
HAL Id: hal-02401813
https://hal.science/hal-02401813

Submitted on 15 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Precision for High-Performance, Robust,
and Energy-Efficient Computations

Roman Iakymchuk, Stef Graillat, Fabienne Jézéquel, Daichi Mukunoki,
Toshiyuki Imamura, Yiyu Tan, Atsushi Koshiba, Jens Huthmann, Kentaro

Sano, Norihisa Fujita, et al.

To cite this version:
Roman Iakymchuk, Stef Graillat, Fabienne Jézéquel, Daichi Mukunoki, Toshiyuki Imamura, et al..
Optimizing Precision for High-Performance, Robust, and Energy-Efficient Computations. Interna-
tional Conference on High Performance Computing in Asia-Pacific Region„ Jan 2020, Fukuoka, Japan.
�hal-02401813�

https://hal.science/hal-02401813
https://hal.archives-ouvertes.fr

Optimizing Precision for High-Performance,
Robust, and Energy-Efficient Computations

RIKEN Center for Computational Science
(R-CCS), Japan
Daichi Mukunoki, Toshiyuki Imamura, Yiyu Tan,
Atsushi Koshiba, Jens Huthmann, Kentaro Sano

Sorbonne University,
CNRS, LIP6, France
Roman Iakymchuk, Stef Graillat,
Fabienne Jézéquel

Center for Computational Sciences,
University of Tsukuba, Japan
Norihisa Fujita, Taisuke Boku

We proposed a new systema.c approach for minimal-precision
computa.ons. This approach is robust, general, comprehensive,
high-performant, and realis.c. Although the proposed system is s.ll
in development, it can be constructed by combining already available
(developed) in-house technologies and extending them. Our ongoing
step is to demonstrate the system on a proxy applica.on

* All authors contributed equally to this research

In numerical computa.ons, the precision of floa.ng-point
computa.ons is a key factor to determine the performance
(speed and energy-efficiency) as well as the reliability
(accuracy and reproducibility). However, the precision
generally plays a contrary role for both. Therefore, the
ul.mate concept for maximizing both at the same .me is the
op#mized/reduced precision computa#on through preci-
sion-tuning, which adjusts the minimal precision for each
opera#on and data. Several studies have been already
conducted for it so far, but the scope of those studies is
limited to the precision-tuning alone. Instead, we propose a
more broad concept of the op.mized/minimal precision and
robust (numerically reliable) compu.ng with precision-
tuning, involving both hardware and soIware stack

Minimal-Precision Computing

Robust (Numeraically Reliable)
To ensure the requested accuracy, the precision-tuning is
processed based on numerical valida.on, guaranteeing
also reproducibility

General
Our scheme is applicable for any floating-point
computations. It contributes to low development cost and
sustainability (easy maintenance and system portability)

Comprehensive
We propose a total system from the precision-tuning to the
execu.on of the tuned code, combining heterogeneous
hardware and hierarchical soIware stack

High-performance
Performance can be improved through the minimal-
precision as well as fast numerical libraries and accelerators

Realis#c
Our system can be realized by combining available in-house
technologies

System Stack System Workflow

Low-level code
for FPGA

(VHDL etc.)

Compila.on and
Execu.on
on FPGA

Input:
C code with MPFR
(and MPLAPACK)

Precision-Op,mizer
(with PROMISE

and CADNA/SAM)

Code Translation
for FPGA

(SPGen, Nymble, FloPoCo)

C code with MPFR
(op.mized)

Performance
Optimization

C code with MPFR +
other fast accurate

methods

Compilation and
Execution

on CPU/GPU

Yes
A part of the C code
with MPFR, which is
executed on FPGA

FPGA?

Precision-Optimizer
• The Precision-Optimizer

determines the minimal floating-
point precisions, which need to
achieve the desired accuracy

Performance Optimization
• At this stage, if possible to speedup

some parts of the code with some
other accurate computation methods
than MPFR, those parts are replaced
with them

• The required-accuracy must be taken
into account

• If possible, it considers to utilize
FPGA (as heterogeneous computing)

Hardware

Heterogeneous System

Arithmetic
Library

Numerical
Libraries

Numerical
Validation

Precision
Tuning

Arbitrary-
Precision

FP32, FP64,
(FP16, FP128)

Fast Accurate
Methods/ Libraries

others…
LAPACK

BLAS

MPFR

Stochastic Arithmetic
SAMCADNA

PROMISE
with SAM

PROMISE

DD/QD

FPGA

acceleration

GPUGPU
Nymble

FloPoCo

available in development

SPGen
for arbitrary-prec.

Compiler &
Tools for FPGA

CPU

others…
OzBLAS
ExBLAS

QPEigen
MPLAPACK (MPBLAS)

MPLAPACK [7]
An open-source multi-
precision BLAS and LAPACK
based on several high-
precision tools such as
MPFR, QD, and FP128

MPFR [2]
A C library for multiple
(arbitrary) precision
floating-point
computations on CPUs

FloPoCo [16]
An open-source floating-point
core generator for FPGA
supporting arbitrary-precision

No

Energy-Efficient
Through the minimal-precision as well as the energy-
efficient hardware accelera.on with FPGA and GPU

FPGA as an Arbitrary-Precision Computing Platform Fast and Accurate Numerical Libraries

Error-free transforma-on of dot-product (xTy)

5211
5211

5211 52

OzBLAS (TWCU, RIKEN)
• OzBLAS [13] is an accurate & reproducible BLAS

using Ozaki scheme [18], which is an accurate
matrix mulCplicaCon method based on the
error-free transformaCon of dot-product

• The accuracy is tunable and depends on the
range of the inputs and the vector length

• CPU and GPU (CUDA) versions

ExBLAS (Sorbonne University)
• ExBLAS [12] is an accurate & reproducible

BLAS based on floating-point expansions
with error-free transformations (EFT:
twosum and twoprod) and super-
accumulator

• Assures reproducibility through assuring
correct-rounding: it preserves every bit of
information until the final rounding to the
desired format

• CPU (Intel TBB) and GPU (OpenCL) versions

(x', x') = split(x) {
 ρ = ⌈(log2(u−1) + log2(n + 1))/2⌉
 τ = ⌈log2(max1 ≤ i ≤ n |xi|)⌉
 σ = 2(ρ+τ)

 x' = fl((x + σ) - σ)
 x' = fl(x - x')
}

(1) x and y are split by split()
(x(1), x(2)) = split(x), (y(1), y(2)) = split(y)

it is applied recursively until x(p+1) = y(q+1) = 0
x = x(1) + x(2) +…+ x(p), y = y(1) + y(2) +…+ y(q)

(2) then, xTy is computed as
xTy = (x(1))Ty(1) + (x(1))Ty(2) +…+ (x(1))Ty(q)

+ (x(2))Ty(1) + (x(2))Ty(2) +…
+…
+ (x(p))Ty(1) + (x(p))Ty(2) +…+ (x(p))Ty(q)

(x(i))Ty(j) is error-free: (x(i))Ty(j) = fl((x(i))Ty(j))

UPI

PCIe x16PCIe x16

IQWeO
XeRQ GROd

IQWeO
XeRQ GROd

V100

V100

IB HDR100

IB HDR100

SWraWi[10

V100

V100

IB HDR100

IB HDR100

SWraWi[10

PLX PLX

PCIe x16 PCIe x16

Cygnus (University of Tsukuba)
• Cygnus is the world first supercomputer

system equipped with both GPU (4x
Tesla V100) and FPGA (2x Stratix 10),
installed in CCS, University of Tsukuba

Cygnus system

Double-double format

ExBLAS scheme

B C

SPGen (RIKEN)
• SPGen (Stream Processor Generator)

[14] is a compiler to generate HW
module codes in Verilog-HDL for FPGA
from input codes in Stream Processing
DescripCon (SPD) Format. The SPD
uses a data-flow graph representaCon,
which is suitable for FPGA.

• It supports FP32 only, but we are
going to extend SPGen to support
arbitrary-precision floaCng-point.
Currently, there is no FPGA compiler
supporCng arbitrary-precision.

Stochastic Arithmetic Tools

CADNA & SAM (Sorbonne University)
• CADNA (Control of Accuracy and Debugging for Numerical

Applications) [18] is a DSA library for FP16/32/64/128
• CADNA can be used on CPUs in Fortran/C/C++ codes with

OpenMP & MPI and on GPUs with CUDA.
• SAM (Stochastic Arithmetic in Multiprecision) [23] is a DSA

library for arbitrary-precision with MPFR.

PROMISE (Sorbonne University)

A

Precision tuning based on Delta-Debugging

Discrete StochasCc ArithmeCc (DSA)
[21] enables us to esCmate rounding
errors (i.e., the number of correct
digits in the result) with 95%
accuracy by execuCng the code 3
Cmes with random-rounding. DSA is
a general scheme applicable for any
floaCng-point operaCons: no special
algorithms and no code modificaCon
are needed. It is a light-weight
approach in terms of performance,
usability, and development cost
compared to the other numerical
verificaCon / validaCon methods.

QPEigen & QPBLAS (JAEA, RIKEN)
• Quadruple-precision Eigen solvers (QPEigen) [8,

25] is based on double-double (DD) arithmetic. It
is built on a quadruple-precision BLAS (QPBLAS)
[9]. They support distributed environments with
MPI: equivalent to ScaLAPACK’s Eigen solver and
PBLAS

Arbitrary-precision arithmeCc is performed using MPFR on CPUs, but the performance is very low. To
accelerate it, we are developing several numerical libraries supporCng accurate computaCon based
on high-precision arithmeCc or algorithmic approach. Some sojware also support GPU acceleraCon.

FPGA enables us to implement arbitrary-precision on hardware. High-Level Synthesis (HLS) enables us to
program it in OpenCL. However, compiling arbitrary-precision code and obtaining high performance are still
challenging. Heterogeneous computing with FPGA & CPU/GPU is also a challenge

Name Core; ### Define IP core “Core”
Main_In {in:: x0_0, x0_1, y0_0, y0_1};
Main_Out {out::x2_0, x2_1, y2_0, y2_1};

Description of parallel pipelines for t=0
HDL pe10, 123, (x1_0, y1_0) = PE(x0_0, y0_0);
HDL pe11, 123, (x1_1, y1_1) = PE(x0_1, y0_1);

Description of parallel pipelines for t=1
HDL pe20, 123, (x2_0, y2_0) = PE(x1_0, y1_0);
HDL pe21, 123, (x2_1, y2_1) = PE(x1_1, y1_1);

Name PE; ### Define pipeline “PE”
Main_In {in:: x_in, y_in};
Main_Out {out::x_out, y_out};

EQU eq1, t1 = x_in * y_in;
EQU eq2, t2 = x_in / y_in;
EQU eq3, x_out = t1 + t2;
EQU eq3, y_out = t1 - t2;

PE
pe10

PE
pe11

x0_0 y0_0 x0_1 y0_1

x1_0 y1_0 x1_1 y1_1

PE
pe20

PE
pe21

x2_0 y2_0 x2_1 y2_1

x_in y_in

x /

+ -

x_out y_out

Module definition with data-flow graph
by describing formulae of computation

Module definition with hardware structure
by describing connections of modules

SPD codes
Optimization tool
+ Clustering DFG
+ Mapping clusters

to HW

SPGen
+ Wrap nodes with

data-flow control logic
+ Connect nodes w/ wires
+ Equalize length of paths

START

Hardware
modules
in HDL

C/C++ codes
C/C++ Frontend
+ LLVM based
+ Polyhedral trans.

in development

Optimized
SPD codes

���� �
	�����
������������
���
���
����
�����

����
�����������
��	��
����
�

FPGA
bitstreams

in development

FINISH

Host codes

FPGA

CPU
Available now

START

Nymble (TU Darmstadt, RIKEN)
• Nymble [15] is another compiler project for

FPGA. It directly accepts C codes and has already
started to support arbitrary-precision.

• It is more suited for non-linear memory access
pattern, like with graph based data structures.

(1) The same code is run several Cmes with
the random rounding mode (results are
rounded up / down with the same
probability)

(2) Different results are obtained
(3) The common part in the different

results is assumed to be a reliable result

floating-point
code

3.14160...
3.14161…
3.14159…Several

Execu-ons with
random-rounding Reliable result

• PROMISE (PRecision OpCMISE)
[17] is a tool based on Delta-
Debugging [24] to automaCcally
tune the precision of floaCng-
point variables in C/C++ codes

• The validity of the results is
checked with CADNA

• We are going to extend PROMISE
for arbitrary-precision with
MPFR

• Each Stratix 10 FPGA has four
external links at 100Gbps. 64
FPGAs make 8x8 2D-Torus network
for communication

• This project targets such a
heterogeneous system with FPGA.

Notation:
• fl (…): computation

with floating-point
arithmetic

• u: the unit round-off

Acknowledgement:
This research was partially supported by the European Union's Horizon 2020 research, innovation programme under the Marie
Skłodowska-Curie grant agreement via the Robust project No. 842528, the Japan Society for the Promotion of Science (JSPS)
KAKENHI Grant No. 19K20286, and Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba.

References
[1] D. H. Bailey, “QD (C++/Fortran-90 double-double and quad-double package),” hop://crd.lbl.gov/~dhbailey/mpdist
[2] G. Hanrot et al, “MPFR : GNU MPFR Library,” hop://www.mpfr.org
[3] D. H. Bailey et al., “ARPREC: An Arbitrary Precision Computa.on Package,” Lawrence Berkeley Na.onal Laboratory Technical
Report, No. LBNL-53651, 2002.
[4] CAMPARY, hop://homepages.laas.fr/mmjoldes/campary
[5] T. Ogita et al., ”Accurate Sum and Dot Product,” SIAM J. Sci. Comput., Vol. 26, pp. 1955-1988, 2005.
[6] K. Ozaki et al., “Error-free transforma.ons of matrix mul.plica.on by using fast rou.nes of matrix mul.plica.on and its
applica.ons,” Numer. Algorithms, Vol. 59, No. 1, pp. 95-118, 2012.
[7] M. Nakata, “The MPACK (MBLAS/MLAPACK); a mul.ple precision arithme.c version of BLAS and LAPACK,” Ver. 0.6.7,
hop://mplapack.sourceforge.net, 2010.
[8] Japan Atomic Energy Agency, “Quadruple Precision Eigenvalue Calcula.on Library QPEigen Ver.1.0 User’s Manual,”
hops://ccse.jaea.go.jp/ja/download/qpeigen_k/qpeigen_manual_en-1.0.pdf, 2015.
[9] Japan Atomic Energy Agency, “Quadruple Precision BLAS Rou.nes QPBLAS Ver.1.0 User’s Manual,”
hops://ccse.jaea.go.jp/ja/download/qpblas/1.0/qpblas_manual_en-1.0.pdf, 2013.
[10] X. Li et al., “XBLAS – Extra Precise Basic Linear Algebra Subrou.nes,” hop://www.netlib.org/xblas
[11] P. Ahrens et al., “ReproBLAS – Reproducible Basic Linear Algebra Sub-programs,” hops://bebop.cs.berkeley.edu/reproblas
in Asia Poster, Interna.onal Supercompu.ng Conference (ISC’16), 2016.
[12] R.Iakymchuk et al., “ExBLAS: Reproducible and Accurate BLAS Library,” Proc. Numerical Reproducibility at Exascale
(NRE2015) workshop at SC15, HAL ID: hal-01202396, 2015.

Our Contributions

Conclusion & Future Work
[13] D. Mukunoki et al., “Accurate and Reproducible BLAS Routines with Ozaki Scheme for Many-core Architectures,” Proc. PPAM2019, 2019
(accepted).
[14] K. Sano et al., “Stream Processor Generator for HPC to Embedded Applications on FPGA-based System Platform,” Proc. First International
Workshop on FPGAs for Software Programmers (FSP 2014), pp. 43-48, 2014.
[15] J. Huthmann et al., “Hardware/software co-compilation with the Nymble system,” 2013 8th International Workshop on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1-8, 2013.
[16] F. Dinechin and B. Pasca, “Designing custom arithmetic data paths with FloPoCo,” IEEE Design & Test of Computers, Vol. 28, No. 4, pp. 18-27,
2011.
[17] S. Graillat et al., “Auto-tuning for floating-point precision with Discrete Stochastic Arithmetic,” Journal of Computational Science, Vol.36,
101017, 2019.
[18] F. Jézéquel and J.-M. Chesneaux, “CADNA: a library for estimating round-off error propagation,” Computer Physics Communications, Vol. 178,
No. 12, pp. 933-955, 2008.
[19] F. Févotte and B. Lathuilière, “Debugging and optimization of HPC programs in mixed precision with the Verrou tool,” hal-02044101, 2019.
[20] C. Rubio-González et al., “Precimonious: Tuning Assistant for Floating-Point Precision,” Proc. SC’13, 2013.
[21] J. Vignes, “Discrete Stochastic Arithmetic for Validating Results of Numerical Software,” Numer. Algorithms, Vol. 37, No. 1-4, pp. 377-390,
2004.
[22] I. Laguna, P. C. Wood, R. Singh, S. Bagchi, “GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Applications,” Proc.
ISC2019, pp. 227-246, 2019.
[23] S. Graillat, et al., ”Stochastic Arithmetic in Multiprecision,” Mathematics in Computer Science, Vol. 5, No. 4, pp. 359-375, 2011.
[24] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE Trans. Softw. Eng., Vol. 28, No. 2, pp. 183-200, 2002.
[25] Y. Hirota et al., “Performance of quadruple precision eigenvalue solver libraries QPEigenK and QPEigenG on the K computer”, HPC in Asia
Poster, International Supercomputing Conference (ISC’16), 2016.

Minimal-precision compu0ng is both reliable (aka
robust) and sustainable as it ensures the requested
accuracy of the result as well as is energy-efficient

Our Proposal

Available Components Red: Components developed by us

(2) Arbitrary-precision libraries and
fast accurate numerical libraries

• Reduced-/mixed-precision with FP16/FP32/FP64 enables us
to improve performance & energy-efficiency

• High-precision libraries and fast accurate computa.on
methods have been developed for reliable & reproducible
computa,on

(3) Field-Programmable Gate Array
(FPGA) with High-Level Synthesis
(HLS)

• FPGA enables us to implement any operations on
hardware, including arbitrary-precision operations

• HLS enables us to use FPGAs through existing
programming languages such as C/C++ and OpenCL

• FPGA can be used to perform arbitrary-precision
computations on hardware efficiently (high-
performance and energy-efficient)

(1) Precision-tuning with numerical
validation based on stochastic
arithmetic

• Rounding-errors can be es.mated stochas.cally
with a reasonable cost (for details, see “(A)
Stochas.c Arithme.c Tools” at the booom leI)

• General scheme applicable for any floa,ng-point
computa,ons Tools:

• High-precision arithmetic: binary128 (intel, gcc), QD [1],
MPFR [2], ARPREC [3], CAMPARY [4], etc.

• Accurate sum/dot: AccSum/Dot [5], Ozaki-scheme [6], etc.
• Numerical libraries: MPLAPACK [7], QPEigen [8],

QPBLAS [9], XBLAS [10], ReproBLAS [11], ExBLAS [12],
OzBLAS [13], etc.

Tools:
• Compilers: SPGen [14], Nymble [15], etc.
• Custom floating-point operation generator:

FloPoCo [16], etc.

Tools:
• PROMISE [17] (based on a stochastic arithmetic

library, CADNA [18]), Verrou [19], etc.

Related works (not validation-based):
• Precimonious [20], GPUMixer [22] etc.

HPC Asia 2020 – Interna.onal Conference on High-Performance Compu.ng in Asia-Pacific Region, Fukuoka, Japan, January 15-17, 2020

Introduction

A joint France-Japan research project

acceleration

