
HAL Id: hal-02401831
https://hal.science/hal-02401831v1

Preprint submitted on 11 Dec 2019 (v1), last revised 14 Oct 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large fluctuations in multi-scale modeling for rest
erythropoiesis

Céline Bonnet, Sylvie Méléard

To cite this version:
Céline Bonnet, Sylvie Méléard. Large fluctuations in multi-scale modeling for rest erythropoiesis.
2019. �hal-02401831v1�

https://hal.science/hal-02401831v1
https://hal.archives-ouvertes.fr
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Céline Bonnet∗, Sylvie Méléard†

December 11, 2019

Abstract

Erythropoiesis is a mechanism for the production of red blood cells by cellular dif-
ferentiation. It is based on amplification steps due to an interplay between renewal and
differentiation in the successive cell compartments from stem cells to red blood cells.
We will study this mechanism with a stochastic point of view to explain unexpected
fluctuations on the red blood cell numbers, as surprisingly observed by biologists and
medical doctors in a rest erythropoiesis. We consider three compartments: stem cells,
progenitors and red blood cells. The dynamics of each cell type is characterized by
its division rate and by the renewal and differentiation probabilities at each division
event. We model the global population dynamics by a three-dimensional stochastic
decomposable branching process. We show that the amplification mechanism is given
by the inverse of the small difference between the differentiation and renewal proba-
bilities. Introducing a parameter K which scales simultaneously the size of the first
component, the differentiation and renewal probabilities and the red blood cell death
rate, we describe the asymptotic behavior of the process for large K. We show that
each compartment has its own size scale and its own time scale. Focussing on the
third component, we prove that the red blood cell population size, conveniently renor-
malized (in time and size), is expanded in an usual way inducing large fluctuations.
The proofs are based on a fine study of the different scales involved in the model and
on the use of different convergence and average techniques in the proofs.

Keywords Decomposable branching process; Multi-scale approximation; Stochastic
slow-fast dynamical system; Large fluctuations; Rest Erythropoiesis; Amplification mech-
anism.

1 Introduction

The model and the stochastic behavior we are studying in this paper are based on the
biological mechanisms of rest (without stress) erythropoiesis. Erythropoiesis is a mecha-
nism for the production of red blood cells by cellular differentiation of stem cells. Stem
cells, although in large numbers, produce even more red blood cells per day using a specific
amplification mechanism.
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We will study this amplification mechanism using a decomposable branching process
(see [10]-Section 12, [3]-Section 6.9.1, [23]). Such process allows in particular to capture
the genealogy of the cells, including the history of their types.

Let us firstly describe more precisely the biological dynamics, then we will introduce
the mathematical model. The dynamics of erythropoietic cells, at rest, results in two
distinct events, renewal and differentiation. Indeed, each cell of each type (except the
last one) divides into two cells at a constant rate, depending on its type. These two new
cells are either of the same type as the mother cell (renewal) or of the "next" cell type
(differentiation). The final stage of differentiation corresponds to red blood cells which
don’t divide and can only die at a constant rate. The stem cells are those with the
highest capacity for renewal, but not so high to prevent the cell population to explode.
Further, the amplification from one compartment (characterized by one type) to the next
one is proportional to the inverse of the difference between the differentiation and renewal
probabilities, which is small. Note also that the death rate in the last compartment plays
a main role.

We are interested in describing the stochastic fluctuations of the compartment sizes for
the rest erythropoiesis. In this case, the regulation doesn’t play any role but nevertheless
one observes unusual large oscillations at the red blood cell level. Indeed, the red blood
cells number, in a human rest erythropoiesis, varies by 10% around its average value (cf.
[22]). The order of magnitude of these variations is greater than the one of the classical
variations for multi-type branching processes, which should be of the order 0.001%.

In this paper, we will model the differentiation steps by considering 3 types. These types
correspond to stem cells (type 1), progenitors (type 2) with the ability in amplifying the
cells number, and red blood cells (type 3). The number of stem cells in the initial state
will be characterized by a (large) scaling parameter K ∈ N∗.

Let us now introduce more precisely the parameters of the dynamics.

Cells of type 1 evolve according a critical linear birth and death process. Birth events
correspond to renewal division events, occurring at rate τ1

2 > 0, while death events cor-
respond to differentiation events occurring at the same rate (a cell of type 1 divides in
two cells of type 2). Cells of type 2 divide at rate τ2 > 0 in two cells of the same type
(renewal event) with probability pR2 and in two cells of type 3 (differentiation event) with
probability pD2 = 1 − pR2 ∈]1/2, 1[. The cells of type 3 are mature cells which die at rate
d3 > 0. We can summarize the dynamics as follows. If (N1, N2, N3) denotes the vector of
sub-population sizes, the transitions of the hematopoietic process are given by

N1 −→ N1 + 1 at rate (τ1/2)N1

(N1, N2) −→ (N1 − 1, N2 + 2) at rate (τ1/2)N1

N2 −→ N2 + 1 at rate τ2 p
R
2 N2

(N2, N3) −→ (N2 − 1, N3 + 2) at rate τ2 p
D
2 N2

N3 −→ N3 − 1 at rate d3N3.

Here, we have assumed that each division is symmetric, so that

pD2 + pR2 = 1. (1)
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We could have included asymmetric division without changing the results of our study.
Indeed it doesn’t change the main characteristics of the dynamics.

As explained above, the number of cells of each type is large, but moreover, there is an
amplification mechanism between the compartments, based on the small difference pD2 −pR2
between the differentiation and renewal probabilities in compartment 2, and on the small
death rate d3, in a way which is now defined.

We assume that
• the size of the type 1-cells population is of order K,
• there exists a couple of positive parameters (γ2, γ3) ∈]0, 1[ such that

pD2 − pR2 = K−γ2 and d3 = τ3K
−γ3 with τ3 > 0. (2)

Let us note that (1) and (2) make the probabilities pR2 and pD2 depend on K,

pD2 = 1− pR2 = 1/2 +K−γ2/2.

Therefore the dynamics in this compartment is close to a critical process.

Assumptions (2) introduce the different time and size scales playing a role for the multi-
scale population process describing the dynamics of each compartment size. Hence we will
denote by NK , the population process N previously defined.

We assume in the following that

γ2 < γ3 < 1. (3)

This case is the most interesting mathematically and closest to the biological observations.
Indeed, in a more realistic model with a larger number of compartments based on biological
observations (see Bonnet at al [5]), we observe that the red blood cell death rate drives the
slowest time scale.

Our aim in this paper is to finely describe this dynamics, when K goes to infinity, using
appropriate renormalizations.

We will see that a size renormalization is not enough to describe the dynamics of
the last two components of the process. A time renormalization is also necessary. More
precisely each compartment has its own size scale, of order K for Compartment 1, K1+γ2

for Compartment 2 (resp. K1+γ2+γ3 for Compartment 3) and its own time scale, of order
1 for Compartment 1, Kγ2 for Compartment 2 (resp. Kγ3 for Compartment 3).

The next simulations show the dynamics of the process in the typical time scale of each
compartment, namely K, Kγ2 and Kγ3 . We take as initial condition

NK(0) = (K, 0, 0)

and choose K = 2000, γ2 = 0.55, γ3 = 0.8. Hence Kγ2 ∼ 60 and Kγ3 ∼ 400.
The others parameters are equal to 1.

Figure 1 shows the simulation of a trajectory of the process (NK(t), t ∈ [0, T ])
for T ∼ 1, decomposed on the three compartments. Figure 2 shows the simulation of
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Figure 1: A trajectory of the NK process for t ∈ [0, T ] with T = O(1)

Figure 2: A trajectory of the NK process for t ∈ [0, T ] with T = O(Kγ2)

Figure 3: A trajectory of the NK process for t ∈ [0, T ] with T = O(Kγ3)

a trajectory of the process (NK(t), t ∈ [0, T ]) for T ∼ Kγ2 and Figure 3 shows the
simulation of a trajectory of the process (NK(t), t ∈ [0, T ]) for T ∼ Kγ3 . The horizontal
orange line gives the order of magnitude for each compartment size (K, resp. K1+γ2 ,
K1+γ2+γ3).

We observe that at a time scale of order 1, the two last components of the process NK are
far from their equilibrium size. We observe in Figure 2 that the two first components of
(NK(t), t ∈ [0, T ]) for T ∼ Kγ2 evolve around their equilibrium size, which is not the case
of the third one. In Figure 3, the process is considered on a longer period of time, T ∼ Kγ3

and one sees that the third component hits a neighborhood of its equilibrium. Furthermore,
we observe the oscillations of the components of NK around their equilibrium. We note
that they are smoother and smoother from Compartment 1 to Compartment 3 and that
the amplitude of the waves is longer and longer.

Compartment 3 illustrates the particular behavior of the red blood cells in a rest hu-
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man erythropoiesis, highlighted above. Indeed, the expected variations should be around
K−(1+γ2+γ3)/2 ∼ 0.01%, and we observe variations which seem to be of order 107

K(1+γ2+γ3)/2
∼

17%.

Our aim is to prove and quantify these different behaviors and to explain these large
fluctuations.

In Section 2, basic martingale properties are stated, some estimates are given for the
moments of compartments sizes and a first study on the convergence of the process at
a time-scale of order 1, when K tends to infinity, is given. We show that the two last
components do not reach their equilibrium at this time scale. In Section 3, we study the
process on an appropriate time-scale to capture the asymptotic behavior of the second and
third types. We show that the limiting behavior of the two first components process at
the time scale of order Kγ2 is given by an explicit deterministic function y. We also show
that this time scale is not long enough to observe the dynamics of the third component.
Hence, we study the limiting behavior of the process at the time scale of order Kγ3 . At this
time scale, the second component process goes too fast and doesn’t converge anymore. We
consider the associated occupation measure, as already done in Kurtz [15]. We prove its
convergence in a weak sense to the Dirac measure at the unique equilibrium of the second
component of the deterministic function y. Then we deduce the convergence of the third
component to a limiting deterministic system involving this equilibrium. In Section 4, we
study and quantify the large fluctuations observed in the simulations. We show that the
first component behaves at the different time scales as a Brownian motion. This is not
the case for the other two components. Theorem 3 describes the second and third order
asymptotics of the second component on its typical time and size scale. The fluctuations
around its deterministic limit are not Gaussian. They are described by a finite variation
process integrating the randomness of the first component. An independent Brownian
motion appears in the third order term. Theorem 4, which is the main theorem of the
paper, describes the fluctuations associated with the third component dynamics. We show
that the randomness induced by the dynamics of the two last components is negligible. To
capture the effect of the randomness of the first component imposes a size-scale which allows
to observe the large oscillations of the third component. We identify these oscillations as
a finite variation process integrating as above the fluctuations of the first component.

The mathematical modeling of hematopoiesis has been firstly introduced in the sem-
inal paper of Till, McCulloch and Siminovitch [23]. In this paper, the authors study a
binary branching process and show, comparing with biological results, that the proba-
bilistic framework is relevant. Since this pioneering work, many mathematical approaches
have been proposed to describe more precisely the cell differentiation kinetics, based either
on deterministic or stochastic models (a survey concerning many models can be found in
[24]). A deterministic approach consists in introducing a dynamical system describing the
behavior of the different compartments and in studying different properties of this system,
in particular the equilibrium states (see for example [6], [17], [18], [2] and the references
therein). One can also add a noise to model some random perturbation of these systems,
with an eventual delay (see for example [16], [19]). In [8], a continuous description of the
different cells types is also proposed, using a partial differential equation. Moreover, in all
these papers, the authors are interested in modeling the regulation which happens when
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the system is perturbed by some stress and this nonlinearity involves many mathematical
difficulties. Let us note that other stochastic models for hematopoiesis have been intro-
duced ([1], [21], [14]) but they concentrate on a specific level (either stem cells or red blood
cells). In all this literature, the questions studied by the authors don’t concern the impact
of the parameters on the amplification mechanism. We have found only two papers, [7] and
[18], in which the question is mentioned. To our knowledge, the fluctuations generated by
this amplification mechanism, have never been rigorously studied with such a space-time
multiscale point of view.

Most of the slow fast dynamical systems model interaction between species with dif-
ferent behaviors driving the time scales (see for example [13]). In such cases, slow and
fast components appear naturally, contrary to our case, for which a fine study is needed
to find the specific time scale of each compartment. In the other way, Popovic, Kurtz
and Kang in [20] have developed a general theorem for convergence and fluctuations of
multiscale processes. Their result can’t explain our asymptotics. Indeed, in their result,
the fluctuations around the deterministic behavior of the slow component are Gaussian,
which is not the case of the red blood cells dynamics previously described. In their work,
the martingale part of the limit is due to two sources of randomness: the slow component
dynamics and the averaged effects of the fast components on the slow component dynam-
ics. As previously explained, in our case the randomness of the slow component is only
due to the fast ones and its intrinsic randomness is negligible.

Notation. P(E) and L(X) will denote respectively the space of probability measures on
E and the law of a process X. As in [15], we will denote by lm(R+) the space of measures
on [0,∞)× R+ such that µ([0, t]× R+) = t, for each t ≥ 0.

2 Amplification mechanism : size-scale dynamics

2.1 The amplification mechanism

As explained in the introduction, we will reduce the model by simplicity to three compart-
ments. The first one will describe the stem cells compartment, the second one will describe
the compartment of progenitors and the third one will refer to red blood cells. Also by
simplicity, we will describe the type of cells in each compartment by type 1, type 2 and
type 3.

Let us now introduce the vector NK(t) = (NK
1 (t), NK

2 (t), NK
3 (t)) of population sizes at

time t. The process NK is a decomposable multi-type branching process, that is a Markov
jump process whose dynamics is given by the following equations.

We assume that for any fixed K, NK
1 (0), NK

2 (0), NK
3 (0) are integrable.

Let us denote by (N j
i ) 1≤i≤3

j∈{−,+}
independent Poisson point measures with intensity dsdu on

R2
+ and introduce the filtration (Ft)t≥0 given by

Ft = σ(N j
i ([0, s)×A); i ∈ {1, . . . , 3}, j ∈ {−,+}, s ≤ t, A ∈ B(R+)).
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Then we have

NK
1 (t) = NK

1 (0) +

∫ t

0

∫
R+

1u≤ τ1
2

NK
1 (s−) N

+
1 (ds,du)−

∫ t

0

∫
R+

1u≤ τ1
2

NK
1 (s−) N

−
1 (ds,du)

NK
2 (t) = NK

2 (0) + 2

∫ t

0

∫
R+

1u≤ τ1
2

NK
1 (s−) N

−
1 (ds,du) +

∫ t

0

∫
R+

1u≤τ2pR
2 NK

2 (s−) N
+
2 (ds,du)

−
∫ t

0

∫
R+

1u≤τ2pD
2 NK

2 (s−) N
−
2 (ds,du)

NK
3 (t) = NK

3 (0) + 2

∫ t

0

∫
R+

1u≤τ2pD
2 NK

2 (s−) N
−
2 (ds,du)−

∫ t

0

∫
R+

1u≤τ3K−γ3 NK
3 (s−) N

−
3 (ds,du)

.

(4)

It can be written as

∀t ≥ 0, NK
1 (t) = NK

1 (0) +MK
1 (t)

NK
2 (t) = NK

2 (0) + τ1

∫ t

0
NK

1 (s) ds− τ2K
−γ2

∫ t

0
NK

2 (s) ds+MK
2 (t)

NK
3 (t) = NK

3 (0) + 2 τ2 p
D
2

∫ t

0
NK

2 (s) ds− τ3K
−γ3

∫ t

0
NK

3 (s) ds+MK
3 (t)

(5)

where MK = (MK
1 ,M

K
2 ,M

K
3 ) is a square-integrable martingale such that for all t ≥ 0,

< MK
1 >t = τ1

∫ t

0
NK

1 (s) ds

< MK
2 >t = 2 τ1

∫ t

0
NK

1 (s) ds+ τ2

∫ t

0
NK

2 (s) ds

< MK
3 >t = 4 pD2 τ2

∫ t

0
NK

2 (s) ds+ τ3K
−γ3

∫ t

0
NK

3 (s) ds

< MK
1 ,M

K
2 >t = − τ1

∫ t

0
NK

1 (s) ds

< MK
2 ,M

K
3 >t = −2 pD2 τ2

∫ t

0
NK

2 (s) ds.

(6)

Indeed, by standard localization and Gronwall’s arguments applied to (NK
1 (t))t, we

can easily prove that for any T > 0 and K ∈ N∗,

E
[

sup
t≤T

NK
1 (t)

]
≤ (2 + E

[
NK

1 (0)
]
)e2τ1T , (7)

and then that

E
[

sup
t≤T

NK
2 (t)

]
< +∞ ; E

[
sup
t≤T

NK
3 (t)

]
< +∞. (8)

We obtain from (5) that the function t 7→ n(t) = E
[
NK(t)

]
= (n1(t), n2(t), n3(t)) satisfies

7



the system of equations

∀t ≤ T,


n1(t) = E

[
NK

1 (0)
]

d
dtn2(t) = τ1 n1(t)− τ2K

−γ2 n2(t)
d
dtn3(t) = 2τ2p

D
2 n2(t)− τ3K

−γ3 n3(t).

(9)

As explained in the introduction,

E
[
NK

1 (0)
]
∼ K. (10)

Therefore there is a unique equilibrium given by

∀t ≥ 0, n∗1 = E
[
NK

1 (0)
]
∼ K

n∗2 =
τ1 n

∗
1

τ2
Kγ2 ∼ K1+γ2

n∗3 =
2pD2 τ2 n

∗
2

τ3
Kγ3 ∼ K1+γ2+γ3 (11)

Remark 1. In the above computation, we obtain the order of magnitude of each sub-
population size at equilibrium, but we cannot deduce the order of magnitude of the time
taken by the process to reach this equilibrium. We will keep this remark in mind in all the
paper.

Let us first begin by a lemma showing that for any K and t, the expectations of the
sub-population sizes behave as expected from (11).

Lemma 1. Let us now assume that

sup
K

E
[NK

1 (0)

K

]
< +∞, sup

K
E
[NK

2 (0)

K1+γ2

]
< +∞, sup

K
E
[ NK

3 (0)

K1+γ2+γ3

]
< +∞.

then

sup
K, t∈R+

E
[NK

1 (t)

K

]
< +∞ , sup

K, t∈R+

E
[NK

2 (t)

K1+γ2

]
< +∞ , sup

K, t∈R+

E
[ NK

3 (t)

K1+γ2+γ3

]
< +∞.

Proof. The first assertion follows immediately.

From (9), we obtain that for all t ≥ 0,

E
[NK

2 (t)

K1+γ2

]
=
τ1

τ2
E
[NK

1 (0)

K

]
+
(
E
[NK

2 (0)

K1+γ2

]
− τ1

τ2
E
[NK

1 (0)

K

])
e−τ2K

−γ2 t (12)

and the proof of the second assertion follows.

Similarly, straightforward computation yields

E
[ NK

3 (t)

K1+γ2+γ3

]
=

2pD2 τ1

τ3
E
[NK

1 (0)

K

]
− βK e−τ2K

−γ2 t (13)

+
(
E
[ NK

3 (0)

K1+γ2+γ3

]
− 2pD2 τ1

τ3
E
[NK

1 (0)

K

]
+ βK

)
e−τ3K

−γ3 t,
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with

βK = 2pD2 τ2
1

τ2Kγ3−γ2 − τ3

(
E
[NK

2 (0)

K1+γ2

]
− τ1

τ2
E
[NK

1 (0)

K

])
.

Hence the third assertion is proved.

2.2 Asymptotic behavior on a finite time interval

The parameter K is defined as the order of magnitude of the martingale NK
1 at time 0.

The first result describes the dynamics of the process on a finite time interval. The
proof of this proposition is left to the reader. It is classical and more difficult proofs in a
similar spirit will be given later.

Proposition 1. Let us introduce the jump process XK defined for all t ≥ 0 by

XK(t) = (
NK

1 (t)

K
,
NK

2 (t)

K1+γ2
,
NK

3 (t)

K1+γ2+γ3
). (14)

(i) Let us assume that there exists a vector (x1, 0, 0) ∈ R3
+ such that the sequence(

NK
1 (0)
K ,

NK
2 (0)

K1+γ2
,

NK
3 (0)

K1+γ2+γ3

)
K∈N∗

converges in law to (x1, 0, 0) when K tends to infinity and
such that

sup
K

E
[NK

1 (0)

K

]
< +∞, sup

K
E
[NK

2 (0)

K1+γ2

]
< +∞ and sup

K
E
[ NK

3 (0)

K1+γ2+γ3

]
< +∞.

Then for all T > 0, the sequence (
NK

1 (t)
K ,

NK
2 (t)

K1+γ2
,

NK
3 (t)

K1+γ2+γ3
)K∈N∗ converges in law in

D([0, T ],R3
+) to (x1, 0, 0).

(ii) Let us assume that there exists a vector (x1, 0, 0) ∈ R3
+ such that the sequence(

NK
1 (0)
K ,

NK
2 (0)
K ,

NK
3 (0)
K

)
K∈N∗

converges in law to (x1, 0, 0) when K tends to infinity and such
that

sup
K

E
[NK

1 (0)

K

]
< +∞, sup

K
E
[NK

2 (0)

K

]
< +∞ and sup

K
E
[NK

3 (0)

K

]
< +∞.

Then for all T > 0, the sequence
(
NK

1 (t)
K ,

NK
2 (t)
K ,

NK
3 (t)
K

)
K∈N∗

converges in law in D([0, T ],R3
+)

to x1

(
1, τ1 t,

τ2
2 t2

)
.

Let us underline that at this time scale, assertion (i) shows that the two last components
do not reach their equilibrium order, as observed in the simulations. Assertion (ii) proves
that the three compartments are only of order K during the time interval [0, T ].

3 Size-time multi-scale dynamics and asymptotic behavior

A size renormalization of the stochastic process is not enough to understand the dynamics
of the model. We need to change the time scale as observed in the simulations. This part
is devoted to identify and study two significant asymptotics for the process, corresponding
to the two time scales Kγ2 and Kγ3 , when K is large.
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3.1 Asymptotic behavior at a time-scale of order Kγ2

In this section, we study the system composed of the two first components at the time
scale Kγ2 . To this end, let us introduce the jump process Y K defined for all t ≥ 0 by

Y K(t) = (
NK

1 (tKγ2)

K
,
NK

2 (tKγ2)

K1+γ2
). (15)

Let us note that only the time scale differs between processes XK and Y K . Hence, at
time t = 0, we have

(Y K
1 (0), Y K

2 (0)) = (XK
1 (0), XK

2 (0)).

The next theorem describes the approximating behavior of Y K when K tends to infinity.

Theorem 1. Assume that there exists a vector (x1, x2) ∈ R2
+ such that the sequence

(Y K(0))K∈N∗ converges in law to (x1, x2) when K tends to infinity and such that

sup
K

E
[
Y K

1 (0)2 + Y K
2 (0)2

]
<∞.

Then for each T > 0, the sequence (Y K)K∈N∗ converges in law (and hence in probability)
in D([0, T ],R2

+) to the continuous function y = (y1, y2) such that for all t ≥ 0,{
y1(t) = x1

y2(t) = τ1x1
τ2

+
(
x2 − τ1x1

τ2

)
e−τ2 t.

(16)

Proof. By standard localization argument, use of Gronwall’s Lemma and Doob’s inequality,
we easily prove (successively for the first and then for the second component) that for any
T > 0,

sup
K

E
[

sup
t∈[0,T ]

(Y K
1 (t)2 + Y K

2 (t)2)
]
<∞. (17)

From (5) and (6), we can write

Y K
1 (t) = Y K

1 (0) + M̂K
1 (t)

Y K
2 (t) = Y K

2 (0) + τ1

∫ t

0
Y K

1 (u)du− τ2

∫ t

0
Y K

2 (u)du+ M̂K
2 (t), (18)

where M̂K
1 and M̂K

2 are two square-integrable martingales satisfying

〈M̂K
1 〉t =

τ1

K1−γ2

∫ t

0
Y K

1 (u)du,

〈M̂K
2 〉t =

2τ1

K1+γ2

∫ t

0
Y K

1 (u)du+
τ2

K

∫ t

0
Y K

2 (u)du,

〈M̂K
1 , M̂

K
2 〉t = − τ1

K

∫ t

0
Y K

1 (u)du. (19)

It is very standard to prove that the sequence of laws of (Y K) is tight (using the moment
estimates (17)) and that the martingale parts go to 0. The result follows using the method
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summarized for example in [4]. Each limiting value is proved to only charge the subset of
continuous functions. Then introducing

φt(y) =

(
y1(t)− y1(0)

y2(t)− y2(0)−
∫ t

0

(
τ1y1(s)− τ2y2(s)

)
ds

)
and using the uniform integrability of the sequence (φt(Y

K))K , deduced from (17), we
identify the limit as the unique continuous solution y of the deterministic system defined
by y(0) = (x1, x2) and

∀t ≥ 0, φt(y) = 0.

That concludes the proof.

Remark 2. Since γ2 < γ3, the time scale Kγ2 is not large enough to observe the dynamics
of the third component. The next proposition shows that at such a time scale, the third
component converges to a trivial value.

Proposition 2. Under the same hypotheses as in Theorem 1, we assume furthermore that
there exists x3 ∈ R+ such that the sequence (

NK
3 (0)

K1+γ2+γ3
)K∈N∗ converges in law to x3 when

K tends to infinity and such that

sup
K

E
[
(
NK

3 (0)

K1+γ2+γ3
)2
]
<∞.

Then for each T > 0, the sequence (
NK

3 (.Kγ2 )

K1+γ2+γ3
)K∈N∗ converges in probability in D([0, T ],R+)

to x3.

Proof. Following (5) and (6), let us write the semimartingale decomposition of the process
Y K

3 =
NK

3 (.Kγ2 )

K1+γ2+γ3
. We have for any t ≤ T ,

Y K
3 (t) = Y K

3 (0) + 2τ2p
D
2 K

γ2−γ3
∫ t

0
Y K

2 (s)ds− τ3K
γ2−γ3

∫ t

0
Y K

3 (s)ds+ M̂K
3 (t), (20)

where M̂K
3 is a square-integrable martingale such that

〈M̂K
3 〉t = 2τ2p

D
2 K

γ2−γ3
∫ t

0
Y K

2 (s)ds+ τ3K
γ2−γ3

∫ t

0
Y K

3 (s)ds.

Let us recall that γ2 < γ3, which makes Kγ2−γ3 tends to 0 when K tends to infinity.
Using Theorem 1, we know that Y K

2 converges to the continuous function y2. By
standard tightness argument, one can easily deduce that the process Y K

3 converges in
probability to x3, on any finite time interval.

11



3.2 Asymptotic behavior at a time-scale of order Kγ3

In order to catch the long time dynamics of the third component we will study the process
NK on the time scale tKγ3 . To this end, let us introduce the jump process ZK defined for
all t ≥ 0 by

ZK(t) = (
NK

1 (tKγ3)

K
,
NK

2 (tKγ3)

K1+γ2
,
NK

3 (tKγ3)

K1+γ2+γ3
).

Note that we still have
ZK(0) = Y K(0) = XK(0).

At this time scale, the second component has time to reach the equilibrium of its deter-
ministic approximation by an average procedure. By an adaptation of the proof in [20] to
this specific framework, we are able to prove the following theorem.

Theorem 2. Assume that there exists (x1, x2, x3) ∈ R3
+ such that the sequence (ZK(0))K∈N∗

converges in law to (x1, x2, x3) when K tends to infinity and such that

sup
K

E
[
ZK1 (0)

]
< +∞, sup

K
E
[
ZK2 (0)

]
< +∞ and sup

K
E
[
ZK3 (0)

]
< +∞. (21)

Let ΓK2 be the lm(R+)-valued random variable given by

ΓK2 ([0, t]×B) =

∫ t

0
1B(ZK

2 (s))ds. (22)

Then for all T > 0, the sequence (ZK1 ,Γ
K
2 , Z

K
3 )K∈N∗ converges in law in D([0, T ],R+) ×

lm(R+)× D([0, T ],R+) to (z1, δz∗2 (dz2) ds, z3). The functions z1 and z3 are defined for all
t ≤ T by 

z1(t) = x1

z3(t) = τ2
τ3
z∗2 +

(
x3 − τ2

τ3
z∗2
)
e−τ3 t

(23)

and z∗2 is the value of y2 at infinity:

z∗2 =
τ1x1

τ2
.

Let us first state a lemma in which all moment estimates are gathered.

Lemma 2. Under Assumption (21), we obtain

sup
K

E
[

sup
t∈[0,T ]

ZK1 (t)
]
< +∞ ; ∀ t > 0 sup

K
E
[ ∫ t

0
ZK2 (s) ds

]
< +∞ ;

and
sup
K

E
[

sup
t∈[0,T ]

ZK3 (t)
]
< +∞.

12



Proof of Lemma 2. The first and third estimates are obtained by usual arguments (local-
ization, Doob’s inequality and Gronwall’s Lemma). Let us focus on the second one.

By positivity and definition of the process ZK2 , we have for any t > 0

ZK2 (t) = ZK2 (0) + τ1K
γ3−γ2

∫ t

0
ZK1 (s)ds− τ2K

γ3−γ2
∫ t

0
ZK2 (s)ds+ M̃K

2 (t), (24)

the latter term being a square-integrable martingale and

〈M̃K
2 〉t =

1

K1+γ2

(
2τ1K

γ3−γ2
∫ t

0
ZK1 (s)ds+ τ2K

γ3

∫ t

0
ZK2 (s)ds

)
. (25)

In particular,

E
[ ∫ t

0
ZK2 (s) ds

]
=

1

τ2
Kγ2−γ3

(
E
[
ZK2 (0)

]
− E

[
ZK2 (t)

])
+
τ1

τ2

∫ t

0
E
[
ZK1 (s)

]
ds.

Assumptions (21) and Lemma 1 ensure that the first term goes to 0 as K tends to infinity
and the third term is bounded uniformly in K. That allows to conclude.

Proof of Theorem 2. Let ΓK be the occupation measure of ZK , a random measure belong-
ing to the space lm(R+) of positive measures on [0,∞)×R+ with mass t on[0, t]×R+ and
defined for all Borelian set B and for t > 0 by

ΓK([0, t]×B) =

∫ t

0
1B(ZK(s))ds.

Using Lemma 2.9 of [20] (cf. Appendix), we obtain that (ΓK)K is relatively compact in
lm(R+) endowed with a weak topology generated by the class of test functions defined in
(52) .

Let us denote by Γ ∈ lm(R3
+) a limiting value. Using [15] Lemma 1.4, one can show that

there exists a P(R3
+)-valued process γs such that

Γ(dz × ds) = γs(dz) ds.

Let us now introduce the function FK

∀z ∈ R3
+, FK(z) = (1 +

1

Kγ2
) τ2z2 − τ3 z3.

Then for all t ≥ 0,

ZK3 (t) = ZK3 (0) + (1 +
1

Kγ2
)τ2

∫ t

0
ZK2 (s)ds− τ3

∫ t

0
ZK3 (s)ds+ M̃K

3 (t) (26)

= ZK3 (0) +

∫ t

0
FK(ZK(s)) ds+ M̃K

3 (t)

ZK1 (t) = ZK1 (0) + M̃K
1 (t) (27)

13



with (M̃K
1 , M̃

K
3 ) independent martingales and such that for all t ≥ 0,

< M̃K
1 >t=K

γ3−1

∫ t

0
2τ1 Z

K
1 (s) ds (28)

< M̃K
3 >t=K

−(1+γ2+γ3)

∫ t

0

(
2(1 +

1

Kγ2
)τ2 Z

K
2 (s) + τ3Z

K
3 (s)

)
ds. (29)

By usual arguments involving Lemma 2 one can prove that the sequences of processes
(ZK3 )K and (ZK1 )K are uniformly tight in D([0, T ],R+). Let us also note that the distri-
butions of any limiting value only charge processes with a.s. continuous trajectories.

Furthermore by Doob’s inequality

E
[

sup
t≤T
|M̃K

3 (t)|2
]
≤ 4E

[
< M̃K

3 >T
]
.

Using (29) and Lemma 2, we obtain that limK→∞ E
[

supt∈[0,T ] |M̃K
3 (t)|2

]
= 0 and a

similar property for M̃K
1 since γ3 < 1. Then, we deduce from Markov’s inequality, that the

processes (M̃K
3 )K and (M̃K

1 )K converge in probability for the uniform norm to 0. Hence
they converge in law in D([0, T ],R+) to 0.

Adding all these asymptotic behaviors, we deduce that there exists a subsequence of
(ZK1 , Z

K
3 ) converging in law in D([0, T ],R2

+) to the deterministic limit (z1, Z
∞
3 ) defined

for all t ≥ 0 by

z1(t) = x1

Z∞3 (t) = x3 +

∫
R3
+×[0,t]

( τ2z2 − τ3 z3)γs(dz)ds.

Then by convergence of (ZK1 )K , (ZK3 )K and ΓK , one can easily deduce that

γs(dz) = δz̄1(dz1)δZ∞3 (s)(dz3) γ̃s(z1, z3, dz2).

We have now to identify these measures γ̃s, s ∈ [0, T ].

Let us write the generator of the process ZK2 . For h ∈ C∞c , it is given for z ∈ R3
+ by

LK2 (h)(z) =
(
h(z2 + 2K−(1+γ2))− h(z2)

) τ1

2
z1K

1+γ3

+
(
h(z2 + K−(1+γ2))− h(z2)

)
pR2 τ2 z2K

1+γ2+γ3

+
(
h(z2 − K−(1+γ2))− h(z2)

)
pD2 τ2 z2K

1+γ2+γ3 .

Let us introduce the function g defined for z ∈ R3
+ by

g(z) = z1τ1 − τ2z2.

14



Then, by a Taylor expansion, we obtain that

∀h ∈ C∞c , lim
K→∞

sup
z∈R+

|Kγ2−γ3LK2 (h)(z)− g(z)h′(z2)| = 0. (30)

Using (25), Lemma 3 and the same arguments as above, we obtain that the sequence of
processes

(
Kγ2−γ3

(
h(ZK2 (t))− h(ZK2 (0))−

∫ t
0 L

K
2 (h)(ZK(s)) ds

)
, t ∈ [0, T ]

)
converges

in law in D([0, T ],R) to 0. In the other hand, using that h is bounded and (30) and
g h′ ∈ Cb (since h has compact support), we easily see that this sequence also converges to

−
∫ t

0
(τ1x1 − τ2z2)h′(z2) γs(z1, z3, dz2) ds.

We deduce that for any t ∈ [0, T ], for any h ∈ C∞c∫ t

0
(τ1x1 − τ2z2)h′(z2) γ̃s(z1, z3, dz2) ds = 0.

It implies that
γ̃s(z1, z3, dz2) = δ τ1x1

τ2

(dz2).

To end the proof, we solve the equation satisfied by Z∞3 (t) and obtain that

∀t ≥ 0, Z∞3 (t) =
τ1x1

τ3
+
(
x3 −

τ1x1

τ3

)
e−τ3 t.

Hence we have uniquely identified the limit of any converging subsequence. That ends the
proof.

4 Amplified fluctuations

In this section, we will quantify the large fluctuations observed on the simulations. As
pointed out above, each component has its own typical size and time scale. Hence, we
will study separately the fluctuations of the second and third types. Classical results easily
imply that the first component behaves as a Brownian motion: for largeK, for all t ∈ [0, T ],

NK
1 (t) ∼ x1K +

√
K
√
τ1x1Bt.

The originality of our results concerns the large fluctuations of the two last types due to
the amplification of these first type fluctuations.

4.1 The large fluctuations of the second type

As seen in Subsection 3.1, the typical size scale (respectively time scale) of the second
type is K1+γ2 (respectively Kγ2) and the first order asymptotics relative to this time scale
is given by the function y defined by (16). We are also able to give an expansion of the
process at the second and third orders on such time scale.
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Theorem 3. Let define the sequence (UK)K by

∀t ≥ 0, UK(t) = K(1−γ2)/2
(
Y K(t)− y(t)

)
.

(i) Assume that there exists U0 = (U
(1)
0 , U

(2)
0 ) ∈ R2 such that (UK(0))K∈N∗ converges in

law to U0 and that

sup
K

E
[
UK1 (0)2 + UK2 (0)2

]
< +∞. (31)

Then for each T > 0, the sequence (UK)K∈N∗ converges in law in D([0, T ],R2) to the
process U = (U1, U2) defined for all t ≥ 0 by

U1(t) = U
(1)
0 +

√
τ1 x1B1(t), (32)

U2(t) = U
(2)
0 + τ1

∫ t

0
U1(s)ds− τ2

∫ t

0
U2(s) ds, (33)

where B1 is a standard Brownian motion.

(ii) Furthermore, the sequence (WK
2 )K∈N∗ defined by

∀t ∈ [0, T ], WK
2 (t) = Kγ2/2

[
UK2 (t)− U (2)

0 − τ1

∫ t

0
UK1 (s)ds+ τ2

∫ t

0
UK2 (s)ds

]
,

converges in law in D([0, T ],R), for each T > 0, to the process (
√
τ2y2(t)B2(t), t ∈ [0, T ])

where B2 is a standard Brownian motion independent of the process B1.

From this theorem, we can deduce the following expansion, which quantifies the large
waves of fluctuations. Assuming that U0 is equal to zero, we obtain for all t and large K,

NK
2 (t) ∼ K1+γ2y2(tK−γ2)+K(1+3γ2)/2U2(tK−γ2)+K(1+2γ2)/2

√
τ2 y2(tK−γ2)B2(tK−γ2)

where

∀t, U2(t) = τ1
√
τ1x1

∫ t

0
B1(s) ds− τ2

∫ t

0
U2(s) ds

and B1, B2 are independent Brownian motions.

Proof of Theorem 3. (i) First we deduce from (31) with similar arguments as above that

sup
K

E
[

sup
t∈[0,T ]

(UK1 (t)2 + UK2 (t)2)
]
< +∞. (34)

The tightness of the families (sup
t≤T
|UK1 (t)|)K and (sup

t≤T
|UK2 (t)|)K immediately follows.

We consider the semi-martingale decomposition of (UK) and write

UKi (t) = UKi (0) +AKi (t) +K
1−γ2

2 M̂K
i (t),
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where M̂K has been defined in (18), AK1 = 0 and AK2 (t) = τ1

∫ t
0 U

K
1 (s) ds− τ2

∫ t
0 U

K
2 (s) ds.

Thanks to the above moment estimates, it is almost immediate to prove that the finite
variation processes< K

1−γ2
2 M̂K

i > and AK2 satisfy the Aldous condition. Thanks to Aldous
and Rebolledo criteria (see [12] and [4]) , the uniform tightness of L(UK) in P(D([0, T ],R2))
follows.

We denote by simplicity by the same notation (UK)K a subsequence converging in law in
D([0, T ],R2). Let Q be the limiting value of (L(UK))K . It is easy to observe that

sup
t∈[0,T ]

‖ ∆UK(t) ‖≤ 2K−(1+γ2)/2.

Therefore, by continuity of the mapping x → sup
t∈[0,T ]

‖ ∆x(t) ‖ from D([0, T ],R2) into R+,

the probability measure Q only charges the processes with continuous paths.

The extended generator of UK is defined for functions f ∈ C2
b (R2,R) as: ∀u ∈ R2,

LK(f, t)(u) =
(
f(u1 +K−(1+γ2)/2, u2)− f(u)

) τ1

2
K1+γ2(K−(1−γ2)/2u1 + x1)

+
(
f(u1 − K−(1+γ2)/2, u2 + 2K−(1+3γ2)/2)− f(u)

) τ1

2
K1+γ2(K−(1−γ2)/2u1 + x1)

+
(
f(u1, u2 +K−(1+3γ2)/2)− f(u)

)
pR2 τ2K

1+2γ2(K−(1−γ2)/2u2 + y2(t))

+
(
f(u1, u2 −K−(1+3γ2)/2)− f(u)

)
pD2 τ2K

1+2γ2(K−(1−γ2)/2u2 + y2(t))

−K(1−γ2)/2∂2f(u)
(
τ1x1 − τ2y2(t)

)
.

(35)

By a Taylor’s expansion, we easily obtain that ∀f ∈ C2
b (R2,R),

lim
K→∞

sup
(u,t)∈R×R+

∣∣LK(f, t)(u)− (
τ1

2
x1∂

2
1f(u) + (τ1u1 − τ2u2)∂2f(u))

∣∣ = 0. (36)

In the other hand, let us define, for f ∈ C2
b (R2,R), u ∈ D([0, T ],R2) and t ∈ [0, T ], the

function ξK,ft by

ξK,ft (u) = f(ut)− f(u0)−
∫ t

0
LK(f, s)(us) ds.

Then, by (35), Dynkin’s formula and (34), we can easily prove that the processes (ξK,ft (UK))K
are uniformly integrable martingales.

Therefore by standard arguments (cf. [9], [4]), the limiting process under Q is contin-
uous and satisfies the following martingale problem:

∀f ∈ C2
b (R2,R), f(U(t))−f(U0)−

∫ t

0
(
τ1

2
x1∂

2
1f(U(s))+(τ1U1(s)−τ2U2(s))∂2f(U(s))) ds

is a martingale.
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We conclude using a representation theorem (cf. [11] p.84) that for each T > 0, the
sequence (UK)K∈N∗ converges in law in D([0, T ],R2) to the process U = (U1, U2), unique
solution of the following stochastic differential system: for all t ∈ [0;T ],

U1(t) = U
(1)
0 +

√
τ1 x1B1(t),

U2(t) = U
(2)
0 + τ1

∫ t

0
U1(s)ds− τ2

∫ t

0
U2(s) ds,

with B1 a Brownian motion.

(ii) Let us now expand the second component to the next order. We deduce from (18) that

UK1 (.)− UK(0) = K(1−γ2)/2 M̂K
1 (.),

WK
2 (.) =

√
K M̂K

2 (.).

Using (19), (17) and applying Theorem 7.1.4 of [9], we conclude the proof.

4.2 The large fluctuations of the third type

Let us now study the fluctuation process associated with the largest fluctuation scale of
the third component. We have seen in Theorem 2 that at the time scale Kγ3 , the size of
the population process in the third compartment is of order of magnitude K1+γ2+γ3 . In an
usual setting, the Central Limit Theorem would lead to fluctuations of order K(1+γ2+γ3)/2.
We will see in the next theorem that they are of order K(1+2γ2+3γ3)/2 � K(1+γ2+γ3)/2,
since amplified by the fluctuations of the first compartment.

Using (23), (24) and (26), we know that for all t ≥ 0,

(
ZK3 (t)− z3(t)

)
=
(
ZK3 (0)− z3(0)

)
+ τ2

∫ t

0

(
ZK2 (s)− z∗2

)
ds− τ3

∫ t

0

(
ZK3 (s)− z3(s)

)
ds

+ τ2
1

Kγ2

∫ t

0

(
ZK2 (s)− z∗2

)
ds+ M̃K

3 (t) (37)

where (
ZK2 (t)− z∗2

)
=
(
ZK2 (0)− z∗2

)
+Kγ3−γ2τ1

∫ t

0

(
ZK1 (s)− x1

)
ds

−Kγ3−γ2τ2

∫ t

0

(
ZK2 (s)− z∗2

)
ds+ M̃K

2 (t). (38)

Our goal is to quantify the effect of the first component fluctuations on the dynamics of
the third component. Considering the expressions of the martingale quadratic variation
(28) imposes the choice of the rescaling parameter K(1−γ3)/2 in front of

(
ZK1 (t)− x1

)
. We

will see that to keep the effect of the first component on the third component, we need to
rescale

(
ZK2 (t)− ZK2 (0)

)
by K(1−γ3)/2

Kγ3−γ2 and
(
ZK3 (t)− z3(t)

)
by K(1−γ3)/2.

Let us now state the main theorem of this section.
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Theorem 4. Let us define the three processes

∀t ≥ 0,



V K
1 (t) = K(1−γ3)/2

(
ZK1 (t)− x1

)
V K

2 (t) = K(1−γ3)/2

Kγ3−γ2

(
ZK2 (t)− ZK2 (0)

)
V K

3 (t) = K(1−γ3)/2
(
ZK3 (t)− z3(t)

) .

Let us assume that there exists V0 = (V
(1)

0 , V
(3)

0 ) a R2-valued random vector such that the
sequence (V K

1 (0), V K
3 (0))K∈N∗ converges in law to V0 and such that

sup
K

E
[
V K

1 (0)4
]
< +∞ ; sup

K
E
[
ZK2 (0)2

]
< +∞. (39)

sup
K

E
[
|V K

3 (0)|
]
< +∞. (40)

Then for all T > 0, the sequence (V K
1 , V K

3 )K∈N∗ converges in law in D([0, T ],R2) to
(V1, V3) such that for all t,

V1(t) = V
(1)

0 +
√
τ1 x1W1(t)

V3(t) = V
(3)

0 + τ1

∫ t

0
V1(s)ds− τ3

∫ t

0
V3(s) ds,

where W1 is a standard Brownian motion.

Let us interpret this result in terms of fluctuations. Assuming that the initial vector V0 is
equal to zero, we obtain that for any t and large K,

NK
3 (t) ∼ K1+γ2+γ3 z3(tK−γ3) +K(1+2γ2+3γ3)/2 V3(tK−γ3) (41)

where

∀t, V3(t) = τ1
√
τ1x1

∫ t

0
W1(s) ds− τ3

∫ t

0
V3(s) ds

and W1 is a standard Brownian motion.

The order of magnitude appearing in the fluctuation second order term (41) summarizes
the cumulative effects of the third dynamics driven by the fluctuations of the first level.
That can explain the exceptionally large fluctuations observed for the size of terminal cells
populations, in hematopoietic systems.

As a first step in the proof of Theorem 4, we will prove that the sequence of processes
(V K

2 )K converges to 0 uniformly in L2 on any finite time interval.

Proposition 3. Under the assumption (39), we obtain

∀T ≥ 0, lim
K→∞

E
[

sup
t∈[0,T ]

V K
2 (t)2

]
= 0. (42)
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Proof. Using (24), we obtain that

∀t ≥ 0, V K
2 (t) = K

1−3γ3
2

+γ2
(
ZK2 (t)− ZK2 (0)

)
= τ1

∫ t

0
V K

1 (s) ds− τ2K
γ3−γ2

∫ t

0
V K

2 (s) ds+RK(t),

where RK is the square-integrable martingale defined by

∀t ≥ 0, RKt = K
1−3γ3

2
+γ2M̃K

2 (t) (43)

and satisfying

∀t, 〈RK〉t = K−2γ3
(
τ1

∫ t

0
ZK1 (s) ds+ τ2K

γ2

∫ t

0
ZK2 (s) ds

)
. (44)

Let us first show that

∀t > 0, sup
K

E
[ ∫ t

0
V K

2 (s)4 ds
]
<∞.

Itô’s formula immediately implies that ∀t ≥ 0,

V K
2 (t)4 = V K

2 (0)4 + 4

∫ t

0
V K

2 (s)3 dRKs + 4

∫ t

0
V K

2 (s)3
(
τ1V

K
1 (s)−Kγ3−γ2τ2V

K
2 (s)

)
ds

+ 6

∫ t

0
V K

2 (s)2 d〈RK〉s.

By standard localization arguments, we prove using (39) that for any t ≥ 0,

∀t ≥ 0, sup
K

E
[ ∫ t

0
V K

1 (s)4 ds
]
<∞. (45)

Let us now introduce the stopping time

Tn = inf{t ≥ 0, |V K
2 (t)| ≥ n}.

Then, applying the following inequality

4
(
τ1v1v2 −Kγ3−γ2τ2v

2
2

)
= 4 τ2K

γ3−γ2([ v1τ1

2τ2Kγ3−γ2 ]2 − [v2 −
v1τ1

2τ2Kγ3−γ2 ]2
)

≤ v2
1τ

2
1

τ2Kγ3−γ2 (46)

to v1 = V K
1 (s) and v2 = V K

2 (s), we obtain the following upper-bound.

E
[
V K

2 (t ∧ Tn)4
]
≤ E

[
V K

2 (0)4
]

+
τ2

1

τ2Kγ3−γ2

∫ t∧Tn

0
E
[
V K

2 (s)2 V K
1 (s)2

]
ds

+ 6E
[ ∫ t∧Tn

0
V K

2 (s)2 d〈RK〉s
]
. (47)
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Using (44), we obtain for all t ∈ [0, T ],

E
[ ∫ t∧Tn

0
V K

2 (s)2 d〈RK〉s
]

= Kγ2−2γ3 E
[ ∫ t∧Tn

0
V K

2 (s)2
(
K−γ2τ1Z

K
1 (s) + τ2Z

K
2 (s)

)
ds
]
.

Writing ZK2 in function of V K
2 , we find the following upper bound,

E
[ ∫ t∧Tn

0
V K

2 (s)2 d〈RK〉s
]
≤
(
τ1K

−2γ3 + τ2K
−(1+γ3)/2 + τ2K

γ2−2γ3
) ∫ t∧Tn

0
E
[
V K

2 (s)4
]
ds

+ τ1K
−2γ3

∫ t∧Tn

0
E
[
ZK1 (s)2

]
ds (48)

+ τ2

(
K−(1+γ3)/2 +Kγ2−2γ3

)
(E
[
ZK2 (0)2

]
+ 1)T.

We deduce from (47) using Lemma 2, (39) and Gronwall’s Lemma that

∀t ∈ [0, T ], sup
K

E
[ ∫ t∧Tn

0
V K

2 (s)4 ds
]
<∞.

Let us now come back to the proof of (42). Itô’s formula yields

V K
2 (t)2 = 2

∫ t

0
V K

2 (s) dRKs + 2

∫ t

0
V K

2 (s)
(
τ1V

K
1 (s)−Kγ3−γ2τ2V

K
2 (s)

)
ds+ 〈RK〉t.

Therefore, using again (46) and Doob’s inequality, we obtain

E
[

sup
t∈[0,T∧Tn]

V K
2 (t)2

]
≤ 8E

[ ∫ T∧Tn

0
V K

2 (s)2 d〈RK〉s
]

+
τ2

1

τ2Kγ3−γ2 E
[ ∫ T∧Tn

0
V K

1 (s)2 ds
]

+ E
[
〈RK〉T∧Tn

]
.

Finally, we deduce from Lemma 2, (48), (39) and (45) that for any K, Tn tends almost
surely to +∞ and that

∀T ≥ 0, lim
K→∞

E
[

sup
t∈[0,T ]

V K
2 (t)2

]
= 0.

Let us now come back to the proof of Theorem 4. It has been inspired by the proof of the
main result in [20].

Proof of Theorem 4. Using similar convergence arguments as in Theorem 3 and (39), we
firstly observe that the sequence (V K

1 )K converges in law in D([0, T ],R) to a continuous
process V1 defined by

∀t, V1(t) = V
(1)

0 +
√
τ1x1W1(t) (49)

with W1 a standard Brownian motion.
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Let us recall that from (37), (38) and (43), that for all t,

V K
3 (t) = V K

3 (0)+τ2

(
1+

1

Kγ2

) ∫ t

0
K(1−γ3)/2(ZK2 (s)−z∗2) ds−τ3

∫ t

0
V K

3 (s) ds+K(1−γ3)/2M̃K
3 (t)

with

τ2

∫ t

0
K(1−γ3)/2

(
ZK2 (s)− z∗2) ds = K(1−γ3)/2 Z

K
2 (0)− ZK2 (t)

Kγ3−γ2 +

∫ t

0
τ1 V

K
1 (s) ds+RKt .

Hence, for all t,

V K
3 (t) = V K

3 (0) + (1 +
1

Kγ2
)

∫ t

0
τ1 V

K
1 (s) ds− τ3

∫ t

0
V K

3 (s) ds− (1 +
1

Kγ2
)V K

2 (t) +MK
t ,

(50)
whereMK is the square-integrable martingale

MK(t) = (1 +
1

Kγ2
)RKt +K(1−γ3)/2M̃K

3 (t).

We deduce from (29), (44), Lemma 2 and Doob’s inequality, that

lim
K→∞

E
[

sup
t∈[0,T ]

|MK(t)|2
]

= 0. (51)

Then it turns out from Markov’s inequality that the sequence (MK)K converges in prob-
ability to 0 for the uniform norm and hence (MK)K converges in law in D([0, T ],R) to 0.

Furthermore using (50), (45), (40) and Proposition 3 we obtain

sup
K

E
[

sup
t≤T
|V K

3 (t)|
]
<∞.

We are now able to prove the tightness of the family (sup
t≤T
|V K

3 (t)|)K . Indeed, les us

introduce stopping times S,S′ satisfying S ≤ S′ ≤ (S + δ)∧T , with δ > 0. Using (50), we
have

P(|V K
3 (S′)− V K

3 (S)| > ε) ≤ 1

ε
E
[
|V K

3 (S′)− V K
3 (S)|

]
≤ 1

ε
E
[
|V K

3 (S′)− V K
3 (S)|2

]1/2
≤ 1

ε

[
δ T
(
τ1(1 +

1

Kγ2
) (E

[
sup
t≤T

V K
1 (t)2

]
+ 1) + τ3E

[
sup
t≤T
|V K

3 (t)|
])

+ 4E
[

sup
t≤T
MK(t)2

]
+ 4 pD2 E

[
sup
t≤T

V K
2 (t)2

] ]1/2
.

Then from (50), (45), (40) and Proposition 3, we deduce that Aldous conditions (see [12]
and [4]) are satisfied and obtain the tightness of (V K

3 )K .

Finally, using Proposition 3, the convergence in law in D([0, T ],R) of the processes MK

and V K
1 respectively to zero and V1 and the convergence in law of V K

3 (0) to V (3)
0 , we obtain
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that the sequence (V K
3 )K converges in law in D([0, T ],R) to the process V3, unique solution

of the following SDE

∀t ∈ [0, T ], V3(t) = V
(3)

0 + τ1 (1 +
1

Kγ2
)

∫ t

0
V1(s)ds− τ3

∫ t

0
V3(s) ds,

where V1 has been defined in (49). That ends the proof.

5 Appendix

Lemma 3 (Lemma 2.9 of [20]). Let V N be a sequence of R3
+-valued processes. We consider

its occupation measure defined for D a Borelian set by

ΓN (D × [0, t]) =

∫ t

0
1D(VN(s))ds.

Let us assume that there exists a function ψ : R3
+ → [1,∞) locally bounded such that

limv→+∞ ψ(v) = +∞ and such that for each t > 0,

sup
N

E
[ ∫ t

0
ψ(V N (s))ds

]
< +∞.

Then ΓN is relatively compact, and if ΓN converges in law to Γ, then for f1, . . . , fm ∈ Dψ,( ∫ .

0
f1(VN (s)) ds, . . . ,

∫ .

0
fm(V N (s)) ds

) L−→( ∫
R3
+

f1(v) Γ(dv × [0, .]), . . . ,

∫
R3
+

fm(v) Γ(dv × [0, .])
)

where Dψ denote the collection of continuous functions f satisfying ‘

sup
v∈R3

+

|f(v)|
ψ(v)

<∞ and lim
k→∞

sup
v∈R3

+,‖v‖>k

|f(v)|
ψ(v)

= 0. (52)

Aknowledgments: We warmly thank Vincent Bansaye, the oncologist Stéphane Gi-
raudier and the biologist Evelyne Lauret for exciting and fruitful discussions which have
motivated this work. We also thank Vincent Bansaye for his precious comments on our
paper. This work was supported by a grant from Région Île-de-France.

References

[1] Abkowitz J-L, Golinelli D, Harrison D-E, Guttorp P, In vivo kinetics of murine hemopoi-
etic stem cells, Blood, 96(10): pp.3399-3405, 2000.

[2] Arino O, Kimmel M, Stability analysis of models of cell production systems, Mathe-
matical Modelling, Elsevier, 7(9-12): pp.1269-1300, 1986.

[3] Axelrod D, Kimmel M, Branching Processes in Biology, Springer, New York, 2002.

23



[4] Bansaye V, Meleard S, Stochastic Models for Structured Populations: Scaling Limits
and Long Time Behavior, Mathematical Biosciences Institute Lecture Series, Springer
International Publishing, 2015.

[5] Bonnet C, Gou P, Girel S, Bansaye V, Lacout C, Bailly K, Schlagetter M-H, Lauret E,
Meleard S, Giraudier S, Modeling the Behavior of Hematopoietic Compartments from
Stem to Red Cells in Murine Steady State and Stress Hematopoiesis, submitted, 2019.

[6] Crauste F, Pujo-Menjouet L, Génieys S, Molina C, Gandrillon O, Adding self-renewal in
committed erythroid progenitors improves the biological relevance of a mathematical
model of erythropoiesis, Journal of theoretical biology, Elsevier, 250(2): pp.322-338,
2008.

[7] Dingli D, Traulsen A, Pacheco JM, Compartmental Architecture and Dynamics of
Hematopoiesis, PlosOne, 2007.

[8] Doumic M, Marciniak-Czochra A, Perthame B, Zubelli J, A Structured Population
Model of Cell Differentiation, SIAM Journal on Applied Mathematics, 71(6): pp.1918-
1940, 2011.

[9] Ethier S-N, Kurtz T-G, Markov processes : characterization and convergence, Wiley
Series in Probability and Mathematical Statistics: Probability and Mathematical Statis-
tics, 1986.

[10] González M, Martínez R, Molina M, Mota M, Puerto I-M, Ramos A, Workshop on
branching processes and their applications, Springer Science & Business Media, vol.197,
2010.

[11] Ikeda N, Watanabe S, Stochastic Differential Equations and Diffusion Processes, 1989.

[12] Joffe A, Metivier M, Weak convergence of sequences of semimartingales with ap-
plications to multitype branching processes, Advances in Applied Probability, 18(1):
pp.20-65, 1986.

[13] Khammash M, Munsky B, Peleš S, Reduction and solution of the chemical master
equation using time scale separation and finite state projection, The Journal of chemical
physics, 125(20), 2006.

[14] Kimmel M, Ważewska-Czyżewska M, Stochastic approach to the process of red cell
destruction, Applicationes Mathematicae, 2(17): pp.217-225, 1982.

[15] Kurtz T-G, Averaging for martingale problems and stochastic approximation, Applied
Stochastic Analysis, pp.186-209, 1992.

[16] Lei J, Mackey M-C, Stochastic differential delay equation, moment stability, and ap-
plication to hematopoietic stem cell regulation system, SIAM Journal on Applied Math-
ematics, 67(2): pp.387-407, 2007.

[17] Loeffler M, Wichmann HE., A comprehensive mathematical model of stem cell prolif-
eration which reproduces most of the published experimental results, Cell Proliferation,
13(5): p.543-561, 1980.

24



[18] Marciniak-Czochra A, Stiehl T, Ho A-D, Jäger W, Wagner W, Modeling of asymmet-
ric cell division in hematopoietic stem cells—regulation of self-renewal is essential for
efficient repopulation, Stem cells and development, 18(3): pp.377-386, 2009.

[19] Paździorek P-R, Mathematical model of stem cell differentiation and tissue regen-
eration with stochastic noise, Bulletin of mathematical biology, 76(7): pp.1642-1669,
2014.

[20] Popovic L, Kang H-W, Kurtz T-G, Central limit theorems and diffusion approxima-
tions for multiscale Markov chain models, The Annals of Applied Probability, 24(2):
pp.721-759, 2014.

[21] Roeder I, Loeffler M, A novel dynamic model of hematopoietic stem cell organization
based on the concept of within-tissue plasticity, Experimental hematology, 30(8) pp.853-
861, 2002.

[22] Thirup P, Haematocrit, Sports Medicine, 33(3) pp.231-243, 2003.

[23] Till J-E, McCulloch E-A, Siminovitch L, A stochastic model of stem cell proliferation,
based on the growth of spleen colony-forming cells, Proceedings of the National Academy
of Sciences of the United States of America, 51(1): p.29, 1964.

[24] Whichard Z-L, Sarkar C-A, Kimmel M, Corey S-J, Hematopoiesis and its disorders: a
systems biology approach, Blood, The Journal of the American Society of Hematology,
115(12): pp.2339-2347, 2010.

25


