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Abstract—Reducing the power consumption of applications
has become one of the key challenges in high performance
computing. Recent processor architectures differentiate processor
core frequency from its uncore frequency. As a consequence, in
addition to tuning processor core frequency with DVFS, power
consumption can also be controlled through Uncore Frequency
Scaling (UFS).

This paper studies how the uncore frequency can be used as
a leverage to improve power consumption. We propose DUF, a
daemon process that dynamically adapts the uncore frequency
to reduce an application power consumption with a user-defined
limit on performance degradation.

The evaluation of DUF on two different architectures shows
that with less than 3.5% performance degradation, DUF can
reduce the socket power consumption by more than 12%. We
also show that DUF can reduce the total energy consumption of
by up to 13.18%.

Index Terms—Green computing, Power consumption, Uncore
frequency, High Performance Computing

I. INTRODUCTION

Reducing the power consumption of supercomputers has
become one of the key challenges in high performance com-
puting. As a matter of fact, Summit, the most powerful super-
computer consumes 10.90 MW 1 while the US Department of
Energy sets a limit of 20 MW for future exascale machines 2.

Dynamically adapting the processor frequency according to
the application workload is a common technique to control
power consumption. It is widely used in recent architectures
where limiting the power consumption and respecting the
thermal design power (TDP), while using the processor to its
maximum capacity (number of cores, vectorized instructions,
. . . ) requires to lower the CPU frequency, which negatively
impacts performance.

Recent processor architectures differentiate the processor
core frequency (that affects the computation units and the
L1/L2 caches) from its uncore frequency (which affects the
last level cache and the memory controller) [6]. The Uncore
Frequency Scaling (UFS) automatically selects the uncore
frequency according to the CPU frequency, the energy and
performance bias hints and cores stall cycles [5]. However, it

1http://www.top500.org
2https://exascale.llnl.gov/

does not fully benefit from the leverage provided by the uncore
frequency: Figure 1 shows the effects of varying the uncore
frequency in terms of slowdown (figure 1a) and power savings
(figure 1b) for NAS Parallel Benchmarks EP and CG, and
HPL. These figures report the relative slowdown and power
saving over the default values (obtained with UFS) on the
CHIFFLET platform. Both the applications and the platform
are described in section III.

Figure 1a shows that uncore frequency does not impact EP
performance, while figure 1b shows that setting the uncore fre-
quency to 1.2 GHz reduces power consumption by more than
16 % compared to UFS. Hence, it is possible to achieve the
same performance as UFS with a lower power consumption.

Interestingly, regarding HPL, reducing the uncore frequency
actually slightly improves its performance by 1.47%. Since
HPL power consumption reaches TDP, the core frequency
is automatically lowered which degrades the performance.
Manually lowering the uncore frequency decreases the power
consumption. As a consequence, core frequency increases
leading to better performance.

For CG, if a small performance degradation is tolerated,
reducing the uncore frequency significantly lowers the power
consumption. For instance, if a 5% slowdown is tolerated for
CG, the uncore frequency can be lowered to 2.3 GHz, which
reduces the power consumption by 13 %.

Based on these observations, we propose DUF, a daemon
process that dynamically adapts the uncore frequency to the
application needs. DUF aims at reducing an application power
consumption with a user-defined limit on performance degra-
dation. DUF can be seen as providing different uncore fre-
quency governors (performance at 0% slowdown, powersave
at 100% slowdown), in a similar fashion to what is done for
DVFS.

We compare DUF to the default behavior and to UP-
SCAVENGER on two architectures and 11 applications and
benchmarks. The experiments show that (i) DUF reduces the
power consumption by up to 16.34% for EP without altering
its performance (ii) a 5.28% slowdown on MG allows for
more than 16% power savings (iii) when running under power
capping constraints, DUF outperforms UFS with a maximum
performance improvement of 11.57% for EP.
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Fig. 1: Uncore frequency impact on execution time and package power consumption on CHIFFLET.

The remainder of this paper is organized as follows: We de-
scribe DUF in Section II. Section III presents the measurement
methodology we used in our experiments and the evaluation of
DUF. Finally, we compare it to the related work in Section IV
before concluding in Section V.

II. DYNAMIC UNCORE FREQUENCY (DUF)

In this section, we describe DUF 3 (that stands for Dynamic
Uncore Frequency scaling), a daemon process that dynami-
cally adapts the uncore frequency in order to trade a limited
performance degradation for power savings. The aim of DUF
is twofold: reducing the power consumption of an application,
and limiting the performance degradation to a user-provided
upper-bound.

A. Overview of DUF

The user of DUF specifies the sockets to monitor and a
maximum performance degradation to tolerate. Then, DUF
periodically invokes its measurement module that collects
the CPUs performance counters. Using collected data, the
regulator module decides whether the uncore frequency should
be changed. The decision algorithm described in section II-C
applies for each user-specified socket. It can be summarized as
follows: DUF detects the application phases (memory inten-
sive vs compute intensive) and, for each phase, measures the
performance obtained with the maximum uncore frequency.
It then decreases the uncore frequency until the performance
degradation reaches the user-specified limit.

B. Measurement module

DUF measurement module collects various CPU hardware
counters corresponding to the application FLOPS/s and the
memory bandwidth in order to guide the regulator module.
Then it computes the arithmetic intensity as the ratio between
the FLOPS/s and the memory bandwidth. An arithmetic inten-
sity greater than 1 indicates that the application is in a CPU-
intensive phase. Otherwise, we assume that the application has
entered a memory-intensive phase.

3available as open-source at:
https://gitlab.com/parallel-and-distributed-systems/DUF

C. Regulator module

In order to select the uncore frequency of a socket, DUF
regulator module runs Algorithm 1 after every measurement
period.

If a new application phase is detected, DUF sets the
maximum uncore frequency and measures max flops and
max bw (the achieved memory bandwidth) during the next
measurement period. DUF assumes a phase change happened
either because the application arithmetic intensity changed
from CPU-intensive to memory intensive or the opposite
(lines 4 to 9), or because the FLOPS/s and the memory or
the L3 cache bandwith increased significantly (lines 13-16).

Otherwise, DUF checks how the previous decision impacted
the FLOPS/s and the memory bandwidth. DUF considers
that if the FLOPS/s dropped compared to the previous mea-
surement, but the memory bandwidth remained stable, then
the drop come from the behavior of the application itself
rather than the impact of the uncore frequency. Based on this
assumption, DUF decreases the uncore frequency (lines 10-
12). Note that DUF considers the memory bandwidth as stable
if it decreased by less than the tolerated slowdown. In other
words, if the tolerated performance loss is 20% then the
bandwidth is considered as stable if it dropped by less than
80%.

Finally, DUF decreases the uncore frequency as long as
the performance remains within the user-specified threshold
(lines 17-19) and increases it otherwise (lines 22-23). If a
decrease is requested while the uncore frequency is at the
minimum, DUF increases the measurement period as we reach
a stable phase (line 21). The period is reset every time DUF
changes the uncore frequency. DUF also increases the period
if the requested uncore frequency is stable across iterations,
indicating that a stable phase was reached. In all cases, we
limit the measurement period to 10 times the initial period.

On the other hand, if, after an increase, the maximum
frequency is reached, DUF considers that the application
behavior changed. It updates the maximum FLOPS/s to the
current ones and decreases the uncore frequency (lines 24-25).



Algorithm 1 Uncore Frequency Scaling algorithm
1: loop . Every period
2: flops← measure flops()
3: oi← measure operational intensity
4: if oi > 1 and phase! = CPU then
5: phase← CPU
6: FREQ=MAX UFREQ
7: else if oi < 1 and phase! = memory then
8: phase← memory
9: FREQ=MAX UFREQ

10: if flops < old flops then
11: if bw/max bw > 1− perf loss then
12: DECREASE FREQUENCY
13: if flops > 2 ∗ old flops then
14: if bw > 2∗old bw or l3 bw > 2∗old l3 bw then
15: FREQ=MAX UFREQ
16: else DECREASE FREQUENCY
17: if flops > perf loss ∗max flops then
18: if freq > min freq then
19: DECREASE FREQUENCY
20: else if period < 10 ∗ period then
21: period = period ∗ 2
22: else if freq < max freq then
23: INCREASE FREQUENCY
24: else max flops← flops
25: DECREASE FREQUENCY

III. EXPERIMENTS

In this section, we evaluate if DUF meets its two objectives
: saving power while limiting the performance degradation to a
user-defined limit. We first provide the hardware settings of the
experiment testbed. Then, we describe the different regulators
that we study. We finally present the results of our experiments.

A. Experiments testsbed

This section describes the architectures and applications that
we used.

1) Hardware settings: We used two servers from the
Grid’5000 [2] platform. All platforms run under Intel Pstate
with performance governor.
• CHIFFLET is equipped with two Intel Xeon E5-2680 v4

CPUs (Broadwell microarchitecture) with 14 cores per CPU,
and 768 GiB of memory. The uncore frequency ranges from
1.2 GHz to 2.7 GHz.

• YETI is equipped with four Intel Xeon Gold 6130 CPUs
(Skylake microarchitecture) with 16 cores per CPU. Each
NUMA node has 64 GiB of memory. The uncore frequency
ranges from 1.2 GHz to 2.4 GHz.
2) Software testbed: We conducted the experiments using

several applications.
• The NAS Parallel Benchmarks [1] provide a set of small

applications.We use: BT, CG, EP, FT, LU, MG, SP,
UA from NPB-3.3.1 OpenMP version. We choose the
problem size so that each application execution time is in

the [30s-400s] range. On CHIFFLET, EP, and FT run using
the class D problem size. The remaining benchmarks run
using class C. On YETI, all benchmarks run using class
D except SP for which we use class C. The OpenMP
threads are bound to cores in a round-robin fashion.

• High Performance Linpack (HPL) [7] is a software pack-
age that solves dense linear algebra systems. We use HPL
version 2.3 compiled with Math Kernel Library (MKL)
version 2019.1.144. HPL uses a configuration file where
we set NB to 224 on all platforms. N is set to 62720 on
CHIFFLET and 91840 on YETI. (PxQ) is set to (4x7) on
CHIFFLET and (8x8) on YETI.

• LAMMPS [8]4 performs molecular dynamics simulation.
We use input file in.lj provided for the accelerate suite
where we set the run value to 100000.

• Nwchem [14]5 is a computational chemistry application.
We use the input data set 3carbo.nw from the qdm
provided files.

On all platforms, the applications were compiled with gcc
6.3.0 with -O3 flag. The machines were running Linux version
4.9.0-9. HPL, LAMMPS and nwchem were compiled against
Open MPI 3.1.4. Finally, all platforms cores were used during
all the experiments (28 on CHIFFLET and 64 on YETI) while
hyperthreading was disabled. Each experiment was run 10
times and we keep the average over the 8 runs between the
minimum and maximum execution times. In all configurations,
a maximum variation of 1.5% compared to the mean was
observed.

3) Measurement framework: In section I and III-B1,
we use LIKWID [13]6 to set the uncore frequency and
measure the power consumption of the applications with
likwid-perfctr. All the measurements are performed
every second, with no overhead for all the applications. In
section III-C, all measurements (DUF and UPSCAVENGER
require collecting hardware counters in addition to power) are
performed using the PAPI library [12]7.

B. Description and configurations of UFS, UPSCAVENGER
and DUF

This section briefly describes the default UFS behavior. It
also describes UPSCAVENGER algorithm and the configura-
tions used for DUF.

1) Default behavior of Uncore Frequency Scaling: In order
to understand the Uncore Frequency Scaling (UFS) default
behavior on our experimental testbed, we measure the average
uncore frequency when running applications with different
profiles. For that purpose, we use two memory-intensive ap-
plications (CG and MG), and two CPU-intensive applications
(EP and HPL).

Table I depicts the average uncore frequency range observed
over the sockets. It also provides the average power consumed
by the applications over all sockets.

4commit aa2b88578
5commit 67f5237ab
6commit 267d
7git commit version ceb64276



CHIFFLET YETI
application Power (W) ufreq (GHz) Power (W) ufreq (GHz)

HPL 120.48 2.4 124.61 [1.6-1.7]
NPB CG 79.2 2.7 123.37 [2.3-2.4]
NPB EP 100.83 2.7 116.08 2.4
NPB MG 82.69 2.7 123.32 [2.2-2.3]

TABLE I: Average observed uncore frequency on CHIFFLET
and YETI.

On CHIFFLET, CG, EP and MG run at the maximum uncore
frequency (2.7 GHz). The uncore frequency for HPL is lower
(2.4 GHz).We also observe that HPL reaches the thermal
design power (TDP) of the machine (120 W). This behavior
suggests that on CHIFFLET, the UFS policy first sets the uncore
frequency to its maximum, and reduces it only when TDP is
reached.

A similar behavior is observed on YETI: EP has a limited
power consumption. Thus, the uncore frequency is set to the
maximum (2.4 GHz). Meanwhile, since CG, MG, and HPL
reach TDP, their uncore frequency is reduced.

2) UPSCAVENGER: We compare DUF with UPSCAV-
ENGER, a tool that regulates the uncore frequency. Since
UPSCAVENGER source code is not available, we implemented
our own version of UPSCAVENGER based on the description
in [4]8.

At every phase change, UPSCAVENGER updates the max-
imum DRAM power consumption to the one observed. Peri-
odically, it : (i) decreases the uncore frequency if the DRAM
power consumption is steady (ii) detects a phase change and
resets the uncore frequency if the power consumption increases
(iii) increases the uncore frequency if both the DRAM power
consumption and the IPC deacrease (iv) otherwise it detects a
phase change and resets the uncore frequency.

Unlike DUF, UPSCAVENGER does not consider a tolerated
slowdown. It aims at reducing applications power consump-
tion without degrading their performance. It considers a 5%
measurement error. As a consequence, DUF can be seen
a generalization of UPSCAVENGER, where UPSCAVENGER
should approximately stand between DUF with a 0 % and a
5 % slowdown tolerance.

3) DUF configuration: In order to evaluate DUF, we use
four different slowdown tolerances: DUF0 (0 % tolerance),
DUF5 (5 % tolerance), DUF10 (10 % tolerance), and DUF20

(20 % tolerance).
DUF considers an error margin of 2% regarding accuracy

of measurements. Finally, we set DUF uncore frequency
step to 100 MHz and the measurement period to 200 ms.
Lower measurement periods lead to an overhead on some
applications. On the other hand, periods such as 500 ms are
too large for short running applications such as LAMMPS or
CG on CHIFFLET. From our observations, 200 ms offers a
good trade off for all the applications. Note that we discuss
how DUF could automatically change its measurement period
in paragraph III-G.

8our implementation is available as open source at https://gitlab.com/
parallel-and-distributed-systems/DUF/tree/master/PowerScavenger

4) Coping with UFS: The default UFS can only be disabled
in the BIOS which we cannot access on Grid’5000. As a
consequence, when running DUF, the default UFS runs as
well. Therefore, a decision taken by DUF can be overwritten
by the default UFS. Section III-B1 concluded that both CHIF-
FLET and YETI default UFS decreases the uncore frequency
when TDP is reached. Thus, the frequency set can be lower
than the one resquested by DUF. From our observations, this
behavior occurs only for applications that reach TDP. In order
to handle this situation, at every iteration, both DUF and
UPSCAVENGER use the uncore frequency that was set by UFS
to compute the next frequency.

C. Experiments results

We run the applications described in section III-A2 on
CHIFFLET and YETI while running the regulators. Figures 2a
and 2c report the measured slowdown, Figures 2b and 2d show
the socket power savings, and Figures 2e and 2f depict the
socket + DRAM energy savings. All the results are presented
as a percentage over the default values (obtained with UFS)
on each platform. In addition to DUF results, the figures also
present UPSCAVENGER results and the best and worst values
obtained by manually setting the uncore frequency.

Note that, on YETI, measuring the needed information for
DUF and UPSCAVENGER, without modifying the uncore
frequency, impacts LAMMPS, CG and nwchem performance.
The overhead is rather small for nwchem (2 %) but large for
CG and LAMMPS. For this reason, we do not present CG and
LAMMPS results on YETI.

D. Impact on execution time

This section evaluates how DUF and UPSCAVENGER affect
the application execution time, and if the slowdown respects:
a user-defined limit for DUF with a 2 % measurement error,
and a 5 % measurement error for UPSCAVENGER.

Figures 2a, and 2c show that, on all platforms, DUF remains
within the tolerated slowdown for the majority of applications.
Only two applications exceed the limit on YETI: LU and FT
with DUF20. The overhead with LU is due to its memory
bandwidth usage. As stated in section II-C, with DUF20,
the tolerated bandwidth drop is set to 80 %. However, for
LU, a 80 % bandwidth decrease causes a large performance
degradation. Regarding FT, its behavior is such that the flops
suddenly double, but with an increase of L3 bandwidth by
a factor of 1.5. However, the frequency is increased only
if L3 bandwidth doubles as well (line 14 of Algorithm 1).
As a consequence, the frequency is decreased which causes
the overhead. These two problems are further discussed in
section III-G. Overall, DUF respects the user-defined limit
for 77 of the 80 tested settings.

The slowdown caused by UPSCAVENGER for half of the
applications remains below the 5% measurement error. For
the other half (hpl, LAMMPS, CG, FT, LU, MG, and SP on
CHIFFLET, and nwchem, CG, FT, MG and SP on YETI), the
slowdown is between 5 and 15%. This is because UPSCAV-
ENGER assumes that as long as the memory power remains
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Fig. 2: DUF impact on performance, power and energy consumption. The legend is provided in Figure 2f.

constant, the frequency can be decreased, regardless of the
IPC and the L3 bandwidth. However, for some applications,
(eg. HPL on CHIFFLET), both the FLOPS/s and the L3 band-
width drop while the memory bandwidth is slightly impacted.
As a consequence, UPSCAVENGER keeps decreasing uncore
frequency while DUF increases it.

The figures also show that the behavior of some applications
does not allow DUF to slow them down. For instance, BT on
YETI and nwchem on CHIFFLET keep switching phases, and
HPL, LU, SP and UA on YETI naturally see their FLOPS/s
drop by more than the tolerated slowdown.

E. Impact on power and energy consumption

This section evaluates how DUF and UPSCAVENGER re-
duce the power and energy consumption of the applications.
Figures 2b and 2d show the package power saving when using
DUF and UPSCAVENGER on CHIFFLET and YETI.

The figures show that the power savings for DUF and UP-
SCAVENGER are similar: for some applications (eg. HPL or

nwchem) the power consumption is only slightly reduced, but
for some other applications (eg. CG, EP, or SP on CHIFFLET),
power savings exceed 15 %.

EP and hpl have the exact same behavior for all regulators.
As reported in figure 1, EP is not impacted by uncore fre-
quency, it reaches 13.73 % power saving on YETI regardless
of the regulator. For hpl, DUF20 causes a 8.9% slowdown
while only 1.50 % power savings are observed on CHIFFLET.
This is because HPL power consumption and performance
are roughly the same from 2.7GHz to 1.6 GHz as shown in
Figure 1. However, as stated in section III-D, in HPL, the
FLOPS/s decrease below the tolerated slowdown. Thus DUF
does not manage to reach 1.6 GHz. UPSCAVENGER manages
to reach lower frequencies but for very few iterations which
is not enough to show an impact on power consumption.

For most applications, the power savings obtained with
UPSCAVENGER are similar to those of DUF with equivalent
slowdown. For instance, UA power savings with UPSCAV-



 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0  20  40  60  80  100  120  140

U
n
c
o
re

 F
re

q
u

e
n

c
y
 (

G
H

z
)

Time (s)

socket 0
socket 1

Fig. 3: Uncore frequency during SP execution with DUF20

on CHIFFLET

ENGER and DUF10 are equivalent and both tools have the
same slowdown. This is also the case for CG where UPSCAV-
ENGER performance and power savings are between DUF10

and DUF20. This indicates that, for the same slowdown, DUF
and UPSCAVENGER reach the same uncore frequency.

Other applications show better power savings with DUF
compared to UPSCAVENGER. This is the case for LAMMPS
on CHIFFLET where DUF5 provides the same power savings
as UPSCAVENGER with a smaller slowdown. Moreover, on
YETI, most applications show better power savings with DUF
compared UPSCAVENGER. This is the case for MG where
UPSCAVENGER slowdown reaches 10% while its power sav-
ings are equivalent to those of DUF5.

Finally, FT and SP on CHIFFLET and nwchem on YETI
show better power savings with UPSCAVENGER compared
to DUF despite a smaller overhead. For instance for FT,
UPSCAVENGER performs better than DUF10 while providing
better power savings. This is because for few iterations,
FT performance is exactly at 10% which leads DUF to
stop modifying the uncore frequency. On the other hand,
the memory power consumption remains stable. Therefore
UPSCAVENGER keeps reducing the uncore frequency.

Among DUF four configurations, DUF20 reaches the max-
imum power savings. For instance, CG provides the best
savings at 19.90 % on CHIFFLET.

Finally, in some cases, with a small slowdown, large power
savings can be reached. For instance, for MG on CHIFFLET,
DUF10 degrades the performance by only 3.34 %, while
saving 12.09 % of power.

1) Per-socket uncore frequency regulation: Since DUF
handles each socket separately, the uncore frequency may
not be the same on each socket. Figure 3 shows how the
uncore frequency varies on each socket when running SP
on CHIFFLET using DUF20. It shows that, on socket 0, the
frequency is most of the time at the minimum while it varies
between 2.4 GHz and 2.7 GHz on socket 1. This is due to
the fact that on socket 1, both the FLOPS/s and the memory
bandwidth both keep increasing then decreasing. Thus, DUF
keeps decreasing and increasing the uncore frequency. On the
other hand, on socket 0, the memory bandwidth is stable and
DUF manages to reduce the uncore frequency.

2) Impact on DRAM power consumption: Figure 4 depicts
the DRAM power savings on CHIFFLET. On YETI, the same
trend is observed where DUF20 provides the best power
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savings for most applications.
Figure 4 shows that for most applications, the DRAM

power consumption corresponds to the default DRAM power
consumption ± 2 %. HPL, CG, FT and LU show a larger
difference reaching a maximum power savings of 4.67 % with
CG under DUF20. Regarding UPSCAVENGER, the behavior is
similar to package power savings where DRAM power savings
are equivalent to DUF for the same slowdown. This is the case
for HPL, BT, CG, LU, MG and SP.

3) DUF impact on energy consumption: Figures 2e and 2f
show how DUF and UPSCAVENGER impact applications
energy consumption. We consider both socket and DRAM
power consumption when measuring the energy consumption.

On CHIFFLET, both UPSCAVENGER and DUF allow for
energy savings for all applications except for HPL. The max-
imum savings reach 13.18% for EP with all configurations.
MG and SP show the best energy savings with DUF20. For
the other applications, limiting the overhead provides better
energy savings. For instance, with a slowdown of 4.02 %,
energy savings reach 6.61 % for LAMMPS.

On YETI however, UPSCAVENGER and DUF only reduce
the energy consumption of EP by 11.33%. Due to its signif-
icant slowdown, DUF20 leads to the worst energy consump-
tion, while the other regulators show similar consumption.

F. Improving performance with uncore frequency
As stated in section I, in addition to improving power

consumption, uncore frequency can be used as a leverage
to improve the performance of applications that reach TDP.
However, the observed performance improvements were rather
small. In order to better observe this behavior, we use power-
capping, to put a stronger constraint on the default UFS.

Figure 5 shows the performance increase when using DUF0

and UPSCAVENGER on YETI. We set the powercap to 100W
for all applications except EP (98 W), nwchem (90 W) and
SP (80 W). The results are compared to those with default
UFS under the same constraints. Note that we only run these
experiments on YETI because powercapping is not enabled
on CHIFFLET. We do not provide the results for SP with
UPSCAVENGER as they show too much variation.

The results show that for most applications, using DUF
improves performance, with a maximum of 11.57% for EP.
UPSCAVENGER shows a similar trend, but with lower per-
formance improvements. The reason behind the performance
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Fig. 5: Performance increase when using DUF under power-
capping on YETI

increase lies in the core frequency. For instance for FT, when
DUF is not used, the core frequency varies between 1.6 and
1.8 GHz for the four sockets, and UFS sets the uncore fre-
quency to 2.21 GHz or higher. When using DUF, the average
core frequency is 2.1 GHz and the uncore frequency goes as
low as 1.73 GHz. Thus, by limiting the power consumption
with the uncore frequency, DUF allows to increase the core
frequency, which improves the application performance. This
shows that even if YETI uncore frequency scaling algorithm
is more reactive to the behavior of the applications, DUF is
actually able to better match the needs of the application being
executed.

Because of their behavior, nwchem and UA show perfor-
mance loss. UA behavior for instance leads to frequently
resetting the uncore frequency. As a consequence, it is higher
than when using UFS which leads to a lower CPU frequency.

G. Limitations and possible improvements

DUF evaluation shows how it can improve power consump-
tion while respecting the tolerated slowdown. However, we
identified some limitations which are discussed in this section.

As stated in section II-C, DUF assumes that the bandwidth
drop is correlated to the performance drop. This assumption
does not reflect the real impact of memory bandwidth and
impacted LU performance on YETI as stated in section III-D.
Moreover, DUF assumes that an increase in the FLOPS/s can
come with an increase in the L3 or memory bandwidth with
same factor. FT on YETI showed that this is not the case.
Modeling the impact of uncore frequency on L3 cache and
memory bandwidth is definitely needed to handle this issue.

Finally, depending on the application, DUF period should
adapt if the application behavior varies too frequently by
studying how often the phase changes.

H. Conclusions

The evaluation of DUF exhibits how uncore frequency can
improve power consumption. It also showed the potential of
uncore frequency as a leverage to improve performance. The
overall conclusions of DUF are:

• DUF can adapt to different architectures and different
applications;

• DUF manages to stay within the tolerated slowdown;
• DUF manages to reduce socket and memory power

consumption. For some applications (such as EP), DUF

reaches significant power savings (16.34%) without de-
grading the performance;

• By slightly degrading the performance of applications,
DUF significantly reduces their power consumption;

• DUF manages to improve applications performance un-
der power capping constraints by allowing the cores
frequency to be increased;

• Compared to UPSCAVENGER, DUF manages to bet-
ter respect the applications slowdown and shows better
power savings for many applications.

IV. RELATED WORK

Adapting uncore frequency is a recent research topic. In [3]
the authors provide a machine learning technique to predict
the optimal uncore frequency to be used and showed that the
nature of the application impacts the energy saving that can
be reached. The authors also study the impact of different
performance loss policies. However, the proposed tool is static
and needs a training phase on all possible frequencies before
deciding the best frequency to run the applications.

Won et al. use a similar approach: they design an artifi-
cial neural network to characterize applications and to apply
the best uncore power management policy to a network of
chips [15]. In this study, the authors emulate a new hardware
mechanism that would implement their approach.

In [9], [11] the authors present a study of the potential
energy savings using DVFS and UFS for the application
GAMESS. They proposed a performance and a power model,
and a runtime to adjust both core and uncore frequencies. The
runtime also takes a maximum performance degradation limit.
The results show great energy savings with, in some cases,
very low overhead. However, this work targets only GAMESS.
The models were later used to design a tool that distributes
a power budget over socket and memory [10]. However, the
tool computes the performance obtained with all core and
uncore frequencies, rather than adapting to the behavior of
the applications like DUF.

The work presented in [4] is the closest to DUF. In sec-
tion III-C, we compared DUF to our own implementation of
UPSCAVENGER. We showed that although UPSCAVENGER
is able to provide great power savings, DUF manages to better
respect the performance slowdown while still providing power
savings.

V. CONCLUSION AND FUTURE WORK

This paper presents DUF, a daemon process that dynami-
cally adapts the uncore frequency in order to reduce the power
consumption of applications while limiting the performance
degradation to a user-defined limit. The evaluation shows that
DUF significantly reduces the power and energy consumption
while respecting the slowdown limit. It also shows how uncore
frequency can be used as a leverage to improve performance.

As a future work, we plan to further study how to dynami-
cally set the power cap to the application need and combine it
to uncore frequency management. We also plan to target DVFS
in DUF. Finally, since DUF handles each socket separately,



we will study how applications with different behaviors can
be run on each socket in order to maximize power savings.
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