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Received: date / Accepted: date

Abstract Hematopoiesis is a biological phenomenon (process) of production of ma-
ture blood cells by cellular differentiation. It is based on amplification steps due to
an interplay between renewal and differentiation in the successive cell types from
stem cells to mature blood cells. We will study this mechanism with a stochastic
point of view to explain unexpected fluctuations on the mature blood cell numbers,
as surprisingly observed by biologists and medical doctors in a rest hematopoiesis.
We consider three cell types: stem cells, progenitors and mature blood cells. Each
cell type is characterized by its own dynamics parameters: its division rate and by
the renewal and differentiation probabilities at each division event. We model the
global population dynamics by a three-dimensional stochastic decomposable branch-
ing process. We show that the amplification mechanism is given by the inverse of the
small difference between the differentiation and renewal probabilities. Introducing a
parameter K which scales simultaneously the size of the first component, the differ-
entiation and renewal probabilities and the mature blood cell death rate, we describe
the asymptotic behavior of the process for large K. We show that each cell type has
its own size scale and its own time scale. Focusing on the third component, we prove
that the mature blood cell population size, conveniently renormalized (in time and
size), is expanded in an usual way inducing large fluctuations. The proofs are based
on a fine study of the different scales involved in the model and on the use of different
convergence and average techniques in the proofs.
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1 Introduction

This paper studies a stochastic model of the process of rest hematopoiesis, the pro-
cess that produces blood cells in development by differentiation from stem cells to
mature blood cells with amplification of the amount of cells. The main goal is to an-
alyze the effects of amplification on the fluctuations of the blood cell number, which
observations have shown to be higher than the expected standard fluctuations.

We introduce a multi-type branching process on three types of cells (cf. Gonzalez
et al. (2010)-Sect. 12, Axelrod and Kimmel (2002)-Sect. 6.9.1), with a different size
scale for each type, and a different time scale for the birth (or death) rate of each of
the three types. The dynamics of stem cells (type 1) and progenitors (type 2) result in
two distinct events, renewal and differentiation. Each cell of type 1 and 2 divides into
two cells at a constant rate, depending on its type. These two new cells are either of
the same type as the mother cell (renewal) or of the ”next” cell type (differentiation).
Mature blood cells (type 3) cells do not divide and can only die at a constant rate.
The stem cells are those with the highest capacity for renewal.

In the model, we introduce as unique scaling parameter K the size of the type 1
cell population. The parameter K will also scale the quantities leading to amplifica-
tion, i.e. the small difference between the differentiation and renewal probabilities at
step 2 and the death rate at step 3. We will see (cf. (9)) that the amplification from
type 1 cells to type 3 cells is proportional to these two quantities, which will play a
main role in our analysis.

The mathematical modeling of hematopoiesis has been firstly introduced in the
seminal paper of Till et al. (1964). In this paper, the authors study a binary branching
process and show, comparing with biological results, that the probabilistic framework
is relevant. Since this pioneering work, many mathematical approaches have been
proposed to describe more precisely the cell differentiation kinetics, based either on
deterministic or stochastic models (a survey concerning many models can be found in
Whichard et al. (2010)). A deterministic approach consists in introducing a dynamical
system describing the behavior of the different cell types and in studying different
properties of this system, in particular the equilibrium states (see for example Crauste
et al. (2008), Loeffler and Wichmann (1980), Marciniak-Czochra et al. (2009), Arino
and Kimmel (1986) and the references therein). A noise can also be added to model
some random perturbation of these systems, with an eventual delay (see for example
Lei and Mackey (2007), Pazdziorek (2014)). Let us note that other stochastic models
for hematopoiesis have been introduced (Abkowitz et al. (2000), Roeder and Loeffler
(2002), Kimmel and Wazewska-Czyzewska (1982)) but they concentrate on a specific
level (either stem cells or red blood cells).

In all this literature, the questions studied by the authors do not concern the impact
of the parameters on the amplification. We have only found two papers, Dingli et al.
(2007) and Marciniak-Czochra et al. (2009), in which the question was mentioned.
They both highlighted the fact that amplification results from the difference between
differentiation and renewal probabilities and not from division rates. In our model,



Large fluctuations in multi-scale modeling for rest hematopoiesis 3

this difference is calibrated as function of K, which allows us to compare the size
and time scales of each cell type population sizes: they strongly differ from type 1 to
type 3 with increasingly slow time scales and large size scales. Usually, slow and fast
components appear naturally, as associated which different species behaviors (see
Khammash et al. (2006)), contrary to our case, where the different time scales are
deduced from a fine study of the cell differentiation dynamics.

Our approach is inspired by Kang et al. (2014) in which a general theorem for
convergence and fluctuations of multiscale processes is obtained but the latter cannot
explain the asymptotics of our model. Indeed, in their result, the fluctuations around
the deterministic behavior of the slow component are Gaussian, which will not be the
case of the type 3 cells dynamics previously described.

In Sect. 2, we introduce the stochastic branching process and the assumptions on
the parameters. In Sect. 3, basic martingale properties are stated and some estimates
are given for the moments of cell type sizes. We quantify the order of magnitude of
the different cell type sizes in function of K. On a fixed time interval, we prove the
convergence (as K → ∞), of the scaled process to a deterministic degenerate func-
tion, only issued from the type 1 dynamics. The two last component dynamics are
too slow to be observable at this time scale. In Sect. 4, we study the process on a
longer time-scale to capture the asymptotic behavior of type 2 dynamics. We show
that the limiting behavior of the two first components process at this time scale is
given by an explicit deterministic function y. We also show that this time scale is not
long enough to observe the very slow dynamics of the third component. Hence, we
study the limiting behavior of the process at this new time scale. Then, the second
component process goes too fast and doesn’t converge in law anymore (in Skorohod
topology). We consider the associated occupation measure, as already done in Kurtz
(1992). We prove its convergence in a weak sense to the Dirac measure whose support
is the unique equilibrium of the second component of the function y. Then we deduce
the convergence of the third component to a limiting deterministic system involving
this equilibrium. In Sect. 5, we study and quantify the fluctuations. We show that the
first component behaves at the different time scales as a Brownian motion. This is
not the case for the other two ones. Theorem 3 describes the second and third order
asymptotics of the second component on its typical time and size scale. The fluctu-
ations around its deterministic limit are not Gaussian. They are described by a finite
variation process integrating the randomness of the first component. An independent
Brownian motion appears in the third order term. Our main theorem, Theorem 4, de-
scribes the fluctuations associated with the third component dynamics. We show that
the randomness induced by the dynamics of the two last components is negligible.
The fluctuations are due to a cumulative effect of the first component randomness.
That’s why one observes large and smooth oscillations of the third component.

Notation. P(E) and L (X) will denote respectively the space of probability measures
on E and the law of a process X . As in Kurtz (1992), we will denote by lm(R+) the
space of measures µ on [0,∞)×R+ such that µ([0, t]×R+) = t, for each t ≥ 0. The
processes < X > and < X ,Y > will denote respectively the quadratic variation of the
process X and the covariation of the processes X and Y .
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2 Model and assumptions

Cells of type 1 evolve according to a critical linear birth and death process. Birth
events correspond to renewal division events, occurring at rate τ1

2 > 0, while death
events correspond to differentiation events occurring at the same rate (a cell of type 1
divides in two cells of type 2). Cells of type 2 divide at rate τ2 > 0 in two cells of the
same type (renewal event) with probability pR

2 and in two cells of type 3 (differentia-
tion event) with probability pD

2 = 1− pR
2 ∈]1/2,1[. The mature cells of type 3 die at

rate d3 > 0. We can summarize the dynamics as follows. If N = (N1,N2,N3) denotes
the vector of sub-population sizes, the transitions of the hematopoietic process are
given by

N1 −→ N1 +1 at rate (τ1/2)N1

(N1,N2) −→ (N1−1,N2 +2) at rate (τ1/2)N1

N2 −→ N2 +1 at rate τ2 pR
2 N2

(N2,N3) −→ (N2−1,N3 +2) at rate τ2 pD
2 N2

N3 −→ N3−1 at rate d3 N3.

Here, we have assumed that each division is symmetric, so that

pD
2 + pR

2 = 1. (1)

We could have included asymmetric division without changing the results of our
study. Indeed it doesn’t change the main characteristics of the dynamics.

In the model, we don’t consider mortality rates for type 1 and type 2 cells and we
assume that cell loss is only due to differentiation in the next cell type. Indeed the
hematopoietic stem cell and progenitor death rates, at steady-state, have been biolog-
ically estimated and are so small that they can be neglected (cf. Domen et al. (2000)).

As explained in the introduction, we define the scaling parameter K as the size of the
type 1 cells population. K is assumed to be large and to scale pD

2 − pR
2 and d3, in a

way which is defined now.

More precisely, we assume that

the size of the type 1 cells population is of order K, (2)

and there exists a couple of positive parameters (γ2,γ3) ∈]0,1[ such that

pD
2 − pR

2 = K−γ2 and d3 = τ3K−γ3 with τ3 > 0. (3)

Let us note that (1) and (3) make the probabilities pR
2 and pD

2 depend on K,

pD
2 = 1− pR

2 = 1/2+K−γ2/2.

Therefore the dynamics of this cell type is close to a critical process, in the sense that
the renewal and differentiation rates are close.
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Assumptions (3) introduce the different time and size scales playing a role for the
multi-scale population process describing the dynamics of each cell type size. From
now on, since the dynamics depend on K, we will denote by NK , the population
process N previously defined.

We assume in the following that

γ2 < γ3 < 1, (4)

in agreement with biological observations (see ? and Busch et al. (2015)).

Our aim is to finely describe the above dynamics, when K goes to infinity, using
appropriate renormalizations.

We will see that a size renormalization is not enough to describe the dynamics
of the last two components of the process. A time renormalization is also necessary.
More precisely each cell type has its own size scale, of order K for cell type 1, K1+γ2

for cell type 2 (resp. K1+γ2+γ3 for cell type 3) and its own time scale, of order 1 for
cell type 1, Kγ2 for cell type 2 (resp. Kγ3 for cell type 3).

The next simulations show the dynamics of the process in the typical time scale of
each cell type, namely K, Kγ2 and Kγ3 . We visualize the effect of type 1 cells on
fluctuations and the typical time and size scale of each cell type. We take as initial
condition

NK(0) = (K,0,0)

and choose K = 2000 cells of type 1, γ2 = 0.55, γ3 = 0.8. Hence Kγ2 ∼ 60 and
Kγ3 ∼ 400.
The others parameters are equal to 1.

Figure 1 shows the simulation of a trajectory of the process (NK(t), t ∈ [0,T ])
for T ∼ 1, decomposed on the three cell types. Figure 2 shows the simulation of a
trajectory of the process (NK(t), t ∈ [0,T ]) for T ∼ Kγ2 and Figure 3 shows the
simulation of a trajectory of the process (NK(t), t ∈ [0,T ]) for T ∼ Kγ3 . The hor-
izontal orange line gives the order of magnitude for size of each cell type (K, resp.
K1+γ2 , K1+γ2+γ3 ).

Fig. 1: A trajectory of the NK process for t ∈ [0,T ] with T = O(1)
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Fig. 2: A trajectory of the NK process for t ∈ [0,T ] with T = O(Kγ2 )

Fig. 3: A trajectory of the NK process for t ∈ [0,T ] with T = O(Kγ3 )

We observe that at a time scale of order 1, the two last components of the process NK

are far from their equilibrium size. We observe in Figure 2 that the two first compo-
nents of (NK(t), t ∈ [0,T ]) for T ∼Kγ2 evolve around their equilibrium size, which
is not the case of the third one. In Figure 3, the process is considered on a longer
period of time, T ∼ Kγ3 and one sees that the third component hits a neighborhood
of its equilibrium. Furthermore, we observe the fluctuations of the components of NK

around their equilibrium. We note that they get smoother from cell type 1 to cell type
3 and that the amplitude of the waves get longer.

Our aim is to prove and quantify these different behaviors and to explain these large
fluctuations.

3 The multiscale stochastic process and a first asymptotic result

3.1 The typical sizes of the stochastic process

Let us now introduce the vector NK(t) = (NK
1 (t),N

K
2 (t),N

K
3 (t)) of population sizes

at time t. The process NK is a decomposable multi-type branching process, that is a
Markov jump process whose dynamics is given by the following equations.

We assume that for any fixed K, NK
1 (0),N

K
2 (0),N

K
3 (0) are integrable.
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Let us denote by (N j
i ) 1≤i≤3

j∈{−,+}
independent Poisson point measures with intensity

dsdu on R2
+ and introduce the filtration (Ft)t≥0 given by

Ft = σ(N j
i ([0,s)×A); i ∈ {1, . . . ,3}, j ∈ {−,+}, s≤ t, A ∈B(R+)).

Then we have

NK
1 (t) = NK

1 (0)+
∫ t

0

∫
R+

1u≤ τ1
2 NK

1 (s−) N +
1 (ds,du)−

∫ t

0

∫
R+

1u≤ τ1
2 NK

1 (s−) N −
1 (ds,du)

NK
2 (t) = NK

2 (0)+2
∫ t

0

∫
R+

1u≤ τ1
2 NK

1 (s−) N −
1 (ds,du)+

∫ t

0

∫
R+

1u≤τ2pR
2 NK

2 (s−) N +
2 (ds,du)

−
∫ t

0

∫
R+

1u≤τ2pD
2 NK

2 (s−) N −
2 (ds,du)

NK
3 (t) = NK

3 (0)+2
∫ t

0

∫
R+

1u≤τ2pD
2 NK

2 (s−) N −
2 (ds,du)−

∫ t

0

∫
R+

1u≤τ3K−γ3 NK
3 (s−) N −

3 (ds,du)

.

It can be written for all t ≥ 0 as,

NK
1 (t) = NK

1 (0)+MK
1 (t)

NK
2 (t) = NK

2 (0)+ τ1

∫ t

0
NK

1 (s)ds− τ2 K−γ2

∫ t

0
NK

2 (s)ds+MK
2 (t)

NK
3 (t) = NK

3 (0)+2τ2 pD
2

∫ t

0
NK

2 (s)ds− τ3 K−γ3

∫ t

0
NK

3 (s)ds+MK
3 (t)

(5)

where MK = (MK
1 ,M

K
2 ,M

K
3 ) is a square-integrable martingale such that for all t ≥ 0,

< MK
1 >t = τ1

∫ t

0
NK

1 (s)ds

< MK
2 >t = 2τ1

∫ t

0
NK

1 (s)ds+ τ2

∫ t

0
NK

2 (s)ds

< MK
3 >t = 4 pD

2 τ2

∫ t

0
NK

2 (s)ds+ τ3K−γ3

∫ t

0
NK

3 (s)ds

< MK
1 ,M

K
2 >t = −τ1

∫ t

0
NK

1 (s)ds

< MK
2 ,M

K
3 >t = −2 pD

2 τ2

∫ t

0
NK

2 (s)ds.

(6)

Indeed, by standard localization and Gronwall’s arguments applied to (NK
1 (t))t ,

we can easily prove that for any T > 0 and K ∈ N∗,

E
[

sup
t≤T

NK
1 (t)

]
≤ (2+E

[
NK

1 (0)
]
)e2τ1T ,

and then that

E
[

sup
t≤T

NK
2 (t)

]
<+∞ ; E

[
sup
t≤T

NK
3 (t)

]
<+∞. (7)
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We obtain from (5) that the function t 7→ n(t) = E
[
NK(t)

]
= (n1(t),n2(t),n3(t)) sat-

isfies the system of equations, for all t ≤ T ,
n1(t) = E

[
NK

1 (0)
]

d
dt

n2(t) = τ1 n1(t)− τ2K−γ2 n2(t)
d
dt n3(t) = 2τ2 pD

2 n2(t)− τ3K−γ3 n3(t).

(8)

By assumption (2),
E
[
NK

1 (0)
]
∼ K.

Therefore there is a unique equilibrium given for all t ≥ 0 by,

n∗1 = E
[
NK

1 (0)
]
∼ K

n∗2 =
τ1 n∗1

τ2
Kγ2 ∼ K1+γ2

n∗3 =
2pD

2 τ2 n∗2
τ3

Kγ3 ∼ K1+γ2+γ3 . (9)

That suggests to state the following lemma.

Lemma 1 Let us now assume that

sup
K

E
[NK

1 (0)
K

]
<+∞, sup

K
E
[NK

2 (0)
K1+γ2

]
<+∞, sup

K
E
[ NK

3 (0)
K1+γ2+γ3

]
<+∞.

then

sup
K, t∈R+

E
[NK

1 (t)
K

]
<+∞ , sup

K, t∈R+

E
[NK

2 (t)
K1+γ2

]
<+∞ , sup

K, t∈R+

E
[ NK

3 (t)
K1+γ2+γ3

]
<+∞.

Proof The first assertion follows immediately.

From (8), we obtain that for all t ≥ 0,

E
[NK

2 (t)
K1+γ2

]
=

τ1

τ2
E
[NK

1 (0)
K

]
+
(
E
[NK

2 (0)
K1+γ2

]
− τ1

τ2
E
[NK

1 (0)
K

])
e−τ2 K−γ2 t

and the proof of the second assertion follows.

Similarly, straightforward computation yields

If τ3K−γ3 6= τ2K−γ2 then

E
[ NK

3 (t)
K1+γ2+γ3

]
=

2pD
2 τ1

τ3
E
[NK

1 (0)
K

]
−βK e−τ2 K−γ2 t

+
(
E
[ NK

3 (0)
K1+γ2+γ3

]
− 2pD

2 τ1

τ3
E
[NK

1 (0)
K

]
+βK

)
e−τ3 K−γ3 t ,
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with

βK = 2pD
2 τ2

1
τ2Kγ3−γ2 − τ3

(
E
[NK

2 (0)
K1+γ2

]
− τ1

τ2
E
[NK

1 (0)
K

])
< ∞.

If τ3K−γ3 = τ2K−γ2 then

E
[ NK

3 (t)
K1+γ2+γ3

]
=
[
2τ2 pD

2 K−γ3
(
E
[NK

2 (0)
K1+γ2

]
− τ1

τ2
E
[NK

1 (0)
K

])
t

+
E
[
NK

3 (0)
]

K1+γ2+γ3
− 2pD

2 τ1

τ2
Kγ2−γ3 E

[NK
1 (0)
K

]]
e−τ2K−γ2 t

+
2pD

2 τ1

τ2
Kγ2−γ3 E

[NK
1 (0)
K

]
,

Hence the third assertion is proved.

3.2 Asymptotic behavior on a finite time interval

The parameter K is defined as the order of magnitude of the martingale NK
1 at time 0.

Proposition 1 describes the dynamics of the process on a finite time interval. Its proof
is left to the reader. It is standard and similar proofs will be given in the following
section.

Proposition 1 Let us introduce the jump process XK defined for all t ≥ 0 by

XK(t) = (
NK

1 (t)
K

,
NK

2 (t)
K1+γ2

,
NK

3 (t)
K1+γ2+γ3

).

(i) Let us assume that there exists a vector (x1,0,0) ∈ R3
+ such that the sequence(

NK
1 (0)
K ,

NK
2 (0)

K1+γ2
,

NK
3 (0)

K1+γ2+γ3

)
K∈N∗

converges in law to (x1,0,0) when K tends to infinity

and such that

sup
K

E
[NK

1 (0)
K

]
<+∞, sup

K
E
[NK

2 (0)
K1+γ2

]
<+∞ and sup

K
E
[ NK

3 (0)
K1+γ2+γ3

]
<+∞.

Then for all T > 0, the sequence (
NK

1 (t)
K ,

NK
2 (t)

K1+γ2
,

NK
3 (t)

K1+γ2+γ3
)K∈N∗ converges in law in

D([0,T ],R3
+) to (x1,0,0).

(ii) Let us assume that there exists a vector (x1,0,0) ∈ R3
+ such that the sequence(

NK
1 (0)
K ,

NK
2 (0)
K ,

NK
3 (0)
K

)
K∈N∗

converges in law to (x1,0,0) when K tends to infinity and

such that

sup
K

E
[NK

1 (0)
K

]
<+∞, sup

K
E
[NK

2 (0)
K

]
<+∞ and sup

K
E
[NK

3 (0)
K

]
<+∞.

Then for all T > 0, the sequence
(

NK
1 (t)
K ,

NK
2 (t)
K ,

NK
3 (t)
K

)
K∈N∗

converges in law in

D([0,T ],R3
+) to x1

(
1,τ1 t, τ2

2 t2
)
.
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Let us underline that at this time scale, assertion (i) shows that the two last com-
ponents do not reach their equilibrium order, as observed in Figure 1. Assertion (ii)
proves that the three cell types are only of order K during the time interval [0,T ].

4 Size-time multi-scale dynamics and asymptotic behavior

A size renormalization of the stochastic process is not enough to understand the dy-
namics of the model. We need to change the time scale as observed in the simulations.
Let us study the asymptotics for the process corresponding to the two time scales Kγ2

and Kγ3 , when K is large.

4.1 Asymptotic behavior at a time-scale of order Kγ2

In this section, we study the system composed of the two first components at the time
scale Kγ2 . To this end, let us introduce the jump process Y K defined for all t ≥ 0 by

Y K(t) = (
NK

1 (t Kγ2)

K
,

NK
2 (t Kγ2)

K1+γ2
). (10)

Let us note that at time t = 0,

(Y K
1 (0),Y K

2 (0)) = (XK
1 (0),XK

2 (0)).

The next theorem describes the approximating behavior of Y K when K tends to infin-
ity.

Theorem 1 Assume that there exists a vector (x1,x2) ∈ R2
+ such that the sequence

(Y K(0))K∈N∗ converges in law to (x1,x2) when K tends to infinity and such that

sup
K

E
[
Y K

1 (0)2 +Y K
2 (0)2]< ∞.

Then for each T > 0, the sequence (Y K)K∈N∗ converges in law (and hence in proba-
bility) in D([0,T ],R2

+) to the continuous function y = (y1,y2) such that for all t ≥ 0,{
y1(t) = x1
y2(t) =

τ1x1
τ2

+
(
x2− τ1x1

τ2

)
e−τ2 t .

(11)

Proof By standard localization argument, use of Gronwall’s Lemma and Doob’s in-
equality, we easily prove (successively for the first and then for the second compo-
nent) that for any T > 0,

sup
K

E
[

sup
t∈[0,T ]

(Y K
1 (t)2 +Y K

2 (t)2)
]
< ∞. (12)

From (5) and (6), we can write

Y K
1 (t) = Y K

1 (0)+ M̂K
1 (t)

Y K
2 (t) = Y K

2 (0)+ τ1

∫ t

0
Y K

1 (u)du− τ2

∫ t

0
Y K

2 (u)du+ M̂K
2 (t), (13)
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where M̂K
1 and M̂K

2 are two square-integrable martingales satisfying

〈M̂K
1 〉t =

τ1

K1−γ2

∫ t

0
Y K

1 (u)du,

〈M̂K
2 〉t =

2τ1

K1+γ2

∫ t

0
Y K

1 (u)du+
τ2

K

∫ t

0
Y K

2 (u)du,

〈M̂K
1 ,M̂

K
2 〉t = −

τ1

K

∫ t

0
Y K

1 (u)du. (14)

It is standard to prove that the sequence of laws of (Y K) is tight (using the moment
estimates (12)) and that the martingale parts go to 0. The result follows using the
method summarized for example in Bansaye and Meleard (2015). Each limiting value
is proved to only charge the subset of continuous functions. Then introducing

φt(y) =
(

y1(t)− y1(0)
y2(t)− y2(0)−

∫ t
0
(
τ1y1(s)− τ2y2(s)

)
ds

)
and using the uniform integrability of the sequence (φt(Y K))K , deduced from (12),
we identify the limit as the unique continuous solution y of the deterministic system
defined by y(0) = (x1,x2) and for all t ≥ 0, φt(y) = 0.

That concludes the proof.

Remark 1 Since γ2 < γ3, the time scale Kγ2 is not large enough to observe the dy-
namics of the third component. The next proposition shows that at such a time scale,
the third component converges to a trivial value.

Proposition 2 Under the same hypotheses as in Theorem 1, we assume furthermore

that there exists x3 ∈ R+ such that the sequence (
NK

3 (0)
K1+γ2+γ3

)K∈N∗ converges in law to
x3 when K tends to infinity and such that

sup
K

E
[
(

NK
3 (0)

K1+γ2+γ3
)2]< ∞.

Then for each T > 0, the sequence (NK
3 (.Kγ2 )

K1+γ2+γ3
)K∈N∗ converges in probability in D([0,T ],R+)

to x3.

Proof Following (5) and (6), let us write the semimartingale decomposition of the

process Y K
3 =

NK
3 (.K

γ2)

K1+γ2+γ3
. We have for any t ≤ T ,

Y K
3 (t) = Y K

3 (0)+2τ2 pD
2 Kγ2−γ3

∫ t

0
Y K

2 (s)ds− τ3Kγ2−γ3

∫ t

0
Y K

3 (s)ds+ M̂K
3 (t),

where M̂K
3 is a square-integrable martingale such that

〈M̂K
3 〉t = 2τ2 pD

2 Kγ2−γ3

∫ t

0
Y K

2 (s)ds+ τ3Kγ2−γ3

∫ t

0
Y K

3 (s)ds.

Let us recall that γ2 < γ3, which makes Kγ2−γ3 tend to 0 when K tends to infinity.
Using Theorem 1, we know that Y K

2 converges to the continuous function y2. By
standard tightness argument, one can easily deduce that the process Y K

3 converges in
probability to x3, on any finite time interval.
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4.2 Asymptotic behavior at a time-scale of order Kγ3

In order to catch the long time dynamics of the third component we will study the
process NK on the time scale Kγ3 . To this end, let us introduce the jump process ZK

defined for all t ≥ 0 by

ZK(t) = (
NK

1 (t Kγ3)

K
,

NK
2 (t Kγ3)

K1+γ2
,

NK
3 (t Kγ3)

K1+γ2+γ3
). (15)

Note that we still have
ZK(0) = Y K(0) = XK(0).

At this time scale, the second component has time to reach the equilibrium of its
deterministic approximation by an average procedure. By an adaptation of the proof
in Kang et al. (2014) to this specific framework, we are able to prove the following
theorem.

Theorem 2 Assume that there exists (x1,x2,x3)∈R3
+ such that the sequence (ZK(0))K∈N∗

converges in law to (x1,x2,x3) when K tends to infinity and such that

sup
K

E
[
ZK

1 (0)
]
<+∞, sup

K
E
[
ZK

2 (0)
]
<+∞ and sup

K
E
[
ZK

3 (0)
]
<+∞. (16)

Let Γ K
2 be the lm(R+)-valued random variable given by

Γ
K

2 ([0, t]×B) =
∫ t

0
1B(ZK

2 (s))ds.

Then for all T > 0, the sequence (ZK
1 ,Γ

K
2 ,ZK

3 )K∈N∗ converges in law in D([0,T ],R+)×
lm(R+)×D([0,T ],R+) to (z1,δz∗2

(dz2)ds,z3). The functions z1 and z3 are defined for
all t ≤ T by 

z1(t) = x1

z3(t) =
τ2

τ3
z∗2 +

(
x3−

τ2

τ3
z∗2
)

e−τ3 t
(17)

and z∗2 is the value of y2 at infinity:

z∗2 =
τ1x1

τ2
.

Let us first state a lemma in which all moment estimates are gathered.

Lemma 2 Under Assumption (16), we obtain

sup
K

E
[

sup
t∈[0,T ]

ZK
1 (t)

]
<+∞ ; ∀ t > 0 sup

K
E
[∫ t

0
ZK

2 (s)ds
]
<+∞ ;

and
sup

K
E
[

sup
t∈[0,T ]

ZK
3 (t)

]
<+∞.
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Proof (Proof of Lemma 2) The first and third estimates are obtained by usual argu-
ments (localization, Doob’s inequality and Gronwall’s Lemma). Let us focus on the
second one.

By positivity and definition of the process ZK
2 , we have for any t > 0

ZK
2 (t) = ZK

2 (0)+ τ1Kγ3−γ2

∫ t

0
ZK

1 (s)ds− τ2Kγ3−γ2

∫ t

0
ZK

2 (s)ds+ M̃K
2 (t), (18)

the latter term being a square-integrable martingale and

〈M̃K
2 〉t =

1
K1+γ2

(
2τ1Kγ3−γ2

∫ t

0
ZK

1 (s)ds+ τ2Kγ3

∫ t

0
ZK

2 (s)ds
)
. (19)

In particular,

E
[∫ t

0
ZK

2 (s)ds
]
=

1
τ2

Kγ2−γ3
(
E
[
ZK

2 (0)
]
−E
[
ZK

2 (t)
])

+
τ1

τ2

∫ t

0
E
[
ZK

1 (s)
]

ds.

Assumptions (16) and Lemma 1 ensure that the first term goes to 0 as K tends to
infinity and the third term is bounded uniformly in K. That allows to conclude.

Proof (Proof of Theorem 2) Let Γ K be the occupation measure of ZK , a random
measure belonging to the space lm(R+) of positive measures on [0,∞)×R+ with
mass t on [0, t]×R+, and defined for all Borelian set B and for t > 0 by

Γ
K([0, t]×B) =

∫ t

0
1B(ZK(s))ds.

Using Lemma 3 (cf. Appendix), we obtain that (Γ K)K is relatively compact in lm(R+)
endowed with a weak topology generated by the class of test functions defined in (43).

Let us denote by Γ ∈ lm(R3
+) a limiting value of (Γ K)K . Using Lemma 1.4 in Kurtz

(1992), one can show that there exists a P(R3
+)-valued process γs such that

Γ (du×ds) = γs(du)ds.

Let us now introduce the function FK , for all u ∈ R3
+,

FK(u) = (1+
1

Kγ2
)τ2u2− τ3 u3.

Then for all t ≥ 0,

ZK
3 (t) = ZK

3 (0)+(1+
1

Kγ2
)τ2

∫ t

0
ZK

2 (s)ds− τ3

∫ t

0
ZK

3 (s)ds+ M̃K
3 (t) (20)

= ZK
3 (0)+

∫ t

0
FK(ZK(s))ds+ M̃K

3 (t)

ZK
1 (t) = ZK

1 (0)+ M̃K
1 (t) (21)
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with (M̃K
1 ,M̃

K
3 ) independent martingales such that for all t ≥ 0,

< M̃K
1 >t=Kγ3−1

∫ t

0
2τ1 ZK

1 (s)ds (22)

< M̃K
3 >t=K−(1+γ2+γ3)

∫ t

0

(
2(1+

1
Kγ2

)τ2 ZK
2 (s)+ τ3ZK

3 (s)
)

ds. (23)

By usual arguments involving Lemma 2, one can prove that the sequences of pro-
cesses (ZK

3 )K and (ZK
1 )K are uniformly tight in D([0,T ],R+). Let us also note that

the distributions of any limiting value only charge processes with a.s. continuous tra-
jectories.

Furthermore by Doob’s inequality

E
[

sup
t≤T
|M̃K

3 (t)|2
]
≤ 4E

[
< M̃K

3 >T
]
.

Using (23) and Lemma 2, we obtain that limK→∞E
[

supt∈[0,T ] |M̃K
3 (t)|2

]
= 0 and a

similar property for M̃K
1 since γ3 < 1. Then, we deduce from Markov’s inequality,

that the processes (M̃K
3 )K and (M̃K

1 )K converge in probability for the uniform norm
to 0. Hence they converge in law in D([0,T ],R+) to 0.

Adding all these asymptotic behaviors, we deduce that there exists a subsequence of
(ZK

1 ,Z
K
3 ) converging in law in D([0,T ],R2

+) to the deterministic limit (z1,z3) defined
for all t ≥ 0 by

z1(t) = x1

z3(t) = x3 +
∫
R3
+×[0,t]

(τ2u2− τ3 u3)γs(du)ds.

Then by convergence of (ZK
1 )K , (ZK

3 )K and Γ K , one can easily deduce that

γs(du) = δx1(du1)δz3(s)(du3) γ̃s(u1,u3,du2).

We have now to identify the measures γ̃s, s ∈ [0,T ].

Let us write the generator of the process ZK applied on the second component. For
h ∈C∞

c , it is given for u ∈ R3
+ by

L K
2 (h)(u) =

(
h(u2 +2K−(1+γ2))−h(u2)

) τ1

2
u1 K1+γ3

+
(
h(u2 + K−(1+γ2))−h(u2)

)
pR

2 τ2 u2 K1+γ2+γ3

+
(
h(u2− K−(1+γ2))−h(u2)

)
pD

2 τ2 u2 K1+γ2+γ3 .

Introducing the function g defined for u ∈ R3
+ by g(u) = u1τ1− τ2u2, we obtain, by

a Taylor expansion, that for all h ∈C∞
c

lim
K→∞

sup
u∈R3

+

|Kγ2−γ3L K
2 (h)(u)−g(u)h′(u2)|= 0. (24)
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Using (19), Lemma 3 and the same arguments as above, we obtain that the se-
quence of processes

(
Kγ2−γ3

(
h(ZK

2 (t))− h(ZK
2 (0))−

∫ t
0 L K

2 (h)(ZK(s))ds
)
, t ∈

[0,T ]
)

converges in law in D([0,T ],R) to 0. On the other hand, using that h is

bounded and (24) and gh′ ∈ Cb (since h has compact support), we easily see that
this sequence also converges to

−
∫ t

0
(τ1x1− τ2u2)h′(u2)γs(x1,z3(s),du2)ds.

We deduce that for any t ∈ [0,T ], for any h ∈C∞
c

∫ t

0
(τ1x1− τ2u2)h′(u2) γ̃s(x1,z3(s),du2)ds = 0.

The only probability measure which can realize such equality for all h ∈ C∞
c is the

Dirac measure such that for all u2, (τ1x1− τ2u2) = 0. It implies that

γ̃s(x1,z3(s),du2) = δ τ1x1
τ2

(du2).

To end the proof, we solve the equation satisfied by z3(t) and obtain that, for all t ≥ 0,

z3(t) =
τ1x1

τ3
+
(
x3−

τ1x1

τ3

)
e−τ3 t .

Hence we have uniquely identified the limit of any converging subsequence. That
ends the proof.

5 Amplified fluctuations

In this section, we will quantify the large fluctuations observed on the simulations. As
pointed out above, each component has its own typical size and time scale. Hence, we
will study separately the fluctuations of the second and third types. Classical results
easily imply that the first component, on time scale of order 1, behaves as a Brownian
motion: for large K, for all t ∈ [0,T ],

NK
1 (t)∼ x1 K +

√
K
√

τ1x1 Bt .

The originality of our results concerns the large fluctuations of the two last types due
to the amplification of these type 1 cell size fluctuations.
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5.1 The large fluctuations of the second type

As seen in Subsection 4.1, the typical size scale (respectively time scale) of the second
type is K1+γ2 (respectively Kγ2 ) and the first order asymptotics relative to this time
scale is given by the function y defined by (11). We are also able to give an expansion
of the process at the second and third orders on such time scale.

Theorem 3 Let define the sequence (UK)K by for all t ≥ 0,

UK(t) = K(1−γ2)/2(Y K(t)− y(t)
)
.

(i) Assume that there exists U0 = (U (1)
0 ,U (2)

0 ) ∈R2 such that (UK(0))K∈N∗ converges
in law to U0 and that

sup
K

E
[
UK

1 (0)2 +UK
2 (0)2]<+∞. (25)

Then for each T > 0, the sequence (UK)K∈N∗ converges in law in D([0,T ],R2) to the
process U = (U1,U2) defined for all t ≥ 0 by

U1(t) =U (1)
0 +

√
τ1 x1 B1(t),

U2(t) =U (2)
0 + τ1

∫ t

0
U1(s)ds− τ2

∫ t

0
U2(s)ds,

where B1 is a standard Brownian motion.

(ii) Furthermore, the sequence (W K
2 )K∈N∗ defined by for all t ∈ [0,T ],

W K
2 (t) = Kγ2/2 [UK

2 (t)−U (2)
0 − τ1

∫ t

0
UK

1 (s)ds+ τ2

∫ t

0
UK

2 (s)ds
]
,

converges in law in D([0,T ],R), for each T > 0, to the process (
√

τ2y2(t)B2(t), t ∈
[0,T ]) where B2 is a standard Brownian motion independent of the process B1.

From this theorem, we can deduce the following expansion, which quantifies the
large waves of fluctuations. Assuming that U0 is equal to zero, we obtain for all t and
large K,

NK
2 (t)∼K1+γ2y2(t K−γ2)+K(1+3γ2)/2U2(t K−γ2)+K(1+2γ2)/2

√
τ2 y2(t K−γ2)B2(t K−γ2)

(26)
where for all t,

U2(t) = τ1
√

τ1x1

∫ t

0
B1(s)ds− τ2

∫ t

0
U2(s)ds

and B1, B2 are independent Brownian motions.
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Proof (of Theorem 3.) (i) First we deduce from (25) with similar arguments as above
that

sup
K

E
[

sup
t∈[0,T ]

(UK
1 (t)2 +UK

2 (t)2)
]
<+∞. (27)

The tightness of the families (sup
t≤T
|UK

1 (t)|)K and (sup
t≤T
|UK

2 (t)|)K immediately follows.

We consider the semi-martingale decomposition of (UK) and write

UK
i (t) =UK

i (0)+AK
i (t)+K

1−γ2
2 M̂K

i (t),

where M̂K has been defined in (13), AK
1 = 0 and AK

2 (t)= τ1
∫ t

0 UK
1 (s)ds−τ2

∫ t
0 UK

2 (s)ds.

Thanks to the above moment estimates, it is almost immediate to prove that the finite

variation processes <K
1−γ2

2 M̂K
i > and AK

2 satisfy the Aldous condition. Thanks to Al-
dous and Rebolledo criteria (see Joffe and Metivier (1986) and Bansaye and Meleard
(2015)), the uniform tightness of L (UK) in P(D([0,T ],R2)) follows.

We denote by simplicity by the same notation (UK)K a subsequence converging in
law in D([0,T ],R2). Let Q be the limiting value of (L (UK))K . It is easy to observe
that

sup
t∈[0,T ]

‖ ∆UK(t) ‖≤ 2K−(1+γ2)/2

with ∆x(t) = x(t)− x(t−).

Therefore, by continuity of the mapping x→ sup
t∈[0,T ]

‖ ∆x(t) ‖ from D([0,T ],R2) into

R+, the probability measure Q only charges the processes with continuous paths.

The extended generator of UK is defined for functions f ∈C2
b(R2,R) as: ∀u ∈ R2,

L K( f , t)(u) =
(

f (u1 +K−(1+γ2)/2,u2)− f (u)
) τ1

2
K1+γ2(K−(1−γ2)/2u1 + x1)

+
(

f (u1− K−(1+γ2)/2,u2 +2K−(1+3γ2)/2)− f (u)
) τ1

2
K1+γ2(K−(1−γ2)/2u1 + x1)

+
(

f (u1,u2 +K−(1+3γ2)/2)− f (u)
)

pR
2 τ2 K1+2γ2(K−(1−γ2)/2u2 + y2(t))

+
(

f (u1,u2−K−(1+3γ2)/2)− f (u)
)

pD
2 τ2 K1+2γ2(K−(1−γ2)/2u2 + y2(t))

−K(1−γ2)/2
∂2 f (u)

(
τ1x1− τ2y2(t)

)
.

(28)

By a Taylor’s expansion, we easily obtain that ∀ f ∈C2
b(R2,R),

lim
K→∞

sup
(u,t)∈R2×R+

∣∣L K( f , t)(u)− (
τ1

2
x1∂

2
1 f (u)+(τ1u1− τ2u2)∂2 f (u))

∣∣= 0.
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On the other hand, let us define, for f ∈C2
b(R2,R), u ∈ D([0,T ],R2) and t ∈ [0,T ],

the function ξ
K, f
t by

ξ
K, f
t (u) = f (ut)− f (u0)−

∫ t

0
L K( f ,s)(us)ds.

Then, by (28), Dynkin’s formula and (27), we can easily prove that the processes
(ξ K, f

t (UK))K are uniformly integrable martingales.
Therefore by standard arguments (cf. Ethier and Kurtz (1986) p.225, Bansaye

and Meleard (2015) p.25), the limiting process under Q is continuous and satisfies
the following martingale problem: for all f ∈C2

b(R2,R),

f (U(t))− f (U0)−
∫ t

0
(

τ1

2
x1∂

2
1 f (U(s))+(τ1U1(s)− τ2U2(s))∂2 f (U(s)))ds

is a martingale.

We conclude using a representation theorem (cf. Ikeda and Watanabe (1989) p.84)
that for each T > 0, the sequence (UK)K∈N∗ converges in law in D([0,T ],R2) to the
process U = (U1,U2), unique solution of the following stochastic differential system:
for all t ∈ [0;T ],

U1(t) = U (1)
0 +

√
τ1 x1 B1(t),

U2(t) = U (2)
0 + τ1

∫ t

0
U1(s)ds− τ2

∫ t

0
U2(s)ds,

with B1 a Brownian motion.

(ii) Let us now expand the second component to the next order. We deduce from (13)
that

UK
1 (.)−UK(0) = K(1−γ2)/2 M̂K

1 (.),

W K
2 (.) =

√
K M̂K

2 (.).

Using (14), (12) and applying Theorem 7.1.4 of Ethier and Kurtz (1986), we conclude
the proof.

5.2 The large fluctuations of the third type

Let us now study the fluctuation process associated with the largest fluctuation scale
of the third component. We have seen in Theorem 2 that at the time scale Kγ3 , the
size of the population process of the third type is of order of magnitude K1+γ2+γ3 .
In the usual setting, the Central Limit Theorem would lead to fluctuations of order
K(1+γ2+γ3)/2. We will see in the next theorem that they are of order K(1+2γ2+3γ3)/2�
K(1+γ2+γ3)/2.
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Using (17), (18) and (20), we know that for all t ≥ 0,(
ZK

3 (t)− z3(t)
)
=
(
ZK

3 (0)− z3(0)
)
+ τ2

∫ t

0

(
ZK

2 (s)− z∗2
)
ds− τ3

∫ t

0

(
ZK

3 (s)− z3(s)
)
ds

+ τ2
1

Kγ2

∫ t

0

(
ZK

2 (s)− z∗2
)
ds+ M̃K

3 (t) (29)

where

τ2

∫ t

0

(
ZK

2 (s)− z∗2
)
ds = τ1

∫ t

0

(
ZK

1 (s)− x1
)
ds− ZK

2 (t)−ZK
2 (0)

Kγ3−γ2
+

M̃K
2 (t)

Kγ3−γ2
. (30)

Our goal is to quantify the effect of the first component fluctuations on the dynam-
ics of the third component. Considering the expressions of the martingale quadratic
variation (22) imposes the choice of the rescaling parameter K(1−γ3)/2 in front of(
ZK

1 (t)− x1
)
. We will see that to keep the effect of the first component on the third

component, we need to rescale
(
ZK

2 (t)−ZK
2 (0)

)
by K(1−γ3)/2

Kγ3−γ2 and
(
ZK

3 (t)− z3(t)
)

by
K(1−γ3)/2.

Let us now state the main theorem of this section.

Theorem 4 Let us define the three processes, for all t ≥ 0,

V K
1 (t) = K(1−γ3)/2

(
ZK

1 (t)− x1
)

V K
2 (t) = K(1−γ3)/2

Kγ3−γ2

(
ZK

2 (t)−ZK
2 (0)

)
V K

3 (t) = K(1−γ3)/2
(
ZK

3 (t)− z3(t)
) .

We assume that

sup
K

E
[
V K

1 (0)4]<+∞ ; sup
K

E
[
ZK

2 (0)
2]<+∞. (31)

(i) Then for all T ≥ 0,

lim
K→∞

E
[

sup
t∈[0,T ]

V K
2 (t)2]= 0. (32)

(ii) We assume moreover that there exists V0 = (V (1)
0 ,V (3)

0 ) a R2-valued random vec-
tor such that the sequence (V K

1 (0),V K
3 (0))K∈N∗ converges in law to V0 and such

that

sup
K

E
[
|V K

3 (0)|
]
<+∞. (33)

Then for all T > 0, the sequence (V K
1 ,V K

3 )K∈N∗ converges in law in D([0,T ],R2)
to (V1,V3) such that for all t,

V1(t) =V (1)
0 +

√
τ1 x1W1(t)
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V3(t) =V (3)
0 + τ1

∫ t

0
V1(s)ds− τ3

∫ t

0
V3(s)ds,

where W1 is a standard Brownian motion.

Let us interpret the result (ii) in terms of fluctuations. Assuming that the initial vector
V0 is equal to zero, we obtain that for any t and large K,

NK
3 (t)∼ K1+γ2+γ3 z3(t K−γ3)+K(1+2γ2+3γ3)/2 V3(t K−γ3) (34)

where for all t,

V3(t) = τ1
√

τ1x1

∫ t

0
W1(s)ds− τ3

∫ t

0
V3(s)ds

and W1 is a standard Brownian motion.

The order of magnitude appearing in the fluctuation second order term (34) summa-
rizes the cumulative effects of the third dynamics driven by the fluctuations of the
first level. That can explain the exceptionally large fluctuations observed for the size
of terminal cells populations, in hematopoietic systems.

As a first step, we will prove that the sequence of processes (V K
2 )K converges to 0

uniformly in L2 on any finite time interval.

Proof (i) Using (18), we obtain that, for all t ≥ 0,

V K
2 (t) = K

1−3γ3
2 +γ2

(
ZK

2 (t)−ZK
2 (0)

)
= τ1

∫ t

0
V K

1 (s)ds− τ2 Kγ3−γ2

∫ t

0
V K

2 (s)ds+RK(t),

where RK is the square-integrable martingale defined by, for all t ≥ 0,

RK
t = K

1−3γ3
2 +γ2M̃K

2 (t) (35)

and satisfying for all t,

〈RK〉t = K−2γ3
(

τ1

∫ t

0
ZK

1 (s)ds+ τ2 Kγ2

∫ t

0
ZK

2 (s)ds
)
. (36)

Let us first show that for all t > 0,

sup
K

E
[∫ t

0
V K

2 (s)4 ds
]
< ∞.

Itô’s formula immediately implies that ∀t ≥ 0,

V K
2 (t)4 =V K

2 (0)4 +4
∫ t

0
V K

2 (s)3 dRK
s +4

∫ t

0
V K

2 (s)3 (
τ1V K

1 (s)−Kγ3−γ2τ2V K
2 (s)

)
ds

+6
∫ t

0
V K

2 (s)2 d〈RK〉s.
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By standard localization arguments, we prove using (31) that for any t ≥ 0,

sup
K

E
[∫ t

0
V K

1 (s)4 ds
]
< ∞. (37)

Let us now introduce the stopping time

Tn = inf{t ≥ 0, |V K
2 (t)| ≥ n}.

Then, applying the following inequality

4
(
τ1v1v2−Kγ3−γ2τ2v2

2
)
= 4τ2Kγ3−γ2

(
[

v1τ1

2τ2 Kγ3−γ2
]2− [v2−

v1τ1

2τ2 Kγ3−γ2
]2
)

≤ v2
1τ2

1
τ2 Kγ3−γ2

(38)

to v1 =V K
1 (s) and v2 =V K

2 (s), we obtain the following upper-bound

E
[
V K

2 (t ∧Tn)
4]≤ E

[
V K

2 (0)4]+ τ2
1

τ2 Kγ3−γ2

∫ t∧Tn

0
E
[
V K

2 (s)2 V K
1 (s)2]ds

+6E
[∫ t∧Tn

0
V K

2 (s)2 d〈RK〉s
]
. (39)

Using (36), we obtain for all t ∈ [0,T ],

E
[∫ t∧Tn

0
V K

2 (s)2 d〈RK〉s
]
=Kγ2−2γ3 E

[∫ t∧Tn

0
V K

2 (s)2 (K−γ2τ1ZK
1 (s)+τ2ZK

2 (s)
)

ds
]
.

Writing ZK
2 in function of V K

2 , we find the following upper bound,

E
[∫ t∧Tn

0
V K

2 (s)2 d〈RK〉s
]
≤
(
τ1K−2γ3 + τ2K−(1+γ3)/2 + τ2Kγ2−2γ3

)∫ t∧Tn

0
E
[
V K

2 (s)4]ds

+ τ1K−2γ3

∫ t∧Tn

0
E
[
ZK

1 (s)
2]ds (40)

+ τ2
(
K−(1+γ3)/2 +Kγ2−2γ3

)
(E
[
ZK

2 (0)
2]+1)T.

We deduce from (39) using Lemma 2, (31) and Gronwall’s Lemma that ∀t ∈
[0,T ],

sup
K

E
[∫ t∧Tn

0
V K

2 (s)4 ds
]
< ∞.

Let us now come back to the proof of (32). Itô’s formula yields

V K
2 (t)2 = 2

∫ t

0
V K

2 (s)dRK
s +2

∫ t

0
V K

2 (s)
(
τ1V K

1 (s)−Kγ3−γ2τ2V K
2 (s)

)
ds+ 〈RK〉t .
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Therefore, using again (38) and Doob’s inequality, we obtain

E
[

sup
t∈[0,T∧Tn]

V K
2 (t)2]≤ 8E

[∫ T∧Tn

0
V K

2 (s)2 d〈RK〉s
]
+

τ2
1

τ2Kγ3−γ2
E
[∫ T∧Tn

0
V K

1 (s)2 ds
]

+E
[
〈RK〉T∧Tn

]
.

Finally, we deduce from Lemma 2, (40), (31) and (37) that for any K, Tn tends
almost surely to +∞ and that for all T ≥ 0,

lim
K→∞

E
[

sup
t∈[0,T ]

V K
2 (t)2]= 0.

(ii) Let us now prove the result (ii) of Theorem 4. It has been inspired by the proof
of the main result in Kang et al. (2014). Using similar convergence arguments as
in Theorem 3 and (31), we firstly observe that the sequence (V K

1 )K converges in
law in D([0,T ],R) to a continuous process V1 defined by, for all t,

V1(t) =V (1)
0 +

√
τ1x1W1(t) (41)

with W1 a standard Brownian motion.

Let us recall that from (29), (30) and (35), that for all t,

V K
3 (t)= V K

3 (0)+τ2
(
1+

1
Kγ2

) ∫ t

0
K(1−γ3)/2(ZK

2 (s)−z∗2)ds−τ3

∫ t

0
V K

3 (s)ds+K(1−γ3)/2M̃K
3 (t)

with

τ2

∫ t

0
K(1−γ3)/2(ZK

2 (s)−z∗2)ds=K(1−γ3)/2 ZK
2 (0)−ZK

2 (t)
Kγ3−γ2

+
∫ t

0
τ1 V K

1 (s)ds+RK
t .

Hence, for all t,

V K
3 (t)= V K

3 (0)+(1+
1

Kγ2
)
∫ t

0
τ1 V K

1 (s)ds−τ3

∫ t

0
V K

3 (s)ds−(1+ 1
Kγ2

)V K
2 (t)+M K

t ,

(42)
where M K is the square-integrable martingale

M K(t) = (1+
1

Kγ2
)RK

t +K(1−γ3)/2M̃K
3 (t).

We deduce from (23), (36), Lemma 2 and Doob’s inequality, that

lim
K→∞

E
[

sup
t∈[0,T ]

|M K(t)|2
]
= 0.

Then it turns out from Markov’s inequality that the sequence (M K)K converges
in probability to 0 for the uniform norm and hence (M K)K converges in law in
D([0,T ],R) to 0.

Furthermore using (42), (37), (33) and the first part of the theorem, we obtain

sup
K

E
[

sup
t≤T
|V K

3 (t)|
]
< ∞.
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We are now able to prove the tightness of the family (sup
t≤T
|V K

3 (t)|)K . Indeed, les us

introduce stopping times S,S′ satisfying S ≤ S′ ≤ (S+δ )∧T , with δ > 0. Using
(42), we have

P(|V K
3 (S′)−V K

3 (S)|> ε)≤ 1
ε
E
[
|V K

3 (S′)−V K
3 (S)|

]
≤ 1

ε
E
[
|V K

3 (S′)−V K
3 (S)|2

]1/2

≤ 1
ε

[
δ T
(

τ1(1+
1

Kγ2
)(E
[

sup
t≤T

V K
1 (t)2]+1)+ τ3E

[
sup
t≤T
|V K

3 (t)|
])

+4E
[

sup
t≤T

M K(t)2]+4 pD
2 E
[

sup
t≤T

V K
2 (t)2]]1/2

.

Then from (42), (37), (33) and the first part of the theorem, we deduce that Aldous
conditions (see Joffe and Metivier (1986) and Bansaye and Meleard (2015)) are
satisfied and obtain the tightness of (V K

3 )K .

Finally, using the first part of the theorem, the convergence in law in D([0,T ],R)
of the processes M K and V K

1 respectively to zero and V1 and the convergence
in law of V K

3 (0) to V (3)
0 , we obtain that the sequence (V K

3 )K converges in law in
D([0,T ],R) to the process V3, unique solution of the following SDE, ∀t ∈ [0,T ],

V3(t) =V (3)
0 + τ1 (1+

1
Kγ2

)
∫ t

0
V1(s)ds− τ3

∫ t

0
V3(s)ds,

where V1 has been defined in (41). That ends the proof.

6 Discussion

Our model concerns a rest hematopoiesis, and then it neglects the regulation effects
(which are not observable in this situation). The large fluctuation effects that we are
interested in are only due to amplification of the first component randomness.

Let us visualize in the simulations below, the quantities involved in the different
theorems. As in Figures 1, 2 and 3, we choose K = 2000 cells, γ2 = 0.55, γ3 = 0.8.
Hence Kγ2 ∼ 60 and Kγ3 ∼ 400. The others parameters are equal to 1.

Figure 4 illustrates the results of Theorems 1 and 2. It represents on the same
picture, first the dynamics of Y K

2 and y2 (defined respectively in (10) and (11)), second
the dynamics of ZK

3 and z3 (defined respectively in (15) and (17)). The common initial
condition of Y K and of y = (y1,y2) is given by (x1,0). The initial condition of ZK is
given by (x1,0,0) and the one of (z1,z3) by (x1,0). We take x1 = 1. We observe first
the proximity of the two dynamics and then the fluctuations effects.

Figure 5 shows the simulation of a trajectory of the process (NK(t), t ∈ [0,T ])
over a long period of time (of order Kγ3 ), starting from the equilibrium values
(Kx1,K1+γ2z∗2,K

1+γ2+γ3z∗3) of the deterministic limit. We take x1 = 1, hence z∗2 =
τ1x1
τ2

= 1 and z∗3 =
τ2z∗2
τ3

= 1. The horizontal orange line represents this information.
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Fig. 4: Comparison of a trajectory of Y K
2 with a trajectory of y2 and of a trajectory of ZK

3 with a trajectory
of z3.

Fig. 5: A trajectory of the process (NK(t), t ∈ [0,T ]) for T = 1000 (days) and starting from (K,K1+γ2 ,
K1+γ2+γ3 ).

We observe on Figure 5 the two main properties of the fluctuations that we have
highlighted in our results (Theorems 3 and 4): the fluctuations of the two last compo-
nents are both smoother and larger than expected from standard CLT (Central Limit
Theorem). Indeed following Kang et al. (2014) (and classical CLT results), the or-
der of magnitude of the population size fluctuations should be given by the square
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of the population size, i.e., respectively K(1+γ2)/2 ∼ 400 cells of type 2 cells and
K(1+γ2+γ3)/2 ∼ 7600 cells of type 3. Figure 5 shows for the second type large fluctu-
ations of around 80000 cells and for the third type of around 1.7 107 cells. Theorems
3 and 4 give these orders of magnitude, with about K(1+3γ2)/2 ∼ 24000 cells of type
2 and K(1+2γ2+3γ3)/2 ∼ 2.7 107 cells of type 3.

As shown in Theorems 3 and 4, the augmented fluctuations observed on types
2 and 3 cells are due to the fast arrival of new cells in a slower dynamics. More
precisely, the randomness of the slow component is essentially due to the fast ones
and its intrinsic randomness is negligible. That is the major difference with Kang et al.
(2014) where the martingale part of the limit is due to two sources of randomness:
the slow component dynamics and the averaged effects of the fast component on the
slow component dynamics.

Finally, let us note that a biological perspective of Theorem 4 could be to esti-
mate the still unknown human stem cells number. Indeed, Theorem 4 estimates the
variation of red blood cells number around its mean value, and (34) gives that

NK
3 (t)−K1+γ2+γ3z3(tK−γ3)

NK
3 (t)

∼ K(1+2γ2+3γ3)/2)

K1+γ2+γ3
= K(γ3−1)/2.

When K is (the order of magnitude of) the number of human stem cells, Kγ3 is the
number of days a human red blood cell lives (120 days). We know that the human red
blood cells number at rest varies by 10% around its average value (cf. Thirup (2003)).
Hence we can deduce that the order of magnitude of the human stem cells number is
K = 120

0.01 ∼ 12000. In Abkowitz et al. (2002), it is shown that the number of human
stem cells is equivalent to the one of mice. For mice, the estimated number of stem
cells is of order of magnitude 104 (cf Busch et al. (2015), Bonnet et al. (2021)). That
corroborates our result.

7 Appendix

Lemma 3 (Lemma 2.9 of Kang et al. (2014)) Let V N be a sequence of R3
+-valued

processes. We consider its occupation measure defined for D a Borelian set by

ΓN(D× [0, t]) =
∫ t

0
1D(VN(s))ds.

Let us assume that there exists a function ψ : R3
+→ [1,∞) locally bounded such that

limv→+∞ ψ(v) = +∞ and such that for each t > 0,

sup
N

E
[∫ t

0
ψ(V N(s))ds

]
<+∞.

Then ΓN is relatively compact, and if ΓN converges in law to Γ , then for f1, . . . , fm ∈
Dψ , (∫ .

0
f1(VN(s))ds, . . . ,

∫ .

0
fm(V N(s))ds

) L−→(∫
R3
+

f1(v)Γ (dv× [0, .]), . . . ,
∫
R3
+

fm(v)Γ (dv× [0, .])
)
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where Dψ denote the collection of continuous functions f satisfying

sup
v∈R3

+

| f (v)|
ψ(v)

< ∞ and lim
k→∞

sup
v∈R3

+,‖v‖>k

| f (v)|
ψ(v)

= 0. (43)
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