
HAL Id: hal-02401796
https://hal.science/hal-02401796v4

Submitted on 2 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DUF : Dynamic Uncore Frequency scaling to reduce
power consumption

Étienne André, Rémi Dulong, Amina Guermouche, François Trahay

To cite this version:
Étienne André, Rémi Dulong, Amina Guermouche, François Trahay. DUF : Dynamic Uncore Fre-
quency scaling to reduce power consumption. Concurrency and Computation: Practice and Experi-
ence, 2021, 34 (3), pp.e6580. �hal-02401796v4�

https://hal.science/hal-02401796v4
https://hal.archives-ouvertes.fr

RESEARCH REPORT

ARTICLE TYPE

DUF : Dynamic Uncore Frequency scaling to reduce power
consumption

Étienne André1 | Rémi Dulong1,2 | Amina Guermouche1 | François Trahay1

1Télécom SudParis, Institut Polytechnique
de Paris, Evry, France

2University of Neuchâtel, Neuchâtel,
Switzerland

Reducing the power consumption of applications has become one of the key chal-
lenges in high-performance computing. Recent processor architectures differentiate
processor core frequency from its uncore frequency. As a consequence, in addition
to tuning processor core frequency with Dynamic Voltage and Frequency Scal-
ing (DVFS), power consumption can also be controlled through Uncore Frequency
Scaling (UFS).
This paper studies how the uncore frequency can be used as a leverage to improve
power consumption. We propose DUF, a daemon process that dynamically adapts
the uncore frequency to reduce an application power consumptionwith a user-defined
limit on performance degradation.
The evaluation of DUF on three different architectures shows that with no perfor-
mance degradation (less than 0.6 %), DUF can reduce socket power consumption by
7.94 %. We also show that DUF is able to reduce the total energy consumption by
up to 18.20 %.
KEYWORDS:
Green computing, Power consumption, Uncore frequency, High-Performance Computing, Powercapping

1 INTRODUCTION

Reducing the power consumption of supercomputers has become one of the key challenges in high-performance computing. As
a matter of fact, Fugaku, the most powerful supercomputer consumes 29.89 MW 1 while the US Department of Energy sets a
limit of 20 MW for future exascale machines 2.
Dynamically adapting the processor frequency according to the application workload is a common technique to control power

consumption. It is widely used in recent architectures where limiting the power consumption and respecting the thermal design
power (TDP), while using the processor to its maximum capacity (number of cores, vectorized instructions, . . .) requires to
lower the CPU frequency, which may negatively impact performance.
Recent processor architectures differentiate the processor core frequency (that affects the computation units and the L1/L2

caches) from its uncore frequency (which affects the last level cache and the memory controller)1. The Uncore Frequency
Scaling (UFS) automatically selects the uncore frequency according to the CPU frequency, the energy and performance bias
hints and cores stall cycles2. However, it does not fully benefit from the leverage provided by the uncore frequency: Figure 1
shows the effects of varying the uncore frequency in terms of slowdown (figure 1a) and power savings (figure 1b) for NAS

1http://www.top500.org
2https://exascale.llnl.gov/

http://www.top500.org
https://exascale.llnl.gov/

0

10

20

30

40

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

2.
7

Uncore frequency (GHz)

S
lo

w
d
o
w

n
 (

%
)

cg

ep

hpl

(a) Slowdown

0

10

20

30

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

2.
7

Uncore frequency (GHz)

P
K

G
 P

o
w

e
r

S
a
v
in

g
s
 (

%
)

cg

ep

hpl

(b) PKG power

FIGURE 1 Uncore frequency impact on execution time and package power consumption on a machine equipped with two Intel
Xeon E5-2680 v4 CPUs.

Parallel Benchmarks EP and CG3, and HPL4. These figures report the relative slowdown and power saving over the default
values (obtained with UFS) on the CHIFFLET platform. Both the applications and the platform are described in Section 3.
Figure 1a shows that uncore frequency does not impact EP performance, while Figure 1b shows that setting the uncore

frequency to 1.2 GHz reduces power consumption by more than 16 % compared to UFS. Note that the uncore frequency has no
impact on EP because it has a very low memory and L3 bandwidth. Hence, it is possible to achieve the same performance as
UFS with a lower power consumption.
Interestingly, regarding HPL, reducing the uncore frequency actually slightly improves its performance by 1.47%. Since

HPL power consumption reaches TDP, the core frequency is automatically lowered which degrades the performance. Manually
lowering the uncore frequency decreases the power consumption. As a consequence, core frequency increases leading to better
performance.
For CG, if a small performance degradation is tolerated, reducing the uncore frequency significantly lowers the power con-

sumption. For instance, if a 5% slowdown is tolerated for CG, the uncore frequency can be lowered to 2.3 GHz, which reduces
the power consumption by 13 %.
As a consequence, one can conclude that the default UFS does not always adapt to the application characteristics (like EP and

HPL). Moreover, by allowing more flexibility, it is possible to provide power savings with a controlled impact on performance.
Based on these observations, we propose DUF (that stands for Dynamic Uncore Frequency scaling), a daemon process that

dynamically adapts the uncore frequency to the application needs. DUF aims at reducing an application power consumption
with a user-defined limit on performance degradation. DUF can be seen as providing different uncore frequency governors
(performance at 0% slowdown, powersave at 100% slowdown), in a similar fashion to what is done for DVFS. DUF aims
at overcoming the default UFS drawbacks: it adapts the uncore frequency to the application needs and is able to tolarate a
user-defined slowdown to improve the power consumption.
We tested DUF on 4 different user-defined slowdown and 11 applications and benchmarks on three different architectures.

The results show that:
• On all platforms, DUF is able to respect the user-defined slowdown for 97.7 % of the tested configurations;
• DUF is able to reduce the power consumption of applications: (i) EP power consumption is reduced by up to 18.76%

without altering its performance (ii) a 5.5 % slowdown on CG allows for 9.77 % power savings;
• When running under power capping constraints, DUF is able to improve the performance with a maximum of 10.53 %

for CG;
The contributions of DUF over state of the art techniques such as UPSCAVENGER 5 are the following:
• we show that tolerating a limited performance degradation can yield significant energy savings ;
• our proposed Uncore Frequency Scaling algorithm respects the tolerated slowdown provided by user.

The remainder of this paper is organized as follows: We describe DUF in Section 2. Section 3 presents the measurement
methodology we use in our experiments and the evaluation of DUF. Finally, we compare it to the related work in Section 4
before concluding in Section 5.

2 DYNAMIC UNCORE FREQUENCY (DUF)

In this section, we describe DUF 3, a daemon process that dynamically adapts the uncore frequency in order to trade a limited
performance degradation for power savings. The aim of DUF is twofold: reducing the power consumption of an application,
and limiting the performance degradation to a user-provided upper-bound.

2.1 Overview of DUF
The user of DUF specifies the sockets to monitor and a maximum performance degradation to tolerate. One instance of DUF
is then run on each socket specified by the user. DUF periodically invokes its measurement module that collects the CPUs
performance counters. Using collected data, the regulator module decides whether the uncore frequency should be changed. The
decision algorithm described in section 2.3 applies for each user-specified socket. It can be summarized as follows: DUF detects
the application phases (memory intensive vs compute intensive) based on the current operational intensity of the application and,
for each phase, measures the performance obtained with the maximum uncore frequency. It then decreases the uncore frequency
until the performance degradation reaches the user-specified limit.

2.2 Measurement module
DUF measurement module collects various CPU hardware counters corresponding to the application FLOPS/s and the memory
bandwidth in order to guide the regulator module. Then it computes the arithmetic intensity as the ratio between the FLOPS/s
and the memory bandwidth. An arithmetic intensity greater than 1 indicates that the application is in a CPU-intensive phase.
Otherwise, we assume that the application has entered a memory-intensive phase.

2.3 Regulator module
In order to select the uncore frequency of a socket, DUF regulator module runs Algorithm 1 after every measurement period.
If a new application phase is detected, DUF sets the maximum uncore frequency and measures max_flops and max_bw (the

achieved memory bandwidth) during the next measurement period. DUF assumes a phase change happened either because the
application arithmetic intensity changed from CPU-intensive to memory intensive or the opposite (lines 4 to 9), or because the
FLOPS/s and the memory or the L3 cache bandwidth increased significantly (lines 25-28).
Otherwise, DUF first checks how the uncore frequency could impact the performance. As a matter of fact, if the arithmetic

intensity is too high, then the uncore frequency will most likely not impact the performance. As a consequence, it is decreased
(lines 10-11). In the opposite way, if the arithmetic intensity is too low, then the uncore frequency should not be changed since
it may have a high impact on memory bandwidth (lines 12-13). After that, as soon as the arithmetic intensity increases, the
measurement period is increased in order to leave enough time for the application to reach a steady state before changing the
uncore frequency (lines 14-15).
Otherwise, DUF checks how the previous decision impacted the FLOPS/s and the memory bandwidth. DUF considers that

if the FLOPS/s dropped compared to the previous measurement, then three different situations may have happened:
• If the flops dropped despite increasing the frequency or keeping it steady, then either the drop is less than 50 % and the

uncore frequency is kept steady. Or the drop is higher than 50 % then the frequency is decreased because we assume that
this large drop is due to the application behavior itself (lines 17-20);

• If the flops and the memory dropped by the same ratio, then the uncore frequency is increased to make sure that the impact
on memory bandwidth does not impact performance (lines 21-21);

3available as open-source at:
https://gitlab.com/parallel-and-distributed-systems/DUF

https://gitlab.com/parallel-and-distributed-systems/DUF

• If the memory bandwidth remained stable, then the drop comes from the behavior of the application itself rather than
the impact of the uncore frequency. Based on this assumption, DUF decreases the uncore frequency (lines 16-24). Note
that DUF considers the memory bandwidth as stable if it decreased by less than the tolerated slowdown. In other words,
if the tolerated performance loss is 20 % then the bandwidth is considered as stable if it dropped by less than 80 %.
This assumption is only based on our observations. Possible improvements of this assumption are further discussed in
Section 3.7.

Finally, DUF decreases the uncore frequency as long as the performance remains within the user-specified threshold (lines 29-
31) and increases it otherwise (lines 34-35). If a decrease is requested while the uncore frequency is at the minimum, DUF
increases the measurement period as we reach a stable phase (line 33). The period is reset every time DUF changes the uncore
frequency. DUF also increases the period if the requested uncore frequency is stable across iterations, indicating that a stable
phase was reached. From our observations, doubling the period duration still allows to detect changes quickly enough to avoid
an impact on performance. In all cases, we limit the measurement period to 10 times the initial period in order to avoid too long
periods. However, for our experiments, since powermeasurements are reported byDUF, increasing themeasurement periodmay
impair the overall average power consumption. As a consequence, for all the experiments, except in section 3.6; the measurement
period is never increased except in the case of lines 14-15. Note that when the application behavior changes from almost no
computation (oi < 0.02) to more computations, the period is increased by x3 (line 15). This is because the application may need
some additional time to reach the maximum FLOPS/s and bandwidth for the current phase. Otherwise, we may consider wrong
maximum FLOPS/s and memory bandwidth values and take wrong decisions after that. From our observations, a x3 factor is
enough.

3 EXPERIMENTS

In this section, we evaluate if DUF meets its two objectives: saving power while limiting the performance degradation to a user-
defined limit. We first provide the hardware settings of the experiment testbed. Then, we describe the different regulators that
we study. We finally present the results of our experiments.

3.1 Experiments testbeds
This section describes the architectures and applications that we used.

3.1.1 Hardware settings
We used three servers from the Grid’50006 platform. All platforms run under Intel Pstate with performance governor. All
platforms characteristics are summarized in Table 1.
• NOVA is a 23-nodes cluster, where each node is equipped with 2 Intel Xeon CPU E5-2620 v4 CPUs (Broadwell microarchi-

tecture) with 8 cores per CPU and 64 GiB of memory. The uncore frequency ranges from 1.2 GHz to 2.7 GHz. We run our
experiments nova-1.

• CHIFFLET is equipped with two Intel Xeon E5-2680 v4 CPUs (Broadwell microarchitecture) with 14 cores per CPU, and 768
GiB of memory. The uncore frequency ranges from 1.2 GHz to 2.7 GHz. We used chifflet-1 for our experiments.

• YETI is equipped with four Intel Xeon Gold 6130 CPUs (Skylake microarchitecture) with 16 cores per CPU. Each NUMA
node has 64 GiB of memory. The uncore frequency ranges from 1.2 GHz to 2.4 GHz. In all experiments, we used yeti-2.

3.1.2 Software testbed
We conducted the experiments using several applications.

• The NAS Parallel Benchmarks3 provide a set of small applications.We use: BT, CG, EP, FT, LU, MG, SP, UA from NPB-
3.3.1 OpenMP version. We choose the problem size so that each application execution time is in the [20s-400s] range. On

Algorithm 1 Uncore Frequency Scaling algorithm
1: loop ⊳ Every period
2: flops ← measure_flops()
3: oi ← measure_operational_intensity
4: if oi > 1 and pℎase! = CPU then
5: pℎase ← CPU
6: FREQ=RESET_UFREQ
7: else if oi < 1 and pℎase! = memory then
8: pℎase ← memory
9: FREQ=RESET_UFREQ

10: if oi > 100 then
11: DECREASE_FREQUENCY
12: else if oi < 0.02 then
13: DO_NOTHING
14: else if old_oi < 0.02 and oi >= 0.02 then
15: period = 3 ∗ default_period
16: if flops < old_flops then
17: if old_decision == INCREASE_FREQUENCY or old_decision == DO_NOTHING then
18: if flops < 0.5 ∗ old_flops then
19: DECREASE_FREQUENCY
20: else DO_NOTHING
21: if bw∕old_bw == flops∕old_flops then
22: INCREASE_FREQUENCY
23: if bw∕max_bw > 1 − perf_loss then
24: DECREASE_FREQUENCY
25: if flops > 2 ∗ old_flops then
26: if bw > 2 ∗ old_bw or l3_bw > 2 ∗ old_l3_bw then
27: FREQ=RESET_UFREQ
28: else DECREASE_FREQUENCY
29: if flops > perf_loss ∗ max_flops then
30: if freq > min_freq then
31: DECREASE_FREQUENCY
32: else if period < 10 ∗ default_period then
33: period = period ∗ 2
34: else if freq < max_freq then
35: INCREASE_FREQUENCY

NOVA, EP and MG were run using class D while on CHIFFLET, EP, MG, and FT run using the class D problem size. The
remaining benchmarks run using class C. On YETI, all benchmarks run using class D except SP for which we use class
C. The OpenMP threads are bound to cores in a round-robin fashion.

• High-Performance Linpack (HPL)4 is a software package that solves dense linear algebra systems. We use HPL version
2.3 compiled with Math Kernel Library (MKL) version 2019.1.144. HPL uses a configuration file where we set NB to 224
on all platforms. N is set to 58912 on NOVA, 62720 on CHIFFLET and 91840 on YETI. (PxQ) is set to (4x7) on CHIFFLET
and (8x8) on YETI.

• LAMMPS7 4 performs molecular dynamics simulation. We use input file in.lj provided for the accelerate suite where
we set the run value to 100000.

4commit aa2b88578

NOVA CHIFFLET YETI
number of cores 16 28 64
microarchitecture Broadwell Broadwell Skylake

TDP (W) per socket 85 120 125
uncore frequency (GHz) [1.2-2.7] [1.2-2.7] [1.2-2.4]

TABLE 1 Platforms characteristics extracted from processors documentation

• Nwchem8 5 is a computational chemistry application. We use the input data set 3carbo.nw from the qdm provided files.
On all platforms, the applications were compiled with gcc 6.3.0 with -O3 flag. The machines were running Linux version

4.9.0-9. HPL, LAMMPS and nwchem were compiled against Open MPI 3.1.4. Finally, all platforms cores were used during all
the experiments (16 on NOVA, 28 on CHIFFLET and 64 on YETI) while hyperthreading was disabled.

3.1.3 Measurement framework
In Section 1 and 3.2.1, we use LIKWID9 6 to set the uncore frequency and DUF measurement module to measure the power
consumption of the applications. All the measurements are performed every 200 ms. Lower measurement periods lead to an
overhead on some applications. On the other hand, periods such as 500 ms are too large for short running applications such as
LAMMPS or CG on CHIFFLET. From our observations, 200 ms offers a good trade off for all the applications. Note that we
discuss how DUF could automatically change its measurement period in Section 3.7.
In Section 3.3, all measurements (DUF and UPSCAVENGER require collecting hardware counters in addition to power) are

performed using the PAPI library10 7. Uncore frequency ismodified and read by directly accessing the appropriateMSR registers.

3.2 Description and configurations of UFS, UPSCAVENGER and DUF
This section briefly describes the default UFS behavior. It also describes UPSCAVENGER algorithm and the configurations used
for DUF.

3.2.1 Default behavior of Uncore Frequency Scaling
In order to understand the Uncore Frequency Scaling (UFS) default behavior on our experimental testbed, we measure the
average uncore frequency when running applications with different profiles. For that purpose, we use two memory-intensive
applications (CG and MG), and two CPU-intensive applications (EP and HPL).

NOVA CHIFFLET YETI
application Power (W) ufreq (GHz) Power (W) ufreq (GHz) Power (W) ufreq (GHz)

HPL 64 2.7 119.42 2.4 123.01 [1.6-1.7]
NPB CG 39.04 2.7 78.60 2.7 123.69 [2.2-2.4]
NPB EP 41.89 2.7 100.34 2.7 114.64 2.4
NPB MG 44.15 2.7 82.64 2.7 121.89 [2.1-2.3]

TABLE 2 Average observed power and uncore frequency on NOVA, CHIFFLET and YETI over all sockets with UFS.

Table 2 depicts the average uncore frequency range observed over the sockets. It also provides the average power consumed
by the applications over all sockets.

5commit 67f5237ab
6commit 267d
7git commit version ceb64276

OnNOVA, all applications run at the maximum uncore frequency. This indicates that on NOVA, the uncore frequency is always
set to the maximum. On CHIFFLET, CG, EP and MG run at the maximum uncore frequency (2.7 GHz). The uncore frequency
for HPL is lower (2.4 GHz).We also observe that HPL reaches the thermal design power (TDP) of the machine (120 W). This
behavior suggests that on CHIFFLET, the UFS policy first sets the uncore frequency to its maximum, and reduces it only when
TDP is reached.
A similar behavior is observed on YETI: EP has a limited power consumption. Thus, the uncore frequency is set to the

maximum (2.4 GHz). Meanwhile, since CG, MG, and HPL power consumption is closer to TDP, their uncore frequency is
reduced.

3.2.2 UPSCAVENGER
We compare DUF with UPSCAVENGER, a tool that regulates the uncore frequency. Since UPSCAVENGER source code is not
available, we implemented our own version of UPSCAVENGER 8 based on the description in5.
At every phase change, UPSCAVENGER updates the maximum DRAM power consumption to the one observed. Periodically,

it: (i) decreases the uncore frequency if the DRAM power consumption is steady (ii) detects a phase change and resets the uncore
frequency if the power consumption increases (iii) increases the uncore frequency if both the DRAM power consumption and
the IPC decrease (iv) otherwise it detects a phase change and resets the uncore frequency.
Unlike DUF, UPSCAVENGER does not consider a tolerated slowdown. It aims at reducing applications power consumption

without degrading their performance. It considers a 5%measurement error. As a consequence, DUF can be seen a generalization
of UPSCAVENGER, where UPSCAVENGER should approximately stand between DUF with a 0 % and a 5 % slowdown tolerance.

3.2.3 DUF configuration
In order to evaluate DUF, we use four different slowdown tolerances: DUF0 (0 % tolerance), DUF5 (5 % tolerance), DUF10
(10 % tolerance), and DUF20 (20 % tolerance).
DUF considers an error margin of 2 % regarding accuracy of measurements. Finally, we set DUF measurement period to

200 ms and the uncore frequency step to 100 MHz. Note that we use a 100 MHz step because we noticed that if we set the
uncore frequency to 2.55 GHz for instance using LIKWID, the value that was read was 2.5 GHz. Moreover, as the experiments
show, a 100 MHz allows for power savings without impact on performance (which would have indicated that a special behavior
was missed). As a consequence, we did not further investigate LIKWID behavior.
Finally, as stated in Section 2, line 33 from Algorithm 1 is disabled for all experiments except in Section 3.6.

3.2.4 Coping with UFS
The default UFS can only be disabled in the BIOS which we cannot access on Grid’5000. As a consequence, when running
DUF, the default UFS runs as well. Therefore, a decision taken by DUF can be overwritten by the default UFS. Section 3.2.1
concluded that both CHIFFLET and YETI default UFS decreases the uncore frequency when TDP is reached. Thus, the frequency
set can be lower than the one requested by DUF. From our observations, this behavior occurs only for applications that reach
TDP. In order to handle this situation, at every iteration, both DUF and UPSCAVENGER use the uncore frequency that was set
by UFS to compute the next frequency.

3.2.5 Summary of experiments configurations
Each experiment shows the following configurations:

• DUF0: DUF when considering no tolerated slowdown.
• DUF5: DUF when considering 5 % tolerated slowdown.
• DUF10: DUF when considering 10 % tolerated slowdown.

8our implementation is available as open source at https://gitlab.com/parallel-and-distributed-systems/DUF/tree/master/PowerScavenger

https://gitlab.com/parallel-and-distributed-systems/DUF/tree/master/PowerScavenger

• DUF20: DUF when considering 20 % tolerated slowdown.
• UPSCAVENGER.
• worstUfreq: The worst value obtained when manually setting the uncore frequency. In this case, there is no uncore

frequency scaling (the uncore frequency does not vary).
• bestUfreq: The best value obtained when manually setting the uncore frequency. Just like worstUfreq, there is no uncore

frequency scaling in this case as well.

3.3 Experiments results
We run the applications described in Section 3.1.2 on NOVA, CHIFFLET and YETI while running the regulators. Figures 2a,
3a and 4a report the measured slowdown, Figures 2b, 3b and 4b show the socket power savings, and Figures 3c, 3c and 4c
depict the socket + DRAM energy savings. Finally, Figure 6 reports the DRAM power savings on NOVA (Figure 6a), CHIFFLET
(Figure 6b) and YETI (Figure 6c). Each experiment was run 10 times and we keep the average over the 8 runs between the
minimum and maximum execution times. All the results are presented as a percentage over the default values (obtained with
UFS) on each platform. All the data collected from the experiments of these study and presented hereafter are publicly available
at: https://gitlab.inria.fr/aguermou1/uncore-duf.
On each figure, error bars are also shown. They show the minimum and maximum observed values. The measurement dif-

ference is lower than 1 % for most of the configurations, while very few applications see a variation over 2 %. This indicates
the accuracy of the measurements. Note however that SP shows more variation on NOVA and YETI but also when applying
powercapping. But a similar behavior is also observed on the default behavior or on the bestUfreq and worstUfreq plots.

3.4 Impact on execution time
This section evaluates how DUF and UPSCAVENGER affect the application execution time, and if the slowdown respects: a
user-defined limit for DUF with a 2 % measurement error, and a 5% measurement error for UPSCAVENGER.
Figures 2a, 3a and 4a show that, on all platforms, DUF remains within the tolerated slowdown for the majority of applications.

Overall, DUF respects the user-defined limit for 128 of the 131 tested settings. Only three applications exceed the limit. CG on
NOVA (2.37 %) and CHIFFLET (2.15 %) withDUF0 and LU on YETI (22.11 %) withDUF20. These overheads are however very
small and we could not explain why they occur.
The figures also show that the behavior of some applications does not allow DUF to slow them down. For instance, BT on

NOVA and YETI and nwchem on NOVA and CHIFFLET keep switching phases, while HPL on CHIFFLET and LU, SP and UA on
YETI naturally see their FLOPS/s drop by more than the tolerated slowdown which leads DUF to increase the uncore frequency.
EP also shows no slowdown at all. This is because uncore frequency has no impact on EP as stated in Figure 1.
The slowdown caused by UPSCAVENGER remains below the 5% measurement error for 20 out of the 32 tested settings. For

the remaining applications (CG and MG on NOVA, CG, FT, MG and SP on CHIFFLET, and LAMMPS, nwchem, CG and MG
on YETI), the slowdown is between 5 and 29.67%. Note that the slowdown of MG on NOVA, SP on CHIFFLET and MG on
YETI is very close to 5 % (5.64, 5.81 and 5.32 respectively). LAMMPS and CG have the highest slowdown on YETI (29.67%
for CG and 20.40% for LAMMPS). This is because UPSCAVENGER assumes that as long as the DRAM power consumption
remains constant, the frequency can be decreased, regardless of the IPC and the L3 bandwidth. However, for some applications,
(e.g. LAMMPS on YETI), both the FLOPS/s and the L3 bandwidth drop while the memory power consumption is slightly
impacted. As a consequence, UPSCAVENGER keeps decreasing uncore frequency while DUF increases it. Regarding CG, the
power memory consumption remains steady for several iterations. As a consequence, UPSCAVENGER decreases the uncore
frequency during the steady phases. On the other hand, decreasing the uncore frequency has a direct impact on CG performance
which allows DUF to stop decreasing.
As a conclusion, DUF manages to better respect the tolerated slowdown compared to UPSCAVENGER. As a matter of fact,

in 97.7 % of the studied cases, DUF remains within the tolerated slowdown while the percentage drops to 62.5 % for UPSCAV-
ENGER. Moreover, the slowdown goes as high as 29.67 % for CG on YETI. This indicates that memory power consumption is
not the best indicator to lead uncore frequency decisions for some applications. From our observations, this is because DRAM
power consumption may not be as sensitive to uncore frequency compared to memory and L3 bandwidth. As a consequence,
memory and L3 bandwidth may be better indicator than DRAM power consumption.

https://gitlab.inria.fr/aguermou1/uncore-duf

ua

sp

mg

lu

ep

cg

bt

nwchem

lammps

hpl

0 5 10 20 30 40

(a) slowdown(%)

ua

sp

mg

lu

ep

cg

bt

nwchem

lammps

hpl

0 10 20 30

(b) package power savings (%)

ua

sp

mg

lu

ep

cg

bt

nwchem

lammps

hpl

−5 0 5 10 15

(c) total energy savings (%)

DUF_0 DUF_5 DUF_10 DUF_20 PowerScavenger worstUfreq bestUfreq NA

FIGURE 2 DUF impact on performance, power and energy consumption on NOVA

3.5 Impact on power and energy consumption
This section evaluates how DUF and UPSCAVENGER reduce the power and energy consumption of the applications.

3.5.1 Impact on socket power consumption
Figures 2b, 3b and 4b show the package power saving when using DUF and UPSCAVENGER on NOVA, CHIFFLET and YETI.
The figures show that for most applications, both DUF and UPSCAVENGER manage to provide power savings reaching up

to 23.54 % for DUF. As expected, among DUF four configurations, DUF20 reaches the maximum power savings for most
applications. For instance, DUF20 provides the best savings at 22.19 % with CG on NOVA.
EP has the exact same behavior for all regulators. As reported in figure 1, EP is not impacted by uncore frequency, it reaches

16.55 % power saving on CHIFFLET regardless of the regulator. For other applications, a small slowdown allows for power
savings. For instance, with a slowdown of 0.58 %, DUF5 manages to reach 7.94 % of power savings for BT on CHIFFLET. A
similar behavior is observed with HPL where DUF10 manages to save 7.39 % of power while the slowdown reaches 1.88 % on
NOVA. With a slightly higher slowdown, for UA,DUF10 shows 3.46 % performance degradation while providing 8.49 % power
savings on NOVA. A similar behavior with MG on CHIFFLET is observed: with a slowdown of 3.51 %,DUF20 manages to reach
8.22 % power savings. On YETI, DUF5 manages to provide 7.31 % power savings with 2.98 % slowdown for nwchem.

ua

sp

mg

lu

ft

ep

cg

bt

nwchem

lammps

hpl

0 5 10 20 30 40

(a) slowdown(%)

ua

sp

mg

lu

ft

ep

cg

bt

nwchem

lammps

hpl

0 10 20 30

(b) package power savings (%)

ua

sp

mg

lu

ft

ep

cg

bt

nwchem

lammps

hpl

−10 0 10

(c) total energy savings (%)

DUF_0 DUF_5 DUF_10 DUF_20 PowerScavenger worstUfreq bestUfreq

FIGURE 3 DUF impact on performance, power and energy consumption on CHIFFLET

Overall, in addition to EP, with less than 4 % slowdown, DUF manages to improve the power consumption of many applica-
tions (hpl, LAMMPS, SP and UA on NOVA, LAMMPS, BT, FT, LU and MG on CHIFFLET, nwchem on YETI) by 7.3 to 10.36 %
for all three platforms.
For hpl,DUF20 causes a 1.17 % slowdown while only 0.36 % power savings are observed on CHIFFLET. This is because HPL

power consumption and performance are roughly the same from 2.4GHz to 1.7 GHz as shown in Figure 1. However, as stated
in Section 3.4, in HPL, the FLOPS/s decrease below the tolerated slowdown. Thus DUF does not manage to reach 1.6 GHz.
UPSCAVENGER manages to reach lower frequencies but for very few iterations which is not enough to show an impact on power
consumption. In addition to HPL, BT on NOVA and YETI show less than 2 % power savings for both tools. This is because of
the behavior of the applications which keep switching phases. As a consequence neither DUF nor UPSCAVENGER can reduce
the uncore frequency.
For the majority of the applications, the power savings obtained with UPSCAVENGER are similar to those of DUF with

equivalent slowdown. For instance, on NOVA, HPL power savings with UPSCAVENGER and DUF20 are equivalent and both
tools have the same slowdown. This is also the case for CG on CHIFFLET where UPSCAVENGER performance and power savings
are between DUF5 and DUF10. This indicates that, for the same slowdown, DUF and UPSCAVENGER reach the same uncore
frequency.
However, for some applications DUF provides better power savings than UPSCAVENGER while performing better. This is

the case for LAMMPS, CG, MG and SP on NOVA. For instance, CG performance with UPSCAVENGER stand between DUF10

ua

sp

mg

lu

ft

ep

cg

bt

nwchem

lammps

hpl

0 5 10 20 30 40

(a) slowdown(%)

ua

sp

mg

lu

ft

ep

cg

bt

nwchem

lammps

hpl

0 10 20 30

(b) package power savings (%)

ua

sp

mg

lu

ft

ep

cg

bt

nwchem

lammps

hpl

−30 −20 −10 0 10

(c) total energy savings (%)

DUF_0 DUF_5 DUF_10 DUF_20 PowerScavenger worstUfreq bestUfreq

FIGURE 4 DUF impact on performance, power and energy consumption on YETI

and DUF20 while DUF10 provides better savings (16.01 % savings for DUF10 and 10.84 % savings with UPSCAVENGER). On
the other hand, UPSCAVENGER provides better savings for nwchem and SP on CHIFFLET and LAMMPS and UA on YETI. For
instance, withUPSCAVENGER andDUF20, LAMMPS reaches equivalent slowdown but the power savingswithUPSCAVENGER
reach 19.83 % while they reach 19.13 % with DUF20.

3.5.2 Per-socket uncore frequency regulation
Since DUF handles each socket separately, the uncore frequency may not be the same on each socket. Figure 5 shows how the
uncore frequency varies on each socket when running SP on CHIFFLET usingDUF20. It shows that, on socket 0, the frequency is
most of the time at the minimum while it varies between 2.4 GHz and 2.7 GHz on socket 1. This is due to the fact that on socket
1, both the FLOPS/s and the memory bandwidth keep increasing then decreasing. Thus, DUF keeps decreasing and increasing
the uncore frequency. On the other hand, on socket 0, the memory bandwidth is stable and DUF manages to reduce the uncore
frequency. Note that as we decrease the frequency by 100 MHz at each iteration, DUF reaches the minimal frequency after
3.2 s (which represents 2.3 % of the total execution time). After that, the uncore frequency does not change anymore and the
measurement period is increased.

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0 20 40 60 80 100 120 140

Time (s)

U
n
c
o

re
 F

re
q
u

e
n

c
y
 (

G
H

z
)

Socket 0

Socket 1

FIGURE 5 Uncore frequency during SP execution with DUF20 on CHIFFLET

3.5.3 Impact on DRAM power consumption
Figures 6a, 6b and 6c show the impact of DUF and UPSCAVENGER on memory power consumption.
The results show that on most applications, both DUF and UPSCAVENGER manage to provide power savings. Just as the

socket power consumption, the best savings are reached with DUF20 for most applications. For instance, CG on NOVA reaches
7.02 % power savings while LU reaches 9.09 % on YETI. On CHIFFLET, for most applications, the DRAM power consumption
corresponds to the default DRAM power consumption ± 2.5 %. CG and UA show larger savings reaching 4.18 % and 3.21 %
respectively.
Regarding UPSCAVENGER, for most applications, the behavior is similar to package power savings where DRAM power

savings are equivalent to DUF for the same slowdown on NOVA, CHIFFLET and YETI. However, HPL and SP on NOVA and
nwchem on YETI provide better savings with DUF compared to UPSCAVENGER. For instance, UPSCAVENGER and DUF0
show equivalent DRAM power savings for HPL on NOVA while its slowdown reaches 0.97 % with DUF0 and 3.08 % with
UPSCAVENGER. On the other hand, UPSCAVENGER shows better savings thanDUF for nwchem onNOVA and SP on CHIFFLET.
As a matter of fact, nwchem slowdown reaches 0.29 % with UPSCAVENGER and 0.69 % with DUF5 while the power savings
with UPSCAVENGER reach 2.82 % and 1.19 % with DUF5.

3.5.4 DUF impact on energy consumption
Figures 2c, 3c and 4c show how DUF and UPSCAVENGER impact applications energy consumption. We consider both socket
and DRAM power consumption when measuring the energy consumption.
On all platforms, both UPSCAVENGER andDUF allow for energy savings for most applications. DUF provides energy savings

for all applications except for HPL on CHIFFLET and BT and MG YETI. Note that nwchem and BT on NOVA and HPL, FT and
LU show very low energy savings (between 1 and 2 %) on YETI. The maximum savings reach 18.20 % on NOVA, 14.41 % on
CHIFFLET and YETI for EP with all configurations.
On CHIFFLET, LU, MG, SP and UA show the best energy savings with DUF20. For the other applications, limiting the

overhead provides better energy savings. For instance, with a slowdown of 7.14 %, energy savings reach 9.76 % for BT. In
addition to BT and EP, DUF manages to reach over 5 % energy savings for LAMMPS, LU, SP and UA.
On NOVA, HPL, LAMMPS, nwchem, BT, LU and MG reach their best energy savings with DUF20, while CG, SP and UA

provide better energy savings with DUF10. Overall, in addition to EP, DUF manages to save more than 5 % energy for HPL,
LAMMPS, CG, MG and SP.
On YETI, due to its significant slowdown, DUF20 leads to more energy consumption for CG, FT, LU and MG. For the other

applications, the best savings are reached withDUF0 or DUF5 except for SP and UA whereDUF10 andDUF20 reach the best
savings. However, unlike on NOVA and CHIFFLET, DUF manages to save more than 5 % energy only for EP on YETI.
Overall, the power savings with DUF0 and DUF5 reach a maximum of 18.76 %. Regarding DUF10, the maximum power

savings reach 19.18 %. Finally withDUF20, the maximum power savings reach 23.54 %. For all configurations, the best energy
savings are reached with EP with a maximum of 18.20 %.
UPSCAVENGER provides better savings thanDUF for nwchem andMGonCHIFFLET (3 % and 4.12% respectively) and LU on

YETI (1.62 %). For HPL, LAMMPS, CG, MG and SP on NOVA, LAMMPS and FT on CHIFFLET and nwchem and LU on YETI,
DUF provides equivalent to better energy consumption compared to UPSCAVENGER despite similar or better performance.

ua

sp

mg

lu

ep

cg

bt

nwchem

lammps

hpl

0 10 20

(a) NOVA

ua

sp

mg

lu

ft

ep

cg

bt

nwchem

lammps

hpl

0 5 10 15 20

(b) CHIFFLET

ua

sp

mg

lu

ft

ep

cg

bt

nwchem

lammps

hpl

0 5 10 15 20

(c) YETI

DUF_0 DUF_5 DUF_10 DUF_20 PowerScavenger worstUfreq bestUfreq

FIGURE 6 DRAM power saving (%)

Finally, DUF provides better savings than UPSCAVENGER for all applications on NOVA (except EP where they provide
equivalent savings), all applications except nwchem andMG on CHIFFLET (note that DUF and UPSCAVENGER show equivalent
slowdown for SP and EP) and HPL, LAMMPS, CG, FT, MG and UA on YETI regardless of the slowdown.

3.6 Improving performance with uncore frequency
As stated in Section 1, in addition to improving power consumption, uncore frequency can be used as a leverage to improve the
performance of applications that reach TDP. However, the observed performance improvements were rather small. In order to
better observe this behavior, we use powercapping, to put a stronger constraint on the default UFS.
Figure 7 shows the performance increase when usingDUF0 and UPSCAVENGER on YETI. We set the powercap to 100W for

all applications except EP (98 W), nwchem (90 W) and SP (80 W) because these applications have a lower power consumption
under normal configuration. The results are compared to thosewith default UFS under the same constraints. Note that we only run
these experiments on YETI because powercapping is not enabled on NOVA and CHIFFLET. Recall that for these experiments, we
use Algorithm 1 while considering longer measurement periods if the minimum uncore frequency is reached. This is because, in
this section, we only focus on performance. As a consequence, DUF does not need to report as frequently power measurements.

The results show that for all the applications, using DUF improves performance, with a maximum of 10.53% for CG.
UPSCAVENGER shows performance loss for 5 out of the 11 applications (namely LAMMPS, nwchem, CG, MG, and SP). More-
over, DUF outperforms UPSCAVENGER in all cases except for EP where both tools show the same performance. For instance,
UPSCAVENGER degrades the performance of CG by 11.90 %, while DUF improves the run time by 10.53 %. Regarding EP
performance, they reach 6.58 % with DUF and 6.33 % with UPSCAVENGER. There are two different behaviors which lead to
UPSCAVENGER performance loss. For LAMMPS, the DRAM power consumption sees almost no variation. As a consequence
the uncore frequency is set to the minimum. For nwchem, a similar behavior is observed within each newly detected phase.
Regarding CG, MG and SP, UPSCAVENGER detects many phases for each application. As a consequence, the uncore frequency
is reset to the maximum. However, the processor cannot sustain the maximum uncore frequency (because of its power con-
sumption) and the uncore frequency is automatically reduced. Therefore, any decision to reduce the uncore frequency will use
the reduced value as current one. For instance, when requesting a reset, the actual uncore frequency that is set may be 1.7 GHz
(instead of 2.4 GHz). When UPSCAVENGER request a decrease after that, the set frequency 1.6 GHz. This may lead the uncore
frequency to reach lower values. We would like to once again stress that the behavior is based on our own implementation of
UPSCAVENGER.
The reason behind the performance increase lies in the core frequency. For instance for FT, when DUF is not used, the core

frequency varies between 1.6 and 1.8 GHz for the four sockets, and UFS sets the uncore frequency to 2.21 GHz or higher. When
using DUF, the average core frequency is 2.02 GHz while the average uncore frequency is 1.79 GHz. Thus, by limiting the
power consumption with the uncore frequency, DUF allows to increase the core frequency, which improves the application per-
formance. This shows that even if YETI uncore frequency scaling algorithm is more reactive to the behavior of the applications,
DUF is actually able to better match the needs of the application being executed.
Finally, because of their behavior, nwchem and UA show a performance difference of less than 1.81 %. UA behavior for

instance leads to frequently resetting the uncore frequency. As a consequence, the uncore frequency cannot reach low values to
allow increasing the core frequency.

−11.90 −18.35−10

0

10

20

hp
l

la
m

m
ps

nw
ch

em bt cg ep ft lu m
g sp ua

P
e
rf

o
rm

a
n
c
e
 i
n
c
re

a
s
e
 (

%
)

DUF_0

PowerScavenger

bestUfreq

FIGURE 7 Performance increase when using DUF under powercapping on YETI

3.7 Limitations and possible improvements
DUF evaluation shows how it can improve power consumption while respecting the tolerated slowdown. However, we identified
some limitations which are discussed in this section.
As stated in Section 2.3, DUF assumes that the bandwidth drop is correlated to the performance drop. Although we did not

observe a situation where this assumption affects the performance, it does not reflect the real impact of memory bandwidth.
Moreover, DUF assumes that an increase in the FLOPS/s can come with an increase in the L3 or memory bandwidth with

same factor. Modeling the impact of uncore frequency on L3 cache and memory bandwidth is required to better adapt to the
application.
Another improvement could be to adapt the phase change to the platform. As a matter of fact, DUF assumes that if the

arithmetic intensity is higher than 1, then the current phase is CPU intensive, otherwise it is memory intensive. However, memory
or CPU intensiveness is also related to the processor. As a consequence, we should adapt the condition of the detection phase
to the target processor.
Finally, depending on the application, DUF period should adapt if the application behavior varies too frequently by studying

how often the phase changes.

3.8 Conclusions
The evaluation of DUF exhibits how uncore frequency can improve power consumption. It also showed the potential of uncore
frequency as a leverage to improve performance. The overall conclusions of the experiments are:

• DUF can adapt to different architectures and different applications;
• DUF manages to stay within the tolerated slowdown for 97.7 % of the tested configurations;
• DUF manages to reduce socket and memory power consumption. For some applications (such as BT), DUF reaches

significant power savings (7.94%) without degrading the performance;
• DUF manages to reduce the energy consumption of most applications. Some applications show significant energy savings

(such as BT with 9.76 % energy savings).
• By slightly degrading the performance of applications, DUF significantly reduces their power consumption;
• DUF manages to improve applications performance under power capping constraints by allowing the cores frequency to

be increased;
• Compared to UPSCAVENGER, DUF manages to better respect the applications slowdown, and to provide better

performance under power capping.

4 RELATEDWORK

Adapting uncore frequency is a recent research topic. In11 the authors provide amachine learning technique to predict the optimal
uncore frequency to be used and showed that the nature of the application impacts the energy saving that can be reached. The
authors also study the impact of different performance loss policies. However, the proposed tool is static and needs a training
phase on all possible frequencies before deciding the best frequency to run the applications whereas DUF is dynamic and is
able to adapt to the application behavior.
Won et al. use a similar approach: they design an artificial neural network to characterize applications and to apply the best

uncore power management policy to a network of chips12. In this study, the authors emulate a new hardware mechanism that
would implement their approach.
In13,14 the authors present a study of the potential energy savings using DVFS and UFS for the application GAMESS. They

proposed a performance and a power model, and a runtime to adjust both core and uncore frequencies. The runtime also takes
a maximum performance degradation limit. The results show great energy savings with, in some cases, very low overhead.
However, this work targets only GAMESS. The models were later used to design a tool that distributes a power budget over
socket and memory15. However, the tool computes the performance obtained with all core and uncore frequencies, rather than
adapting to the behavior of the applications like DUF.
The READEX project16 aims at providing a tool suite to improve the energy-efficiency of HPC applications by providing the

best combination of tuned parameters (like core and uncore frequency). Using READEX, an application is first instrumented
using an automatic instrumentation tool. Then the program is analyzed and optimal configurations are stored in a configuration
file. Later, learning techniques to improve the decisions were introduced17. This approach is complementary to DUF which
makes all its decisions at runtime without knowing the application global behavior.

Regarding powercapping, studies like18 show how dynamically setting core and uncore frequency can improve performance
under powercapping. However, they consider iterative applications where decisions made in a loop are used in the next loop.
The work presented in5 is the closest to DUF. In Section 3.3, we compared DUF to our own implementation of UPSCAV-

ENGER. We showed that for most applications, UPSCAVENGER and DUF provide equivalent power and energy savings for
equivalent slowdown. One of the major differences between UPSCAVENGER and DUF is that UPSCAVENGER relies on mem-
ory power consumption to avoid any slowdown while saving power. On the other hand, DUF considers that the user can decide
the value of the tolerated slowdown. As a consequence, DUF is better able to trade performance for energy whenever possible.

5 CONCLUSION AND FUTUREWORK

This paper presents DUF, a daemon process that dynamically adapts the uncore frequency in order to reduce the power con-
sumption of applications while limiting the performance degradation to a user-defined limit. Our goal was to provide a tool
which better adapts to the behavior of the application and sets the uncore frequency accordingly, unlike the default UFS. The
evaluation shows that DUF significantly reduces the power and energy consumption while respecting the slowdown limit. More-
over, DUF manages to reach power savings without impact on performance for some applications. It also shows how uncore
frequency can be used as a leverage to improve performance by up to 11.90 % under power capping constraints.
As a future work, we plan to further study how to dynamically set the powercap to the application need and combine it to

uncore frequency management. As a matter of fact, if there was a total power budget, instead of applying the same powercap
for the hole execution of an application, we could adapt it to the application phases. Using power capping combined to DUF
to manage the performance could use the right power budget for the whole execution. We also plan to target DVFS in DUF.
In this paper, we rely on automatic frequency scaling (for instance under power capping). However, we plan study if a better
frequency could be used and integrate the decision to DUF. Finally, since DUF handles each socket separately, we will study
how applications with different behaviors can be run on each socket in order to maximize power savings.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).

References

1. Hill DL, Bachand D, Bilgin S, et al. THE UNCORE: A MODULAR APPROACH TO FEEDING THE HIGH-
PERFORMANCE CORES.. Intel Technology Journal 2010; 14(3).

2. Hackenberg D, Schöne R, Ilsche T, Molka D, Schuchart J, Geyer R. An Energy Efficiency Feature Survey of the Intel
Haswell Processor. IEEE International Parallel and Distributed Processing Symposium Workshop, IPDPS 2015: 896–904.
doi: 10.1109/IPDPSW.2015.70

3. Bailey D, Barszcz E, Barton J, et al. The Nas Parallel Benchmarks. International Journal of Supercomputing Applications
1991; 5(3): 63–73.

4. Petitet A, C. Whaley R, Dongarra J, Cleary A. HPL - a Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Computers. http://www.netlib.org/benchmark/hpl 2000.

5. Gholkar N, Mueller F, Rountree B. Uncore power scavenger: a runtime for uncore power conservation on HPC systems.
International Conference for High Performance Computing, Networking, Storage and Analysis (SC) 2019: 27:1–27:23. doi:
10.1145/3295500.3356150

6. Balouek D, Amarie AC, Charrier G, et al. Adding virtualization capabilities to the Grid’5000 testbed. International
Conference on Cloud Computing and Services Science 2012: 3–20.

https://www.grid5000.fr
http://dx.doi.org/10.1109/IPDPSW.2015.70
http://dx.doi.org/10.1145/3295500.3356150
http://dx.doi.org/10.1145/3295500.3356150

7. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics 1995; 117(1):
1–19.

8. Valiev M, Bylaska EJ, Govind N, et al. NWChem: A comprehensive and scalable open-source solution for large scale
molecular simulations. Computer Physics Communications 2010; 181(9): 1477–1489.

9. Treibig J, Hager G,Wellein G. LIKWID: A Lightweight Performance-Oriented Tool Suite for x86Multicore Environments.
International Conference on Parallel Processing (ICPP) 2010: 207–216.

10. Terpstra D, Jagode H, You H, Dongarra J. Collecting performance data with PAPI-C. Tools for High Performance
Computing 2010: 157–173.

11. Bekele SA, Balakrishnan M, Kumar A. ML Guided Energy-Performance Trade-Off Estimation For Uncore Frequency
Scaling. Spring Simulation Conference (SpringSim) 2019: 1-12.

12. Won J, Chen X, Gratz P, Hu J, Soteriou V. Up by their bootstraps: Online learning in Artificial Neural Networks for CMP
uncore power management. International Symposium on High Performance Computer Architecture (HPCA) 2014: 308-319.

13. Sundriyal V, Sosonkina M, Westheimer BM, Gordon M. Comparisons of Core and Uncore Frequency Scaling Modes in
Quantum Chemistry Application GAMESS. High Performance Computing Symposium (HPC) 2018: 13:1–13:11.

14. Sundriyal V, Sosonkina M, Westheimer B, Gordon M. Core and Uncore Joint Frequency Scaling Strategy. Journal of
Computer and Communications 2018; 06: 184-201.

15. Sundriyal V, Sosonkina M, Westheimer B, Gordon M. Maximizing Performance under a Power Constraint on Modern
Multicore Systems. Journal of Computer and Communications 2019; 07: 252-266.

16. Schuchart J, GerndtM, Kjeldsberg PG, et al. The READEX formalism for automatic tuning for energy efficiency.Computing
2017. doi: 10.1007/s00607-016-0532-7.

17. Gocht A, Schöne R, Bielert M. Q-Learning Inspired Self-Tuning for Energy Efficiency in HPC. International Conference
on High Performance Computing Simulation (HPCS) 2019: 344-347. doi: 10.1109/HPCS48598.2019.9188112

18. Wang B, Miller J, Terboven C, Müller M. Operation-Aware Power Capping. Euro-Par 2020: Parallel Processing 2020:
68–82.

10.1007/s00607-016-0532-7
http://dx.doi.org/10.1109/HPCS48598.2019.9188112

	DUF : Dynamic Uncore Frequency scaling to reduce power consumption
	Abstract
	Introduction
	Dynamic Uncore Frequency (DUF)
	Overview of DUF
	Measurement module
	Regulator module

	Experiments
	Experiments testbeds
	Hardware settings
	Software testbed
	Measurement framework

	Description and configurations of UFS, UPSCavenger and DUF
	Default behavior of Uncore Frequency Scaling
	UPSCavenger
	DUF configuration
	Coping with UFS
	Summary of experiments configurations

	Experiments results
	Impact on execution time
	Impact on power and energy consumption
	Impact on socket power consumption
	Per-socket uncore frequency regulation
	Impact on DRAM power consumption
	DUF impact on energy consumption

	Improving performance with uncore frequency
	Limitations and possible improvements
	Conclusions

	Related work
	Conclusion and future work
	Acknowledgment
	References

