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We proposed a new systema.c approach for minimal-precision
computa.ons. This approach is robust, general, comprehensive,
high-performant, and realis.c. Although the proposed system is s.ll
in development, it can be constructed by combining already available
(developed) in-house technologies and extending them. Our ongoing
step is to demonstrate the system on a proxy applica.on

* All authors contributed equally to this research 

In numerical computa.ons, the precision of floa.ng-point
computa.ons is a key factor to determine the performance
(speed and energy-efficiency) as well as the reliability
(accuracy and reproducibility). However, the precision
generally plays a contrary role for both. Therefore, the
ul.mate concept for maximizing both at the same .me is the
op#mized/reduced precision computa#on through preci-
sion-tuning, which adjusts the minimal precision for each
opera#on and data. Several studies have been already
conducted for it so far, but the scope of those studies is
limited to the precision-tuning alone. Instead, we propose a
more broad concept of the op.mized/minimal precision and
robust (numerically reliable) compu.ng with precision-
tuning, involving both hardware and soIware stack

Minimal-Precision Computing

Robust (Numeraically Reliable)
To ensure the requested accuracy, the precision-tuning is
processed based on numerical valida.on, guaranteeing
also reproducibility

General
Our scheme is applicable for any floating-point
computations. It contributes to low development cost and
sustainability (easy maintenance and system portability)

Comprehensive
We propose a total system from the precision-tuning to the
execu.on of the tuned code, combining heterogeneous
hardware and hierarchical soIware stack

High-performance
Performance can be improved through the minimal-
precision as well as fast numerical libraries and accelerators

Realis#c
Our system can be realized by combining available in-house
technologies

System Stack System Workflow

Low-level code
for FPGA

(VHDL etc.)

Compila.on and 
Execu.on 
on FPGA

Input:
C code with MPFR
(and MPLAPACK)

Precision-Op,mizer 
(with PROMISE 

and CADNA/SAM)

Code Translation 
for FPGA

(SPGen, Nymble, FloPoCo)

C code with MPFR 
(op.mized)

Performance 
Optimization

C code with MPFR + 
other fast accurate 

methods

Compilation and 
Execution

on CPU/GPU

Yes
A part of the C code 
with MPFR, which is 
executed on FPGA

FPGA?

Precision-Optimizer
• The Precision-Optimizer 

determines the minimal floating-
point precisions, which need to 
achieve the desired accuracy

Performance Optimization
• At this stage, if possible to speedup 

some parts of the code with some 
other accurate computation methods 
than MPFR, those parts are replaced 
with them

• The required-accuracy must be taken 
into account

• If possible, it considers to utilize 
FPGA (as heterogeneous computing)

Hardware

Heterogeneous System
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Library
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Libraries

Numerical
Validation

Precision 
Tuning

Arbitrary-
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FP32, FP64,
(FP16, FP128)

Fast Accurate
Methods/ Libraries

others…
LAPACK

BLAS

MPFR

Stochastic Arithmetic
SAMCADNA

PROMISE 
with SAM

PROMISE

DD/QD

FPGA

acceleration

GPUGPU
Nymble

FloPoCo

available in development

SPGen
for arbitrary-prec.

Compiler & 
Tools for FPGA

CPU

others…
OzBLAS
ExBLAS

QPEigen
MPLAPACK (MPBLAS)

MPLAPACK [7]
An open-source multi-
precision BLAS and LAPACK 
based on several high-
precision tools such as 
MPFR, QD, and FP128

MPFR [2]
A C library for multiple 
(arbitrary) precision 
floating-point 
computations on CPUs

FloPoCo [16]
An open-source floating-point 
core generator for FPGA 
supporting arbitrary-precision

No

Energy-Efficient
Through the minimal-precision as well as the energy-
efficient hardware accelera.on with FPGA and GPU

FPGA as an Arbitrary-Precision Computing Platform Fast and Accurate Numerical Libraries

Error-free transforma-on of dot-product ( xTy )

5211
5211

5211 52

OzBLAS (TWCU, RIKEN)
• OzBLAS [13] is an accurate & reproducible BLAS 

using Ozaki scheme [18], which is an accurate 
matrix mulCplicaCon method based on the 
error-free transformaCon of dot-product

• The accuracy is tunable and depends on the 
range of the inputs and the vector length

• CPU and GPU (CUDA) versions

ExBLAS (Sorbonne University)
• ExBLAS [12] is an accurate & reproducible

BLAS based on floating-point expansions
with error-free transformations (EFT:
twosum and twoprod) and super-
accumulator

• Assures reproducibility through assuring
correct-rounding: it preserves every bit of
information until the final rounding to the
desired format

• CPU (Intel TBB) and GPU (OpenCL) versions

(x', x') = split(x) {
    ρ = ⌈(log2(u−1) + log2(n + 1))/2⌉  
    τ = ⌈log2(max1 ≤ i ≤ n |xi|)⌉ 
    σ = 2(ρ+τ)

    x' = fl((x + σ) - σ)
    x' = fl(x - x')
}

(1) x and y are split by split()
(x(1), x(2)) = split(x), (y(1), y(2)) = split(y) 

it is applied recursively until x(p+1) = y(q+1) = 0
x = x(1) + x(2) +…+ x(p), y = y(1) + y(2) +…+ y(q)

(2) then, xTy is computed as
xTy = (x(1))Ty(1) + (x(1))Ty(2) +…+ (x(1))Ty(q)

+ (x(2))Ty(1) + (x(2))Ty(2) +…
+…
+ (x(p))Ty(1) + (x(p))Ty(2) +…+ (x(p))Ty(q)

(x(i))Ty(j)  is error-free: (x(i))Ty(j)  = fl((x(i))Ty(j))
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Cygnus (University of Tsukuba)
• Cygnus is the world first supercomputer

system equipped with both GPU (4x
Tesla V100) and FPGA (2x Stratix 10),
installed in CCS, University of Tsukuba

Cygnus system

Double-double format

ExBLAS scheme

B C

SPGen (RIKEN)
• SPGen (Stream Processor Generator) 

[14] is a compiler to generate HW 
module codes in Verilog-HDL for FPGA 
from input codes in Stream Processing 
DescripCon (SPD) Format. The SPD 
uses a data-flow graph representaCon, 
which is suitable for FPGA. 

• It supports FP32 only, but we are 
going to extend SPGen to support 
arbitrary-precision floaCng-point. 
Currently, there is no FPGA compiler 
supporCng arbitrary-precision.  

Stochastic Arithmetic Tools

CADNA & SAM (Sorbonne University)
• CADNA (Control of Accuracy and Debugging for Numerical 

Applications) [18] is a DSA library for FP16/32/64/128
• CADNA can be used on CPUs in Fortran/C/C++ codes with 

OpenMP & MPI and on GPUs with CUDA.
• SAM (Stochastic Arithmetic in Multiprecision) [23] is a DSA 

library for arbitrary-precision with MPFR.

PROMISE (Sorbonne University)

A

Precision tuning based on Delta-Debugging 

Discrete StochasCc ArithmeCc (DSA) 
[21] enables us to esCmate rounding 
errors (i.e., the number of correct 
digits in the result) with 95% 
accuracy by execuCng the code 3 
Cmes with random-rounding. DSA is 
a general scheme applicable for any 
floaCng-point operaCons: no special 
algorithms and no code modificaCon 
are needed. It is a light-weight 
approach in terms of performance, 
usability, and development cost 
compared to the other numerical 
verificaCon / validaCon methods.

QPEigen & QPBLAS (JAEA, RIKEN)
• Quadruple-precision Eigen solvers (QPEigen) [8, 

25] is based on double-double (DD) arithmetic. It 
is built on a quadruple-precision BLAS (QPBLAS) 
[9]. They support distributed environments with 
MPI: equivalent to ScaLAPACK’s Eigen solver and 
PBLAS

Arbitrary-precision arithmeCc is performed using MPFR on CPUs, but the performance is very low. To 
accelerate it, we are developing several numerical libraries supporCng accurate computaCon based 
on high-precision arithmeCc or algorithmic approach. Some sojware also support GPU acceleraCon. 

FPGA enables us to implement arbitrary-precision on hardware. High-Level Synthesis (HLS) enables us to 
program it in OpenCL. However, compiling arbitrary-precision code and obtaining high performance are still 
challenging. Heterogeneous computing with FPGA & CPU/GPU is also a challenge

Name Core;     ### Define IP core “Core”
Main_In {in:: x0_0, x0_1, y0_0, y0_1};
Main_Out {out::x2_0, x2_1, y2_0, y2_1};

### Description of parallel pipelines for t=0
HDL pe10, 123, (x1_0, y1_0) = PE(x0_0, y0_0);
HDL pe11, 123, (x1_1, y1_1) = PE(x0_1, y0_1);

### Description of parallel pipelines for t=1
HDL pe20, 123, (x2_0, y2_0) = PE(x1_0, y1_0);
HDL pe21, 123, (x2_1, y2_1) = PE(x1_1, y1_1);

Name PE;     ### Define pipeline “PE”
Main_In {in:: x_in,  y_in};
Main_Out {out::x_out, y_out};

EQU eq1,  t1    = x_in * y_in;
EQU eq2,  t2    = x_in / y_in;
EQU eq3,  x_out = t1 + t2;
EQU eq3,  y_out = t1 - t2;

PE
pe10

PE
pe11

x0_0 y0_0 x0_1 y0_1

x1_0 y1_0 x1_1 y1_1

PE
pe20
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x2_0 y2_0 x2_1 y2_1

x_in y_in

x /

+ -

x_out y_out

Module definition with data-flow graph
by describing formulae of computation

Module definition with hardware structure
by describing connections of modules

SPD codes
Optimization tool 
+ Clustering DFG
+ Mapping clusters 

to HW

SPGen
+ Wrap nodes with

data-flow control logic
+ Connect nodes w/ wires
+ Equalize length of paths

START

Hardware
modules
in HDL

C/C++ codes
C/C++ Frontend
+ LLVM based
+ Polyhedral trans.

in development

Optimized
SPD codes
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FPGA
bitstreams

in development

FINISH

Host codes

FPGA

CPU
Available now

START

Nymble (TU Darmstadt, RIKEN)
• Nymble [15] is another compiler project for

FPGA. It directly accepts C codes and has already
started to support arbitrary-precision.

• It is more suited for non-linear memory access
pattern, like with graph based data structures.

(1) The same code is run several Cmes with 
the random rounding mode (results are 
rounded up / down with the same 
probability)

(2) Different results are obtained
(3) The common part in the different 

results is assumed to be a reliable result
    

floating-point 
code

3.14160...
3.14161…
3.14159…Several 

Execu-ons with
random-rounding Reliable result

• PROMISE (PRecision OpCMISE) 
[17] is a tool based on Delta-
Debugging [24] to automaCcally 
tune the precision of floaCng-
point variables in C/C++ codes

• The validity of the results is 
checked with CADNA

• We are going to extend PROMISE 
for arbitrary-precision with 
MPFR

• Each Stratix 10 FPGA has four
external links at 100Gbps. 64
FPGAs make 8x8 2D-Torus network
for communication

• This project targets such a
heterogeneous system with FPGA.

Notation:
• fl (…): computation 

with floating-point 
arithmetic

• u: the unit round-off
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Minimal-precision compu0ng is both reliable (aka 
robust) and sustainable as it ensures the requested 
accuracy of the result as well as is energy-efficient

Our Proposal

Available Components Red: Components developed by us

(2) Arbitrary-precision libraries and 
fast accurate numerical libraries

• Reduced-/mixed-precision with FP16/FP32/FP64 enables us   
to improve performance & energy-efficiency

• High-precision libraries and fast accurate computa.on 
methods have been developed for reliable & reproducible 
computa,on

(3) Field-Programmable Gate Array 
(FPGA) with High-Level Synthesis 
(HLS)

• FPGA enables us to implement any operations on 
hardware, including arbitrary-precision operations

• HLS enables us to use FPGAs through existing 
programming languages such as C/C++ and OpenCL

• FPGA can be used to perform arbitrary-precision 
computations on hardware efficiently (high-
performance and energy-efficient)

(1) Precision-tuning with numerical 
validation based on stochastic 
arithmetic

• Rounding-errors can be es.mated stochas.cally 
with a reasonable cost (for details, see “(A) 
Stochas.c Arithme.c Tools” at the booom leI)

• General scheme applicable for any floa,ng-point 
computa,ons Tools:

• High-precision arithmetic: binary128 (intel, gcc), QD [1], 
MPFR [2], ARPREC [3], CAMPARY [4], etc.

• Accurate sum/dot: AccSum/Dot [5], Ozaki-scheme [6], etc. 
• Numerical libraries: MPLAPACK [7], QPEigen [8], 

QPBLAS [9], XBLAS [10], ReproBLAS [11], ExBLAS [12], 
OzBLAS [13], etc.

Tools:
• Compilers: SPGen [14], Nymble [15], etc.
• Custom floating-point operation generator: 

FloPoCo [16], etc.

Tools:
• PROMISE [17] (based on a stochastic arithmetic 

library, CADNA [18]), Verrou [19], etc. 

Related works (not validation-based):
• Precimonious [20], GPUMixer [22] etc.
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