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Abstract—Quaternion non-negative matrix factorization
(QNMF) is a new tool which generalizes usual non-negative
matrix factorization (NMF) to the case of polarized signals.
The approach relies on two key features: (i) the algebraic
representation of polarization information, namely Stokes
parameters, thanks to quaternions and (ii) the exploitation
of physical constraints linked to polarization generalizing
non-negativity constraints. QNMF improves NMF model
identifiability by revealing the key disambiguating role played
by polarization information. A simple and numerically efficient
algorithm is introduced for practical resolution of the QNMF
problem. Numerical experiments on synthetic data validate the
proposed approach and illustrate the potential of QNMF as a
generic spectropolarimetric image unmixing tool.

Index Terms—quaternion non-negative matrix factorization
(QNMF), Stokes parameters, spectropolarimetry

I. INTRODUCTION

Polarization information is essential to many imaging ap-
plications ranging from astrophysics [1] to biology [2]. It
simultaneously carries a strong natural discriminative power
as well as numerous physical and morphological attributes
of the observed scene which are unaccessible to conventional
intensity imaging. Recent years have seen a booming interest
in pairing polarization diversity together with conventional
hyperspectral imaging systems [3]. Such spectropolarimetric
imaging technique consists in acquiring, for every pixel u
and wavelength λ, a Stokes vector x(λ, u) ∈ R4 describing
the polarization properties of the measured light. Importantly,
these energetic parameters obey to structural constraints that
reveal the physics of polarization. These constraints generalize
classical non-negativity: only one Stokes parameter is non-
negative, whereas the 4 Stokes parameters are linked all
together by an inequality constraint.

Spectropolarimetric images can be represented as a 3D data
array gathering the spatial, spectral and polarization diversities.
For narrow-band sources with constant polarization, usual
low-rank tensor approximation techniques (e.g. CPD with
constraints [4]) – adapted to the specificities of polarization
– permit an efficient unmixing of spectropolarimetric images.
However, the general wideband sources case is much more
challenging, notably due to wavelength-dependent polarization
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properties. The latter case thus requires the development of
new, generic and interpretable signal processing tools for
spectropolarimetric data.

To this aim, we introduce quaternion non-negative matrix
factorization (QNMF). This new tool extends to the case of po-
larized signals the concept of non-negative matrix factorization
(NMF), widely used for hyperspectral unmixing [5]. QNMF
relies on two ingredients: (i) the algebraic representation of
the Stokes vector x(λ, u) using quaternions and (ii) the ex-
ploitation of physical constraints related to polarization, which
generalize the usual non-negativity constraint. Focusing on
practical purposes, we give a simple yet numerically efficient
algorithm that solves the QNMF problem using a quaternion-
domain alternated least square optimization strategy. A first
theoretical analysis of QNMF can be found in [6], where
it is shown that QNMF greatly improves NMF in terms of
model identifiability, by having less strict uniqueness condi-
tions on the sources. Numerical experiments on synthetic data
demonstrate the potential of QNMF as a generic low-rank
approximation tool for polarized signals.

II. BACKGROUND

A. Polarization

Polarization is a fundamental property of waves (electro-
magnetic, elastic, gravitational) which describes the geometric
nature of oscillations. Consider for instance light in vacuum:
in the transverse plane, i.e. perpendicular to the direction
of propagation, the electric field vector usually describes an
elliptical trajectory; hence one says that the wave is elliptically
polarized. Intensity and polarization properties of light are
characterized by 4 Stokes parameters S0, S1, S2, S3. This set
of energetic, experimentally measurable quantities is widely
used in many applications, including optics [7]. The first
Stokes parameter S0 ≥ 0 measures the total intensity, i.e. the
sum of intensities of the polarized part and unpolarized part
of light. The relative contribution of these two parts is ruled
by the degree of polarization Φ

Φ =
polarized intensity

total intensity
=

√
S2
1 + S2

2 + S2
3

S0
, (1)

where by definition Φ ∈ [0, 1]. When Φ = 1, light is said
to be fully polarized, whereas for Φ = 0 light is said to



be unpolarized. For 0 < Φ < 1, it is said to be partially
polarized. The three remaining Stokes parameters S1, S2, S3

define the polarization state fo the wave: S1 and S2 encode
linear polarization states, while S3 gives circularly polarized
states.

B. Quaternion representation

A Stokes vector (S0, S1, S2, S3)> ∈ R4 can be algebraically
represented by the quaternion

w = S0 + iS3 + jS1 + kS2 ∈ H , (2)

where H = Span{1, i, j,k} is the set of quaternions, i, j,k
are roots of −1 (i2 = j2 = k2 = −1) such that ij = k and
ij = −ji. Eq. (2) can be geometrically rewritten as:

w = I + IΦµ (3)

where I = S0 ≥ 0 is the total intensity, Φ ∈ [0, 1] is the degree
of polarization. The polarization axis µ is a pure quaternion
(i.e. such that µ2 = −1) which can be identified with a unit
vector of R3 on the Poincaré sphere of polarization states
[8]. Eq. (3) illustrates one of the benefits of the quaternion
approach, as it enables a natural separation between purely
energetic information (the real part of w, Rew = I) and
polarization / geometric content (the imaginary part of w,
Imw = IΦµ).

C. Polarization constraint and non-negativity

A Stokes vector (S0, S1, S2, S3)> ∈ R4 is said to be
admissible when the following constraints (S) are satisfied:

S0 ≥ 0 and S2
1 + S2

2 + S2
3 ≤ S2

0 . (S)

The first constraint S0 ≥ 0 is classical and indicates that
the total intensity is a non-negative real quantity. The second
constraint is specific to polarization: it stipulates that the
intensity of the polarized part cannot exceed that of the total
intensity. From a mathematical viewpoint, (S) extends the
usual non-negativity constraint of univariate signals to the case
of bivariate signals. To see this, consider the coherency matrix
J [9, Section 1.4], i.e. the spectral covariance matrix of the
bivariate electric field such that

J =
1

2

[
S0 + S1 S2 + iS3

S2 − iS3 S0 − S1

]
∈ C2×2. (4)

By definition, J is a positive semidefinite (or simply non-
negative) Hermitian matrix. Non-negativity of J is character-
ized by trJ ≥ 0 and detJ ≥ 0, two conditions which yield
directly to (S). The proposed approach relies on exploiting
the constraint (S) through the quaternion representation (2) of
Stokes parameters. By extension, we define the set of non-
negative quaternions HS ⊂ H such that

HS , {q ∈ H|Req ≥ 0 et |Imq| ≤ Req} . (5)

This formal identification between a quaternion q ∈ HS and
a Stokes vector is used throughout the paper.

III. QUATERNION NON-NEGATIVE MATRIX
FACTORIZATION

This section introduces quaternion non-negative matrix fac-
torization (QNMF), a new tool which generalizes NMF to the
case of polarized signals. QNMF relies on two key distinctives
aspects: (i) the polarization constraints (S), which encodes
non-negativity for polarized signals and (ii) the algebraic
representation (2) of Stokes parameters using quaternions.

A. Definition

Consider for simplicity the case of spectropolarimetric
imaging, where the four Stokes parameters x(λ, u) ∈ HS are
measured for every wavelength λ and pixel u. The following
linear mixing model permits to decompose spectropolarimetric
data into P sources like

x(λ, u) =

P∑
p=1

wp(λ)hp(u) (6)

where hp(u) ≥ 0 is the activation coefficient of the pth

source at pixel u, and wp(λ) ∈ HS is the corresponding
Stokes vector at wavelength λ. Eq. (6) describes a blind
wideband polarized source separation problem. This model is
very general: no hypotheses on the frequency dependence of
polarization properties are introduced, unlike other existing
approaches based on narrow-band modeling [10].

Solving (6) can be formulated as the resolution of the fol-
lowing quaternion non-negative matrix factorization (QNMF)
problem

X = WH (7)

where X ∈ HM×N
S is the spectropolarimetric data matrix,

i.e. Xmn = x(λm, un). The source matrix W ∈ HM×P
S

has coefficients Wmp = wp(νm), while H ∈ RP×N
+ is the

activation matrix such that Hpn = hp(un). Given X, the
QNMF (7) relies on exploiting the polarization onstraint (S)
for the sources W, together with the usual non-negativity
constraint for the activations H. As a result, for a given
P ≤ M,N , the product WH defines a structured low-rank
approximation of X.

B. Relation with NMF

The QNMF problem (7) can be rewritten using the de-
composition of any quaternion into the sum of its real and
imaginary part like

X = WH⇔

{
ReX = [ReW]H (NMF)
ImX = [ImW]H (polarization)

. (8)

Eq. (8) shows that QNMF can be interpreted as a matrix
cofactorization problem, where activation matrix H stands as
a common factor. The first problem ReX = [ReW]H is a
standard NMF one on the real part of X, i.e. on intensity
data only (first Stokes parameter S0 ≥ 0). The second
problem ImX = [Im W]H searches for a factorization of the
imaginary part of X, which describes polarization properties of
the sources (Stokes parameters S1, S2, S3). Importantly, these



two matrix factorization problems are not independent, for two
reasons: (i) the activation matrix H is a common factor and
(ii) the very nature of the polarization constraint (S) links
the real and imaginary parts of the source matrix W. In full
generality, QNMF greatly improves NMF model identifiablity
by taking advantage of supporting polarization information –
fundamental properties that can be measured in most optical
imaging setups. From a theoretical perspective, we derive in
[6] sufficient conditions (for P = 2 sources) and necessary
uniqueness conditions (for P ≥ 2 sources). Compared to their
NMF counterparts [11]–[14], these conditions appear far less
restrictive – in particular, one may recover QNMF uniqueness
even when sources never vanish, a case where NMF is known
to be not unique.

IV. ALGORITHM

A. Optimization problem formulation

The practical resolution of the QNMF problem can be for-
mulated as an optimization problem, which aims at minimizing
the following Euclidean quadratic cost

min
W∈HM×P

S
H∈RP×N

+

‖X−WH‖2F (9)

where ‖X − Y‖2F =
∑

m,n |Xmn − Ymn|2 is the Frobe-
nius norm between quaternion matrices X and Y. Note the
similarity between (9) and the standard Euclidean cost NMF.
However, the QNMF setting raises two specific issues that
subtend any algorithm attempting to solve (9), namely: 1)
can we implement the constraint (S) on W in an efficient
way? and 2) can we optimize directly with respect to the
quaternion matrix W? Fortunately, the key link between (S)
and the set of non-negative Hermitian 2-by-2 matrices allows
to answer positively to 1). For 2), recent advances in the
theory of quaternion-domain derivatives [15]–[18] (also called
generalized HR calculus), enable to perform optimization of
(9) directly in the quaternion domain, as described below.

B. Quaternion alternating least squares

Since the objective function (9) is biconvex, i.e. it is convex
in each W and H, but not in (W,H), we adopt a popular
strategy based on the alternated constrained minimization of
(9) w.r.t. H and W. To this aim, a first approach consists in the
following. At a given iteration r, for each factor, one solves the
unconstrained least-squares problem and project the obtained
solution onto the corresponding constraint. This approach is
called quaternion alternating least squares (QALS) due to its
resemblance with the usual ALS algorithm [19] for the NMF.
QALS is written symbolically as

Hr+1 ← ΠR+

[
arg min

H
‖X−WrH‖2F

]
(10)

Wr+1 ← ΠHS

[
arg min

W
‖X−WHr+1‖2F

]
(11)

where ΠR+ and ΠHS denote element-wise projections onto
constraints R+ and (S), respectively. Projection onto R+

is simply obtained by keeping non-negative values, i.e.
ΠR+(Hpn) = max(0,Hpn). The projection of elements of
W onto (S) is performed by projecting the associated 2-by-
2 Hermitian matrix onto the subspace spanned by its non-
negative eigenvalues, see [6] for details.

Detailed derivations of explicit updates for unconstrained
least-squares problems are provided in [6]. It requires special
care due to the quaternion nature of X and W. For H, it
involves a cautious handling of quaternion non-commutativity.
Optimization over W is performed thanks to the recently
introduced theory of quaternion derivatives [15]–[18]. It yields
updates expressions that are very much alike the standard ALS
algorithm for the NMF [20]. At iteration r > 0, one gets

Hr+1 ← ΠR+

[(
Re
[
W>

r Wr

])−1
Re
[
W>

r X
]]

(12)

Wr+1 ← ΠHS

[
XH>r+1

(
Hr+1H

>
r+1

)−1]
(13)

where X> and X are the transpose and element-wise con-
jugate of the quaternion matrix X, respectively. Note that
in (12)–(13), matrix inverses are computed for real matrices
only. The proposed QALS algorithm is thus remarkably simple
and cheap. Its numerical complexity is similar to that of the
ALS algorithm, which scales as O(MNP ) for small values
of P . This heuristic algorithm provides a first baseline for the
resolution of QNMF, and paves the way to the development
of more sophisticated algorithms in the near future.

V. NUMERICAL VALIDATION

A. Illustration

To illustrate the potential of QNMF, we consider a data
example X0 = W0H0 constructed from synthetic quater-
nion non-negative sources W0 and activation maps H0. We
generate P = 3 sources with realistic spectral signatures
(S0 parameter) for M = 64 wavelengths together with
N = 16 × 16 = 256 spatial locations. For simplicity, each
source is fully polarized (Φ = 1) with constant polarization
properties distinct from one another. Activation maps are
chosen such that the pure pixel condition is satisfied. Such
conditions guarantee that the QNMF X0 = W0H0 satisfies
the necessary uniqueness condition given in [6, Prop. 3].

Additive noise was added to X0, resulting in observations
X = X0 +N where N has i.i.d. quaternion circular Gaussian
entries, i.e. Nmn = n0mn + n1mni+ n2mnj + n3mnk with i.i.d.
nimn ∼ N (0, σ2). Signal-to-noise ratio is defined as SNR =
‖X0‖2F /(4MNσ2) and we note SNRdB = 10 log SNR.

Fig. 1 depicts reconstruction results for sources and corre-
sponding activation maps obtained using the QALS algorithm
for SNRdB = 0 dB. We performed 100 independent runs
of the QALS algorithm. Convergence of the algorithm is
monitored by the relative reconstruction error at iteration r,
εr = ‖X −WrHr‖2F /‖X‖2F . The algorithm stops whenever
|εr − εr−1| goes below some predefined threshold. Out of
100 runs, it took on average ' 8 iterations for the QALS
algorithm to converge. Fig. 1 displays the best of all runs
in terms of final reconstruction error. Overall, the excellent



0 8 16
0

8

16

0 8 16
0

8

16

0 8 16
0

8

16

0 20 40 60
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 20 40 60
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0 20 40 60

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0 20 40 60
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0 20 40 60
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0 20 40 60

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0 20 40 60
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0 20 40 60
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0 20 40 60

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0 20 40 60
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Activations H Sources W

wavelength indexspatial index

S0 S1 S2 S3

Fig. 1. QALS reconstruction example for the P = 3 sources case with SNRdB = 0 dB. Reconstructed activations and Stokes parameters are given row-wise.
Results display excellent match with theoretical values (solid black lines).
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Fig. 2. Evolution of the total reconstruction error εH + εW with respect to
the SNR for the sources and activations factors shown in Fig. 1.

match between theoretical values and reconstructed sources
and activations indicates the good practical performances of
the proposed QALS algorithm.

B. Reconstruction performance

To quantify the performances of QALS in terms of recon-
struction accuracy, we consider a second experiment where we

monitor the total reconstruction error ‖H0 −H‖2F + ‖W0 −
W‖2F = εH+εW for SNR values ranging from SNRdB = −40
dB to SNRdB = 40 dB. For each SNR value, 100 independent
noisy observations were simulated and QALS reconstruction
was performed.

Fig. 2 displays the evolution of the average total recon-
struction error with respect to the SNR. As expected, the
total reconstruction error εH + εW decreases as the SNR in-
creases. These results illustrate the good numerical properties
of QALS, which provides, despite the lack of convergence
guarantees, a good baseline for practical resolution of the
QNMF problem.

VI. CONCLUSIONS

This paper has introduced QNMF, a new low-rank approx-
imation tool which generalizes the usual NMF to the case
of polarized signals. A first algorithm named QALS provides
an efficient and simple resolution of the QNMF problem.
These first results, together with unicity results provided in [6]
appear very promising and herald many further theoretical and
methodological developments on QNMF. These future works
will bring fundamental tools essential to the generalization of
spectropolarimetric imaging modalities.
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