013 Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience 2: 1-31.

Brandvain, Y., A. M. Kenney, L. Flagel, G. Coop, and A. L. Sweigart, 2014 Speciation and introgression between Mimulus nasutus and Mimulus guttatus. PLoS Genetics 10: e1004410.

Brown, K. S., T. C. Emmel, P. J. Eliazar, and E. Suomalainen, 1992 Evolutionary patterns in chromosome numbers in neotropical Lepidoptera. Hereditas 117: 109-125.

Butlin, R. K., 2005 Recombination and speciation. Molecular Ecology 14: 2621-2635.
Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko, and J. H. Postlethwait, 2011 Stacks: building and genotyping Loci de novo from short-read sequences. G3 (Bethesda) 1: 171-182.

Church, D. M., V. A. Schneider, K. M. Steinberg, M. C. Schatz, A. R. Quinlan et al., 2015 Extending reference assembly models. Genome Biology 16: 13.

Cong, Q., D. Borek, Z. Otwinowski, and N. V. Grishin, 2015a Tiger Swallowtail Genome Reveals Mechanisms for Speciation and Caterpillar Chemical Defense. Cell Reports.

Cong, Q., D. Borek, Z. Otwinowski, and N. V. Grishin, 2015b Skipper genome sheds light on unique phenotypic traits and phylogeny. BMC Genomics 16: 94.

Darling, A. E., B. Mau, and N. T. Perna, 2010 progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE 5: e11147.

DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire et al., 2011 A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43: 491-498.

Duan, J., R. Li, D. Cheng, W. Fan, X. Zha et al., 2010 SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Research 38: D453-6.

English, A. C., S. Richards, Y. Han, M. Wang, V. Vee et al., 2012 Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology. PLoS ONE 7: e47768.

English, A. C., W. J. Salerno, O. A. Hampton, C. Gonzaga-Jauregui, S. Ambreth et al., 2015 Assessing structural variation in a personal genome-towards a human reference diploid genome. BMC Genomics 16: 286.

Farré, M., D. Micheletti, and A. Ruiz-Herrera, 2013 Recombination rates and genomic shuffling in human and chimpanzee--a new twist in the chromosomal speciation theory. Molecular Biology and Evolution 30: 853864.

Feder, J. L., and P. Nosil, 2009 Chromosomal Inversions and Species Differences: When Are Genes Affecting Adaptive Divergence and Reproductive Isolation Expected to Reside within Inversions? Evolution 63: 3061-3075.

Fledel-Alon, A., D. J. Wilson, K. Broman, X. Wen, C. Ober et al., 2009 Broad-scale recombination patterns underlying proper disjunction in humans. PLoS Genetics 5: e1000658.

Heliconius Genome Consortium, 2012 Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487: 94-98.

Huang, S., Z. Chen, G. Huang, T. Yu, P. Yang et al., 2012 HaploMerger: reconstructing allelic relationships for polymorphic diploid genome assemblies. Genome Research 22: 1581-1588.

Jiggins, C. D., J. Mavarez, M. Beltrán, W. O. McMillan, J. S. Johnston et al., 2005 A genetic linkage map of the mimetic butterfly Heliconius melpomene. Genetics 171: 557-570.

Joron, M., L. Frezal, R. T. Jones, N. L. Chamberlain, S. F. Lee et al., 2011 Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477: 203-206.

Kawakami, T., L. Smeds, N. Backström, A. Husby, A. Qvarnström et al., 2014 A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Molecular Ecology 23: 4035-4058.

Kirkpatrick, M., and N. Barton, 2006 Chromosome inversions, local adaptation and speciation. Genetics 173: 419-434.

Kirkpatrick, M., and B. Barrett, 2015 Chromosome inversions, adaptive cassettes and the evolution of species' ranges. Molecular Ecology 24: 2046-2055.

Lavoie, C. A., R. N. Platt, P. A. Novick, B. A. Counterman, and D. A. Ray, 2013 Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera. Mobile DNA 4: 21.

Lowry, D. B., and J. H. Willis, 2010 A Widespread Chromosomal Inversion Polymorphism Contributes to a Major Life-History Transition, Local Adaptation, and Reproductive Isolation (N. H. Barton, Ed.). Plos Biol 8: e1000500.

Lunter, G., and M. Goodson, 2011 Stampy: A statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Research 21: 936-939.

Kozak, K. M., N. Wahlberg, A. F. E. Neild, K. K. Dasmahapatra, J. Mallet et al., 2015 Multilocus species trees show the recent adaptive radiation of the mimetic heliconius butterflies. Systematic Biology 64: 505-524.

Martin, S. H., K. K. Dasmahapatra, N. J. Nadeau, C. Salazar, J. R. Walters et al., 2013 Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Research 23: 1817-1828.

Melters, D. P., L. V. Paliulis, I. F. Korf, and S. W. L. Chan, 2012 Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res 20: 579-593.

Michael, T. P., and R. VanBuren, 2015 Progress, challenges and the future of crop genomes. Curr. Opin. Plant Biol. 24: 71-81.

Nachman, M. W., and B. A. Payseur, 2012 Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 409-421.

Nadeau, N. J., M. Ruiz, P. Salazar, B. Counterman, J. A. Medina et al., 2014 Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Research 24: 1316-1333.

Nam, K., and H. Ellegren, 2012 Recombination drives vertebrate genome contraction. PLoS Genetics 8: e1002680.

Nishikawa, H., T. lijima, R. Kajitani, J. Yamaguchi, T. Ando et al., 2015 A genetic mechanism for femalelimited Batesian mimicry in Papilio butterfly. Nat. Genet. 47: 405-409.

Noor, M. A., K. L. Grams, L. A. Bertucci, and J. Reiland, 2001 Chromosomal inversions and the reproductive isolation of species. Proceedings of the National Academy of Sciences 98: 12084-12088.

Perkins, W., M. Tygert, and R. Ward, 2011 Computing the confidence levels for a root-mean-square test of goodness-of-fit. Applied Mathematics and Computation 217: 9072-9084.

Reed, R. D., R. Papa, A. Martin, H. M. Hines, B. A. Counterman et al., 2011 Optix Drives the Repeated Convergent Evolution of Butterfly Wing Pattern Mimicry. Science 333: 1137-1141.

Richards, S., and S. C. Murali, 2015 Best practices in insect genome sequencing: what works and what doesn't. Current Opinion in Insect Science 7: 1-7.

Robinson, R., 1971 Lepidoptera Genetics. Pergamon Press, Oxford.
Ross, M. G., C. Russ, M. Costello, A. Hollinger, N. J. Lennon et al., 2013 Characterizing and measuring bias in sequence data. Genome Biology 14: R51.

Simão, F. A., R. M. Waterhouse, P. loannidis, E. V. Kriventseva, and E. M. Zdobnov, 2015 BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210-3212.

Tobler, A., D. Kapan, N. S. Flanagan, C. Gonzalez, E. Peterson et al., 2005 First-generation linkage map of the warningly colored butterfly Heliconius erato. Heredity 94: 408-417.

Turner, J. R. G., and P. M. Sheppard, 1975 Absence of crossing-over in female butterflies (Heliconius). Heredity 34: 265-269.

Via, S., and J. West, 2008 The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Molecular Ecology 17: 4334-4345.

Wang, J., Y. Wurm, M. Nipitwattanaphon, O. Riba-Grognuz, Y.-C. Huang et al., 2013 A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493: 664-668.

Weetman, D., C. S. Wilding, K. Steen, J. Pinto, and M. J. Donnelly, 2012 Gene Flow-Dependent Genomic Divergence between Anopheles gambiae M and S Forms. Molecular Biology and Evolution 29: 279-291.

Wolf, K. W., 1994 The unique structure of Lepidopteran spindles. International review of cytology 152:1-48.
Wu, Y., P. R. Bhat, T. J. Close, and S. Lonardi, 2008 Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genetics 4: e1000212.

You, M., Z. Yue, W. He, X. Yang, G. Yang et al., 2013 A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet. 45: 220-225.

Zhan, S., C. Merlin, J. L. Boore, and S. M. Reppert, 2011 The monarch butterfly genome yields insights into long-distance migration. Cell 147: 1171-1185.

Figure Legends

Figure 1 Genome assembly quality. A perfect assembly would appear as an almost straight vertical line. Horizontal plateaus indicate many very small scaffolds. The top right end of each curve shows the number of scaffolds and genome size in the whole assembly. See Table 1 for statistics.

Figure 2 The Hmel2 genome assembly. Chromosome numbers shown on left. Each chromosome has a genetic map and a physical map. Linkage markers (alternating blue and orange vertical lines) connect to physical ranges for each marker (alternating blue and orange horizontal lines) scaled to maximum chromosome length (x-axis at the bottom of each page). Scaffolds are shown in green (anchored), orange (one unoriented scaffold placed at a marker) and alternating light and dark red (multiple unordered scaffolds placed at one marker). Red scaffolds at each marker are arbitrarily ordered by length. Eueides chromosome synteny is shown above each chromosome (see Figure 4).

Figure 3 SNPs across the B/D locus scaffold for the major marker types Maternal (F1 mother heterozygous, F1 father homozygous), Paternal (F1 father heterozygous, F1 mother homozygous) and Intercross (both F1 parents heterozygous); see Table S1 for marker type details. Kinesin, Dennis, Rays and Optix are major features of the locus (Baxter et al. 2008, Reed et al. 2011). Vertical lines, SNPs; horizontal lines, linkage map marker ranges (cf Figure 2). SNP colours: black, maternal pattern for chromosome 18; alternating blue and orange, linkage map markers from 1.45 cM to 11.6 cM on chromosome 18 (cf Figure 2); grey; misassembly, now on chromosome 16.

Figure 4 Chromosome fusions in H. melpomene. Chromosomes of H. melpomene ordered by length. Unfused Heliconius chromosomes in pink; fused Eueides/Melitaea chromosomes in orange and blue, longest chromosome of each pair in blue. Melitaea chromosome numbers in white. Black line, beginning of H. melpomene chromosome in Hmel2. Black labels, loci known to be associated with colour pattern features or altitude (alt) in H. melpomene or H. erato (Nadeau et al. 2014).

Figure S1 Ranges of mapped and unmapped region lengths across all Hmel1.1 scaffolds. Crossover/Misassembly Gaps occur within scaffolds between markers, either consecutive on one chromosome (Crossover) or distant on one chromosome or on different chromosomes (Misassembly).

Figure S2 Length of genome assembly placed on chromosomes (Total) and anchored (ordered and oriented, green in Figure 2) on chromosomes (Anchored), for Hmel1.1 and Hmel2. Chromosomes ordered by total length in Hmel2.

Figure S3 Genome assembly qualities as per Figure 1 for known Lepidopteran genome assemblies. Bicyclus anynana, Chilo suppressalis, Manduca sexta, and Plodia interpunctella are unpublished draft genomes downloaded from LepBase v1.0 (http:// ensembl.lepbase.org) and are likely to change by the time of publication.

Table Legends

Table 1 Statistics for genome assembly versions. Mb, megabases; kb, kilobases; L50, length of scaffold such that 50% of the genome is in scaffolds of this length or longer. N50, number of scaffolds as long as or longer than L50. Colours and names match Figure 1.

Table 2 Genome assembly statistics for Hmel1.1, Hmel2 and other published and unpublished Lepidopteran genomes. See Table 1 for definitions of L50 and N50. BUSCO (Benchmarking Universal Single-Copy Ortholog) values are based on a set of 2675 arthropod BUSCOs (Simão et al. 2015). Complete Duplicated BUSCOs are included in the count of Complete Single-Copy BUSCOs. See Methods for details of genomes and calculation of statistics. Statistics in italics are for draft, unpublished genomes and should not be taken as representative of the final genomes when they are published.

Table S1 Valid marker types used to build linkage map. A and B are alleles, H is heterozygous for A and B. For A and B calls, the allele may be present in one or two copies. Right columns show number of valid SNPs called for each set of valid parental calls, then grouped by linkage and overall type (Maternal, Paternal, Intercross).

Table S2 Reads sequenced and mapped for each H. melpomene cross individual.
Coverage calculated relative to Hmel1.1 genome size of 273 Mb .

Table S3 Statistics for PacBio read sets. Combined corrected sets is a merge of 'lllumina +454 corrected' and 'Self corrected'.

Table S4 Locations of major adaptive loci from Nadeau et al. (2014) in Hmel1.1 and Hmel2. Hmel2 Scaffold Positions refer to the location of the corresponding Hmel1.1 scaffold part in Hmel2, with final orientation of each Hmel1.1 scaffold part given in the Orientation column. Hmel2 Chromosome Positions refer to the location of the entire locus. Hmel1.1 scaffold names begin with 'HE' for primary scaffolds and 'sch' for haplotype scaffolds.

Table S5 Reads sequenced and mapped for the Eueides isabella mapping family. All samples were Pstl RAD sequenced except for the parents and one offspring, whole genome sequenced for use in a separate project.

Table S6 Fusion points for the ten fused H. melpomene chromosomes. For each fused chromosome, the two original chromosomes are ordered by length (long on the left, short on the right). Endpoints are positions in the Hmel2 genome. All fusion points fall on single anchored scaffolds except for H. melpomene chromosome 17, where the fusion points spans two scaffolds, Hmel217018 and Hmel217019. Hmel217019 is unoriented on the chromosome, so the fusion could end at either end of this scaffold; both possible possible endpoints are given.

3

Figure 3
Position on B/D scaffold Hmel1.1 HE670865 (base pairs)

Figure 4
20.000 .000
號 r

Figure S1

Table 1
Assembly
Length (Mb) Scaffolds Scaffold N50 Scaffold L50 Contig L50

Hmel1.1	273	4,309	345	194 kb	51 kb
Hmel1.1 with haplotypes	343	12,386	567	128 kb	33 kb
Hmel1.1 haploid	289	6,689	346	214 kb	47 kb
	325	11,121	719	96 kb	96 kb
PacBio haploid	256	4,565	345	178 kb	178 kb
Hmel1.1 + PacBio	283	2,961	113	629 kb	316 kb
Hmel2	275	795	34	2.1 Mb	330 kb

Table 2
$\xrightarrow{+}$

4,309	795	43,462	5,397	29,988	8,261	68,029	3,873	5,572	1,819	15,180	80,479	20,871	10,542
273,786,188	275,198,613	481,803,763	248,564,116	298,173,436	389,907,520	375,987,417	227,005,758	243,890,167	394,062,517	458,610,584	372,375,373	419,424,771	381,952,380
63,538	346,161	11,085	46,055	9,943	47,198	5,526	58,612	43,770	216,636	30,211	4,626	20,096	36,231
1,451,426	9,352,983	16,203,812	6,243,218	3,082,282	668,473	1,977,235	9,881,032	16,292,344	3,493,687	2,943,548	111,673	3,253,989	7,207,896
194,302	2,102,720	4,008,358	715,606	525,349	119,328	230,299	3,672,263	6,198,915	737,182	364,913	5,215	664,006	1,270,674
38,051	273,111	61,147	160,499	60,308	29,598	2,022	930,396	533,617	152,088	55,873	2,401	46,417	18,727
21,864	124,798	928	68,064	1,913	16,097	945	417,439	160,478	72,492	22,189	2,191	4,807	8,920
345	34	38	101	160	970	421	21	16	155	303	19,910	169	6
1,634	176	258	366	689	3,396	7,589	63	48	575	1,523	63,459	1,025	713
2,105	251	5,679	483	3,385	4,263	21,037	81	91	753	2,131	71,579	2,265	2,348
11,607	3,105	87,972	10,545	52,985	45,618	96,532	13,441	10,483	15,764	28,866	331,320	35,212	17,231
23,231	88,314	4,907	22,939	5,466	7,914	3,754	16,239	22,697	24,557	15,650	983	11,351	21,160
51,611	330,037	15,765	113,903	18,018	15,003	12,958	51,561	133,779	59,184	60,000	2,183	51,909	338,910
7,298	2,310	44,510	5,148	22,997	37,357	28,503	9,568	4,911	13,945	13,686	250,841	14,341	6,689
4,132,701	981,612	50,083,569	6,664,276	8,535,705	28,877,732	13,599,067	8,725,522	5,949,704	6,937,203	6,852,021	46,484,604	19,705,457	17,329,456
1.5	0.4	10.4	2.7	2.9	7.4	3.6	3.8	2.4	1.8	1.5	12.5	4.7	4.5
81.0	85.0	75.0	87.0	77.0	55.0	75.0	76.0	84.0	74.0	81.0	33.0	81.0	85.0
2.8	3.1	2.2	3.5	2.6	1.6	2.7	2.4	3.0	20.0	3.0	0.7	4.4	3.4
11.0	9.4	16.0	10.0	13.0	20.0	14.0	12.0	8.2	11.0	12.0	17.0	11.0	9.4
7.2	5.0	8.4	2.7	8.3	23.0	9.6	11.0	7.4	13.0	6.5	48.0	6.4	4.7

Table S1

Marker Type

Linkage	F1 Mother	F1 Father	F2 Males	F2 Females	F0 Grandmother		SNPs	
Autosomal	H	A	A, H	A, H	A	196,740	607,457	612,768
					H	410,717		
Z-linked	A	B	H	B	B	5,062	5,062	
Pseudo-autosomal	H	A	A	H	H	126	249	
Pseudo-autosomal	H	A	H	A	A	123		
Autosomal	A	H	A, H	A, H	A	211,171	696,187	717,758
					B	485,016		
Z-linked	A	H	A, H	A, B	B	15,499	21,571	
					A	6,072		
Autosomal	H	H	A, $2 \mathrm{H}, \mathrm{B}$	A, 2H, B	A	1,157,246	1,625,563	1,625,563
					H	468,317		
Autosomal						2,929,207		
Z-linked						26,633		
Pseudo-autosomal						249		
ALL						2,956,089		

Table S2
Sample
Sex

100 bp read

 pairs| Estimated | Reads mapped | Reads mapped |
| :---: | :---: | :---: |
| coverage | to Hmel1.1 | to Hmel1.1 |
| assuming 273 | primary | haplotype |
| Mb genome | scaffolds (\%) | scaffolds (\%) |
| size | | |

Fo Grandmother

| Female | |
| :--- | :--- | :--- |
| Female | |
| Male | |
| Female | |
| Male | |
| Male | |
| Female | |
| Male | |

95	40
95	41
95	39
95	41
95	40
95	40
95	41
94	41
95	41
95	41
95	41
68	30
95	40
92	38
85	36
93	38
93	41
89	39
86	37
86	39
94	41
95	42
95	40
95	41
95	41
95	41
94	40
95	40
95	40
94	41
92	40
94	41
95	40
94	42
94	40
95	40
91	38
95	40
95	40
66	28

 older for this preprint is the author/funder. It is made available under a CC-BY 4.0 International license.

Male
Female 19,877,7

Female	17,

$13,140,251$	13	
$17,434,548$	13	

Female $\quad 16,271,372$
22,612,510
22,242,879
22,544,590
Male

$2,390,917$	16	95
$9,504,199$	36	95

Female	
Female	

13,245,159
13,961,506
$4,483,087$
$20,108,154$
20,396,786
0,001,690 \square

18,044,439
39

21,827,643

Female	
Male	

47,203,393
Male

$39,730,439$	29
$37,010,138$	27

37,010,138
93

31,000,095
$5 \quad 27$

36,009,215
Male 45

45,462,646
35,771,694

Table S3

Read set	Reads	Mean length	Maximum length	Total bases coverage assuming 273 Mb genome	
Filtered subreads	$1,679,169$	3,764	50,704	$6,321,685,114$	23
Illumina+454 corrected	$1,577,076$	2,644	27,868	$4,170,152,996$	15
Self corrected	$1,139,019$	2,947	31,243	$3,357,774,198$	12
Combined corrected sets	$2,716,095$	2,772	31,243	$7,527,927,194$	2

Table S4

Locus	Hmel1.1			Hmel2				Orientation
	Chromosome	Scaffold	Position	Chromosome	Scaffold	Scaffold Position	Chromosome Position	
K	1	HE671174, sch7180001250895, HE671426, sch7180001250559, HE670889, sch7180001249852, HE671246, HE670375,	$\begin{aligned} & 1-1230020, \\ & 610-36473, \\ & 1208-57326, \\ & 24484-25596, \\ & 1-79969, \\ & 7575-8166, \\ & 1-90223, \\ & 1-74518 \end{aligned}$	1	Hmel201011	1158037-2385980, 2385981-2420867, 2420868-2475289, 2475290-2476402, 2476403-2561606, 2561607-2562198, 2562199-2652056, 2652057-2723847	13138351-14704161	Forward, Reverse, Reverse, Reverse, Reverse, Reverse, Forward, Reverse
Ac	10	HE668478	4097-521029	10	Hmel210004	1378480-1896278	2890123-3407921	Forward
Yb/Sb/N	15	HE667780	3226-1333114	15	Hmel215006	560859-1856024	839535-2134700	Forward
BD	18	HE670865	9-617487	18	Hmel218003	559944-1146324	913118-1499498	Reverse
erato Ecuador: outlier	2	HE671428	1-531382	2	Hmel202004	163249-692081	504760-1033592	Forward
erato Peru: assoc spot 11; outlier	2	HE670519	1-344122	2	Hmel202004	713636-1058040	1055147-1399551	Reverse
erato Peru: assoc D gen (alt, rays, spot 11); erato Ecuador: assoc spot 11)	2	HE670235	517-98571	2	Hmel202004	1452099-1550165	1793610-1891676	Reverse
erato Peru: assoc D gen (alt, rays, spot 11); erato Ecuador: assoc spot 11 - erato Peru: assoc alt, rays: outlier	2	HE670771	392-425087	2	Hmel202006	117076-542875	2545944-2971743	Forward
melp Peru: outlier	6	HE671933, HE671934	$\begin{aligned} & 1-37838, \\ & 6-148310 \end{aligned}$	6	Hmel206021	$\begin{aligned} & \text { 148483-180242, } \\ & 1-148305 \end{aligned}$	12896588-13076829	Reverse
melp Ecuador: assoc rays - melp Peru: assoc rays, D gen (alt)	Unmapped	HE670458	478-5421	8	Hmel208029 (haplotype)	103504-107216	6059171-6062883	Forward
erato Ecuador: assoc Ro (spot 7/8); outlier	Unmapped	HE669551	1-29674	13	Hmel213049	720910-750583	10585465-10615138	Reverse
erato Ecuador: assoc spot 11 (Ro, spot 7/8); outlier	13	HE670984	1-71687	13	Hmel213051	6459-78010	10656058-10727609	Forward
erato Ecuador: assoc HWY	17	HE671853	1-192019	17	Hmel217020	1452411-1644405	13535500-13727494	Reverse
melp Peru: assoc alt (D gen); outlier melp Ecuador: outlier	18	HE671488	1-996981	18	Hmel218005	1-995727	2787424-3783150	Forward
melp Peru: assoc spot 8	Unmapped	HE671554	1700-334452	20	Hmel220005	1135057-1476012	4444093-4785048	Reverse

Table S5

Sample	151 bp read pairs	Reads mapped to Hmel2 (\%)
MC14-04 (Father)	$84,076,972$	46
MC14-11 (Mother)	$87,892,825$	47
MC14-64	$5,452,089$	32
MC14-65	$2,926,927$	36
MC14-70	$3,730,478$	35
MC14-72	$1,880,271$	37
MC14-76	$2,787,303$	33
MC14-77	$3,981,681$	36
MC14-78	$5,041,043$	35
MC14-79	$3,797,695$	37
MC14-81	$4,306,783$	36
MC14-84	$3,646,291$	35
MC14-85	$5,406,938$	37
MC14-87	$4,186,544$	37
MC14-170	$3,643,677$	35
MC14-171	$3,781,326$	36
MC14-179	$61,654,236$	35
MC14-201	$4,903,067$	36
MC14-202	$4,651,268$	46
MC14-203	$3,229,381$	34
MC14-206	$3,797,574$	35
MC14-369	38	
MC14-371	38	

MC14-04 (Father)
MC14-11 (Mother)
MC14-64
MC14-65
MC14-70
MC14-72
2,787,303

3,797,695 37
3,200,779 36
4,306,783 35
3,646,291 37
3,406,938 37
5,378,843 35
4,186,544 36
3,643,677 35
3,781,326 36
61,654,236 46
4,903,067 34
4,651,268 35
3,229,381
38
3,797,574

Table S6

	Long chromosome			Short chromosome				
Heliconius chromosome	Melitaea chromosome	Melitaea scaffold endpoint	Eueides scaffold endpoint	Eueides chromosome endpoint	Melitaea chromosome	Melitaea scaffold endpoint	Eueides scaffold endpoint	Eueides chromosome endpoint
1	2	Hmel201007:1881936	Hmel201007:1832844	5684999	27	Hmel201007:239201	Hmel201007:1759677	5611832
6	10	Hmel206012:1840856	Hmel206019:145859	10727620	31	Hmel206019:1901032	Hmel206019:278475	10860236
7	12	Hmel207002:4646678	Hmel207002:4172965	4393973	28	Hmel207002:2797437	Hmel207002:4097370	4318378
10	6	Hmel210004:5692975	Hmel210004:4829286	6294724	22	Hmel210004:4485297	Hmel210004:4783081	6340929
12	13	Hmel212004:173588	Hmel212001:6780141	6780141	25	Hmel212001:5974073	Hmel212001:6602500	6602500
13	11	Hmel213050:21134	Hmel213051:38918	10688517	26	Hmel213051:130456	Hmel213051:54342	10703941
17	15	Hmel217018:614079	Hmel217018:2302442	11281892	29	Hmel217020:339854	$\begin{aligned} & \text { Hmel217019:6183 / } \\ & \text { Hmel207019:783600 } \end{aligned}$	$\begin{aligned} & 11294399 \\ & 11299389 \end{aligned}$
18	14	Hmel218018:3401091	Hmel218018:3687994	10361854	24	Hmel218018:3743038	Hmel218018:3721424	10395284
19	4	Hmel219003:6154550	Hmel219003:6148431	6390342	23	Hmel219003:5277918	Hmel219003:6128903	6370814
20	9	Hmel220011:484769	Hmel220014:276590	11241860	30	Hmel220014:706880	Hmel220014:285822	11251092

