
HAL Id: hal-02401796
https://hal.science/hal-02401796v1

Preprint submitted on 10 Dec 2019 (v1), last revised 2 Aug 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DUF : Dynamic Uncore Frequency scaling to reduce
power consumption

Etienne André, Remi Dulong, Amina Guermouche, François Trahay

To cite this version:
Etienne André, Remi Dulong, Amina Guermouche, François Trahay. DUF : Dynamic Uncore Fre-
quency scaling to reduce power consumption. 2019. �hal-02401796v1�

https://hal.science/hal-02401796v1
https://hal.archives-ouvertes.fr

RESEARCH REPORT

DUF : Dynamic Uncore Frequency scaling to
reduce power consumption

Étienne André∗, Rémi Dulong∗†, Amina Guermouche∗, François Trahay∗
∗ Télécom SudParis

Institut Polytechnique de Paris
Evry, France

† University of Neuchâtel
Neuchâtel, Switzerland

Email : first.last@telecom-sudparis.eu

Abstract—Reducing the power consumption of applications has
become is one of the key challenges in high performance com-
puting. Recent processor architectures differentiate the processor
core frequency (that affects the computation units and the L1
and L2 caches) from its uncore frequency (that affects the last
level cache and the memory controller). As a consequence, in
addition to tuning processor core frequency with DVFS, power
consumption can also be controlled through Uncore Frequency
Scaling (UFS).

In this paper, we study how the uncore frequency impacts
parallel applications performance and power consumption. We
also propose DUF, a runtime system that dynamically adapts the
uncore frequency in order to reduce an application power con-
sumption with a user-defined limit on performance degradation.

We evaluate DUF on 3 different architectures. The evaluation
shows that when allowing a 10 % performance degradation, DUF
can reduce the power consumption of applications by up to 21 %.
We also show that DUF can reduce the total energy consumption
of by up to 16.56%.

Index Terms—Green computing, Power consumption, Uncore
frequency, High Performance Computing

I. INTRODUCTION

Reducing the power consumption of supercomputers has
become one of the key challenges in high performance com-
puting. As a matter of fact, Summit, the most powerful
supercomputer consumes 10.90 MW [14] while the US De-
partment of Energy sets a limit of 20 MW for future exascale
machines [1].

Dynamically adapting the processor frequency according to
the application workload is a common technique to control
power consumption. It is widely used in recent architectures
where limiting the power consumption and respecting the
thermal design power (TDP), while using the processor to
its maximum capacity (number of cores, vectorized instruc-
tions, . . .) requires to lower the CPU frequency, which may
negatively impact performance.

One major change that was observed since Intel Haswell
processors is the definition of core and uncore frequency do-
mains. In other words, recent processor architectures differen-
tiate the processor core frequency (that affects the computation
units and the L1 and L2 caches) from its uncore frequency
(that affects the last level cache and the memory controller) [7].
Uncore frequency existed in older processors but was either

fixed or sharing the CPU domain [6]. Since Haswell proces-
sors, it is possible to set the uncore frequency independently.
As a consequence, processors now have Uncore Frequency
Scaling (UFS) that handles this uncore frequency. UFS sets
the uncore frequency according to the CPU frequency, the
energy and performance bias hints and cores stall cycles [6].

In this paper, we study how the uncore frequency impacts
parallel applications performance and power consumption on
three different architectures. We also propose DUF, a dae-
mon that dynamically adapts the uncore frequency in order
to reduce an application power consumption with a user-
defined limit on performance degradation. DUF can be seen as
providing different uncore frequency governors (performance
at 0% slowdown, powersave at 100% slowdown), in a similar
fashion to what is done for DVFS.

This paper makes the following contributions:

• we study the impact of uncore frequency on the memory
hierarchy and applications power and energy consump-
tion

• we propose, DUF, a daemon that automatically adapts
the uncore frequency in order to reduce a running appli-
cation energy consumption with a limited performance
degradation

• we compare DUF to the default behavior on three archi-
tectures and 11 applications and benchmarks. The experi-
ments show that, (i) DUF reduces the power consumption
by up to 19.21% for HPL (ii) 6% slowdown on MG
allows for more than 24% power savings (iii) DUF has
a small impact on DRAM power consumption showing
more savings than the default behavior

• we show how uncore frequency can be used as a leverage
to improve performance by combining DUF to powercap-
ping

The remainder of this paper is organized as follows: Sec-
tion II present the measurement methodology we used in
our experiments. In Section III, we describe how uncore
frequency impacts the performance and power consumption
of applications. In Section IV, we propose DUF, a daemon
that adapts the uncore frequency to the application behavior in
order to reduce its power consumption. We evaluate DUF in

Section V, and we compare it to the related work in Section VI.
Finally, Section VII concludes the paper.

II. MEASUREMENT METHODOLOGY

This section describes the hardware and software testbed
used in our experiments.

A. Target platform

For the experiments, we used three servers from the
Grid’5000 [3] platform. The nodes are described below and
their characteristics in terms of TDP and frequencies are
summarized in Table I. One should note that while TDP
constitutes a physical hard limit, a processor can briefly go
beyond it due to thermal inertia:

• NOVA is a 23-nodes cluster, where each node is equipped
with 2 Intel Xeon CPU E5-2620 v4 CPUs (8 cores per CPU)
and 64 GiB of memory. We run our experiments nova-1.

• CHIFFLET is an 8-nodes cluster, where each node is
equipped with 2 Intel Xeon E5-2680 v4 CPUs (14 cores
per CPU) and 768 GiB of memory. We used chifflet-1 for
our experiments.

• YETI is a 4-nodes cluster. Each node is equipped with four
Intel Xeon Gold 6130 CPUs (16 cores per CPU). Each
NUMA node has 64 GiB of memory. Thus, YETI has 64
cores and 256 GiB of memory in total. In all experiments,
we used yeti-2.

We chose these nodes because they provide various char-
acteristics: NOVA sets the uncore frequency to the maximum
when it detects activity on the CPU. CHIFFLET and YETI use
more complex uncore frequency scaling algorithms where the
uncore frequency varies depending on the CPU load. All plat-
forms run under Intel Pstate with performance governor. Note
that, for all our experiments, hyperthreading was disabled.

NOVA CHIFFLET YETI
number of cores 16 28 64
microarchitecture Broadwell Broadwell Skylake

base frequency (GHz) 2.1 2.4 2.1
TDP (W) per socket 85 120 125

uncore frequency (GHz) [1.2-2.7] [1.2-2.7] [1.2-2.4]

TABLE I: Target platforms characteristics extracted from
processors documentation

B. Target applications

Throughout this study, we used several applications. In this
section, we present the applications that we used for all our
experiments.

On all platforms, applications were compiled with gcc 6.3.0
with -O3 flag and the machines were running Linux version
4.9.0-9. HPL, LAMMPS and nwchem were compiled against
Open MPI 3.1.4. Finally, all platforms cores were used during
all the experiments.

1) NAS Parallel Benchmarks: The NAS Parallel Bench-
marks [2] provide a set of small applications used to evaluate
the performance of supercomputers. We used the following
benchmarks: BT, CG, EP, FT, LU, MG, SP, UA from NPB-
3.3.1 OpenMP version. We chose the problem size so that
each application execution time is in the [30s-200s] range. On
NOVA EP, and MG were run using class D while on CHIFFLET,
FT was also run using the class D problem size. The remaining
benchmarks were run using class C. On YETI, all benchmarks
were run using class D except SP for which we used class C.
The OpenMP threads were bound to cores in a round-robin
fashion.

2) High Performance Linpack: High Performance Linpack
(HPL) [9] is a software package that solves dense linear alge-
bra systems. It is used as a reference benchmark to compute
the performance of the supercomputers in the TOP500 [14].

We used HPL version 2.3 compiled using the Math Kernel
Library (MKL) version 2019.1.144. HPL takes a configuration
file where we only modified the problem size (N), the block
size (NB) and the processes grid (PxQ). We set NB to 224
on all platforms. N was set to 58912 on NOVA, 62720 on
CHIFFLET and 91840 on YETI. (PxQ) was set to (4x4), (4x7)
and (8x8) on NOVA, CHIFFLET and YETI respectively.

3) LAMMPS: LAMMPS [10] is an MPI application that
performs molecular dynamics simulation. We used the input
file in.lj provided for the accelerate suite where we set the
run value to 50000. We used commit version aa2b88578.

4) nwchem: Nwchem [17] is a computational chemistry ap-
plication. We used the input data set 3carbo_dft.nw from
the qdm provided files. We used commit version 67f5237ab.
Note that nwchem problem size depends on the number of
processes being used.

C. Measurement framework

As stated before, our work is divided in two part : (i)
understanding the behavior and impact of uncore frequency
(section III) and (ii) providing DUF, an uncore frequency
scaling daemon.

In the first part of the paper (section III), we use
LIKWID [16] to set the uncore frequency and to mea-
sure the power consumption of the applications. We use
likwid-perfctr command from LIKWID version 4.3.0.
This command reads hardware counters provided by the Intel
RAPL interface. These counters provide energy consumption
information for components such as the processor and the
DRAM. On processors like Intel Sandy Bridge, RAPL is based
on a modeling approach. Since the Intel Haswell generation,
processors have fully integrated voltage regulators (FIVR) that
provide actual measurements and allow for more accuracy [6].

All the measurements performed with LIKWID were done
every second, with no overhead for all the applications. Re-
garding measurements errors, all configurations show a small
standard deviation.

In the section V, we describe DUF which relies on flops and
memory bandwidth measurements. These measurements were
collected using the PAPI library [13] with git commit version

application Power (Watt) ufreq (GHz)

N
O

V
A

HPL 65.39 2.7
NPB CG 38.89 2.7
NPB EP 41.72 2.7
NPB MG 44.55 2.7

C
H

IF
FL

E
T HPL 120.48 2.4

NPB CG 79.2 2.7
NPB EP 100.83 2.7
NPB MG 82.69 2.7

Y
E

T
I

HPL 124.61 [1.6-1.7]
NPB CG 123.37 [2.3-2.4]
NPB EP 116.08 2.4
NPB MG 123.32 [2.2-2.3]

TABLE II: Average observed uncore frequency on NOVA,
CHIFFLET and YETI.

ceb64276. We did not use LIKWID because we observed
an overhead when reducing the measurement period. LIKWID
was only used to set the uncore frequency. Note that PAPI is
also used to measure the power consumption in section V.

D. Uncore frequency scaling default behavior

In order to understand the Uncore Frequency Scaling (UFS)
default behavior on our experimental testbed, we measure the
average uncore frequency when applications with different
profiles run. For that purpose, we use CG, EP, and MG from
the NAS Parallel Benchmarks [2] and HPL [9]. Section III
provides a detailed characterization of the applications.

Table II shows the average uncore frequency on the different
applications and the different platforms. It also provides the
average power consumed by the applications. For each plat-
form, the uncore frequency is measured for each socket and
we report the average observed uncore frequency.

On NOVA, UFS sets the uncore frequency to its maximum
(2.7 GHz) for both sockets. On CHIFFLET, CG, EP and MG
run at the maximum uncore frequency (2.7 GHz) on both
sockets. The uncore frequency for HPL is lower (2.4 GHz), but
it remains higher than the minimum uncore frequency on this
machine (1.2 GHz). We also observe that HPL reaches the
thermal design power (TDP) of the machine (120 W). This
behavior suggests that on CHIFFLET, the Uncore Frequency
Scaling policy first sets the uncore frequency to its maximum,
and then reduces its when the TDP is reached.

A similar behavior is observed on YETI: EP has a limited
power consumption. Thus, the uncore frequency is set to the
maximum (2.4 GHz). Meanwhile, since CG, MG, and HPL
reach the TDP, their uncore frequency is reduced. We also
observe that while the uncore frequency is set for each socket,
the four sockets on YETI have similar behavior: for instance,
for HPL, two sockets have an uncore frequency of 1.6 GHz
while the others have an uncore frequency of 1.7 GHz.

III. IMPACT OF UNCORE FREQUENCY ON PERFORMANCE
AND POWER CONSUMPTION

In this section, we evaluate how the uncore frequency im-
pacts the performance and the power consumption of parallel
applications. For that purpose, we run experiments on YETI.

 0

 20

 40

 60

 80

 100

 120

L1 L2 L3 RAM

L
a
te

n
c
y
 (

n
s
)

Memory depth

1.2 GHz
1.9 GHz
2.4 GHz

(a) latency

 0

 20

 40

 60

 80

 100

 120

 1
.2

 1
.3

 1
.4

 1
.5

 1
.6

 1
.7

 1
.8

 1
.9 2

 2
.1

 2
.2

 2
.3

 2
.4

B
a
n
d
w

id
th

 (
G

iB
/s

)

Uncore frequency (GHz)

L1 cache
L2 cache
L3 cache
Memory

(b) bandwidth

Fig. 1: Uncore frequency impact on memory performance

Its L1 cache is divided in 2x32 KiB (instruction and data). The
L2 cache size is 1 MiB while the L3 cache size is 22 MiB.

A. Impact on the memory hierarchy

In order to assess the impact of uncore frequency on the
performance of memory, we measure the memory latency and
bandwidth using the lmbench benchmark [8]. Figure 1 shows
the impact of uncore frequency on the different cache levels
and the main memory regarding both latency (Figure 1a) and
bandwidth (Figure 1b) on YETI.

Figure 1a presents the impact of three uncore frequencies on
cache and memory latency. The results show that the uncore
frequency does not impact L1 and L2 latencies. As described
in [7], the uncore frequency affects memory access latency to
the L3 cache and to the main memory. More specifically, the
latency when accessing the L3 cache is 20 ns with an uncore
frequency of 2.7 GHz, while it takes 35 ns when the uncore
frequency is 1.2 GHz. Similarly, accessing the main memory
costs up to 93.5 ns with an uncore frequency of 2.7 GHz, and
up to 117.6 ns when the uncore frequency is 1.2 GHz.

Figure 1b shows that uncore frequency has no impact on
L1 and L2 cache bandwidth. For L3 cache and main memory,
the higher the frequency, the larger the bandwidth.

As a conclusion, uncore frequency has no impact on L1
and L2 cache, but impacts L3 cache and main memory. As
a matter of fact, decreasing uncore frequency has a negative
impact on L3 cache and main memory latency and bandwidth.

B. Impact on applications performance

Figure 2 shows the performance of the NAS Parallel bench-
marks (NPB) as the uncore frequency varies. The results are
presented as a percentage over the default execution time for
each benchmark.

-20

 0

 20

 40

 60

 1
.2

 1
.3

 1
.4

 1
.5

 1
.6

 1
.7

 1
.8

 1
.9 2

 2
.1

 2
.2

 2
.3

 2
.4

S
lo

w
d
o
w

n
 (

%
)

uncore frequency (GHz)

bt
cg
ep
ft

lu
mg
sp
ua

Fig. 2: Impact of uncore frequency on the performance of NAS
Parallel Benchmarks on YETI.

Kernel perf. degradation (%) uncore cost (%) comp. intensity
BT 20.2 29.1 1.75
CG 46.4 93.3 0.17
EP 0.2 0.9 60.42
FT 34.7 68.2 0.51
LU 17.4 33.3 1.45
MG 65.6 50.0 0.33
SP 50.4 82.6 0.19
UA 23.3 33.2 0.0052

TABLE III: Characterization of the NPB applications on YETI

For all the tested applications, the best performance is
obtained with the highest uncore frequency. Lowering the un-
core frequency significantly degrades the performance of most
applications such as MG (65 % performance degradation).
However, the performance of EP is not affected by the uncore
frequency (less than 0.2 % performance variation).

In order to characterize the NPB applications, we analyze
them using the NumaMMA memory profiler [15] with an
uncore frequency of 2.4 GHz. NumaMMA uses Intel Precise
Event-Based Sampling (PEBS) to collect information on an
application memory access and it reports, for each sample,
which level of the memory hierarchy was accessed (L1 cache,
L2 cache, etc.) as well as the memory access latency. We
use this information to compute, for each application, the
uncore cost, which corresponds to the time spent accessing
data in the uncore part of the memory hierarchy (ie. L3 cache,
and RAM). The uncore cost is expressed as a percentage
of the total time spent accessing data from any part of the
memory hierarchy. Table III reports the measured performance
degradation, the uncore cost, and the computational intensity
of the applications. We observe that the applications with
a high uncore cost (such as CG, FT, MG, or SP) are the
most impacted by the uncore frequency. On the contrary, the
applications whose memory accesses are mostly in the L1 or
L2 cache (such as BT, EP, LU, or UA) are less affected by
the uncore frequency.

Table III also shows the computational intensity of the
applications over their entire execution. It indicates that BT,
EP, LU are CPU-intensive while CG, FT, MG, SP and UA are
memory intensive.

C. Impact on application power consumption

Figure 3 shows the impact of uncore frequency on the power
consumption of the processors (Figure 3a) and the memory
(Figure 3b), and the total energy consumption of applications
(Figure 3c).

Figures 3a and 3b show that the higher the frequency the
larger the power consumption of both the processor and the
DRAM. For instance, at 1.2 GHz, CG consumes roughly 74%
of the default power consumption and 91.86% of the default
DRAM power consumption. Thus, the uncore frequency sig-
nificantly impacts the power consumption of all the tested
applications. As expected, memory-intensive applications have
the most package power consumption difference between the
minimum and maximum frequency. Regarding DRAM power
consumption, the uncore cost provided in Table III seems to
be a good indicator of larger DRAM power consumption. For
instance, UA has a very low computational intensity, indicating
that it is memory-intensive. However, as its uncore cost is
33.2%, this indicates that most of its accesses are in L1 and
L2 cache which explains why its DRAM power savings are
low compared to the other memory-intensive applications such
as CG.

As described in section III-B, reducing the uncore frequency
also increases the completion time of most applications. Thus,
the total energy consumption may be reduced only for some
applications, as shown in Figure 3c. For instance, since EP
performance is not affected by a lower uncore frequencies
while its power consumption is reduced, its total energy
consumption at 1.2 GHz is 16.6 % lower than when running
at the default frequency. On the contrary, although using a low
uncore frequency for SP reduces its power consumption by up
to 25%, its performance it largely degraded (up to 50.4 %),
and 2.0 GHz is the most energy efficient uncore frequency.

D. Conclusion

Carefully selecting the uncore frequency for an applica-
tion allows to significantly reduce its power consumption.
However, the performance of some applications are greatly
degraded. As a result, while the best performance is usually
achieved with the highest uncore frequency, significant power
savings can be achieved in return of a performance deteriora-
tion for some applications.

IV. NEW UNCORE FREQUENCY SCALING TOOL

In this section, we describe DUF 1 (that stands for Dynamic
Uncore Frequency scaling), a daemon that dynamically adapts
the uncore frequency while a parallel application runs in order
to trade a limited performance degradation for power savings.
The aim of DUF is twofold: to reduce the power consumption
of an application, and to limit the performance degradation to
a user-provided upper-bound.

1available as open-source at:
https://gitlab.com/parallel-and-distributed-systems/DUF

-20

 0

 20

 40

 60

 1
.2

 1
.3

 1
.4

 1
.5

 1
.6

 1
.7

 1
.8

 1
.9 2

 2
.1

 2
.2

 2
.3

 2
.4

P
K

G
 P

o
w

e
r

s
a

v
in

g
s
 (

%
)

uncore frequency (GHz)

bt
cg
ep
ft

lu
mg
sp
ua

(a) PKG power

-20

 0

 20

 40

 60

 1
.2

 1
.3

 1
.4

 1
.5

 1
.6

 1
.7

 1
.8

 1
.9 2

 2
.1

 2
.2

 2
.3

 2
.4

D
R

A
M

 p
o

w
e

r
s
a

v
in

g
s
 (

%
)

uncore frequency (GHz)

bt
cg
ep
ft

lu
mg
sp
ua

(b) DRAM power

-20

 0

 20

 40

 60

 1
.2

 1
.3

 1
.4

 1
.5

 1
.6

 1
.7

 1
.8

 1
.9 2

 2
.1

 2
.2

 2
.3

 2
.4

E
n

e
rg

y
 s

a
v
in

g
s
 (

%
)

uncore frequency (GHz)

bt
cg
ep
ft

lu
mg
sp
ua

(c) Total energy

Fig. 3: Uncore frequency impact on NAS Parallel Benchmarks processor and memory power consumption and on the total
energy consumption. The results are presented as savings over the default power consumption on YETI.

A. Overview of DUF

DUF runs as a daemon that aims at lowering the power
consumption while limiting the performance degradation to
an upper threshold. To do so, when starting the daemon, the
user specifies a set of sockets to monitor, and a maximum per-
formance degradation tolerance. DUF then periodically invoke
its measurement module that collects the CPUs performance
counters. Based on the collected data, the regulator module de-
cides whether the uncore frequency should be changed or not.
The decision algorithm described in section IV-C applies for
each user-specified socket. It can be summarized as follows:
DUF detects the applications phases (eg. memory intensive
vs compute intensive) and, for each phase, measures the
performance obtained with the maximum uncore frequency.
It then decreases the uncore frequency until the performance
degradation reaches the user-specified limit.

B. Measurement module

DUF measurement module collects the CPUs hardware
counter in order to guide the regulator module in its decisions.
DUF uses PAPI to read the performance counters related to
the FLOPs and to the memory bandwidth. It then computes
the arithmetic intensity as the ratio between the FLOPs and
the memory bandwidth. An arithmetic intensity greater than 1
indicates that the application mostly performs computation. An
arithmetic intensity lower than 1 indicates that the application
is currently memory intensive. Note that, at every time step,
DUF prints the different measurements in addition to the
power consumption collected using PAPI.

C. Regulator module

In order to decide which uncore frequency to apply to a
socket, DUF regulator module runs Algorithm 1 after every
measurement period. If a new application phase is detected
(lines 6 to 11), DUF sets the maximum uncore frequency and
measures the performance counters max flops and max bw
(the achieved memory bandwidth). Note that we also assume
that if, during the execution of the application, the flops and
the memory bandwidth increase by 100%, without changing
the phase, DUF resets the uncore frequency in order have
accurate measurements (lines 15-18).

Otherwise, DUF checks how the previous decision impacted
flops and memory bandwidth. DUF considers that if the flops
drop compared to the previous iteration, but the memory
bandwidth remains stable, then the drop was the behavior
of the application itself rather than the impact of uncore
frequency. Based on this assumption, DUF decreases uncore
frequency (lines 12-14) in this case. Note that DUF considers
the memory bandwidth as stable if it decreased by less
than the tolerated slowdown. In other words, if the tolerated
performance loss is 20% then the bandwidth is considered as
stable if it dropped by less than 80%.

Finally, if the current uncore frequency does not degrade
the maximum performance for the current phase more than the
user-specified threshold, DUF decreases the uncore frequency
(lines 19-21). If the minimum uncore frequency is reached,
DUF increases the measurement period as we reach a stable
phase (line 23). Note that we limit the measurement period
to 10 times the initial period. Note also that every time DUF
changes the uncore frequency, it resets the period to the initial
period.

In case the performance degradation exceeds the tolerance,
DUF increases the uncore frequency in order to remain within
the tolerated performance drop (lines 24-25). If the maximum
uncore frequency is reached, we consider that the application
behavior changed and update the maximum flops to the current
flops and decrease the uncore frequency (lines 26-27).

V. EXPERIMENTS

In this section, we evaluate whether DUF meets its two
objectives as stated in section IV: saving power, while limiting
the performance degradation to a user-defined limit.

In order to study the performance of DUF in terms of
execution time and power consumption, we run DUF with
the aforementioned applications on NOVA, CHIFFLET and
YETI. For each application, we use DUF with four different
slowdown tolerances: DUF0 (0 % tolerance), DUF5 (5 %
tolerance), DUF10 (10 % tolerance), and DUF20 (20 %
tolerance). The results presented in this section are a mean
over 10 runs.

On each platform, we measured the slowdown (Fig-
ures 4a, 4c and 4e), the socket power savings (Figures 4b, 4d

Algorithm 1 Uncore Frequency Scaling algorithm
1: period . interval between measures
2: phase← unknown
3: loop . Every period
4: flops← measure flops()
5: oi← measure operational intensity
6: if oi > 1 and phase! = CPU then
7: phase← CPU
8: FREQ=MAX UFREQ
9: else if oi < 1 and phase! = memory then

10: phase← memory
11: FREQ=MAX UFREQ
12: if flops− flops < old flops then
13: if bw/max bw > 1− perf loss then
14: DECREASE FREQUENCY
15: if flops > 2 ∗ old flops then
16: if bw > 2 ∗ old bw then
17: FREQ=MAX UFREQ
18: else DECREASE FREQUENCY
19: if flops > perf loss ∗max flops then
20: if freq > min freq then
21: DECREASE FREQUENCY
22: else if period < 10 ∗ period then
23: period = period ∗ 2
24: else if freq < max freq then
25: INCREASE FREQUENCY
26: else max flops← flops
27: DECREASE FREQUENCY

and 4f), and the total energy savings (Figures 4g, 4h and 4i).
All the results are presented as a percentage of decrease
or increase over the default values on each platform. In
addition to DUF results, the figures also present the best and
worst possible values obtained by manually setting the uncore
frequency. Note that we use the terms socket, processor and
package interchangeably.

All the comparisons that DUF makes consider that a 2 %
difference is considered as a measurement error. Finally, we set
DUF uncore frequency step to 100 MHz and the measurement
period to 200 ms. Note that we varied the measurement period
from 10 ms to 500 ms and did not observe any overhead.
However, at 10 ms, some applications keep changing phases
(from CPU to memory and vice versa). As a consequence, for
those applications, DUF keeps resetting the uncore frequency
(especially when the tolerated slowdown is low) and the
behavior is equivalent to the default behavior. On the other
hand, periods such as 500 ms are too large for short running
applications such as LAMMPS or CG on CHIFFLET. From
our observations, 200 ms offers a good trade off for all the
applications. Note that we discuss how DUF could handle
some of these limitations in paragraph V-F.

Note that on YETI, we do not present the results on
LAMMPS and MG. This is because, unlike the other applica-
tions, these two applications show an overhead when we do

not use the regulator of DUF. In other words, the measurement
itself impacts these two applications. We are still investigating
the reasons behind this behavior. This is also the case for BT
and nwchem but the measurement overhead is small (1.6%).
As a consequence, BT and nwchem results are presented for
YETI. Finally, the class D problem for FT could not run on
NOVA while the class C execution time is too short. Thus, we
do not present FT results on NOVA.

A. DUF impact on execution time

This section describes the impact of DUF on the applica-
tions execution time as reported in Figures 4a, 4c, and 4e.

The results show that, on all platforms, DUF remains within
the tolerated slowdown for most of the applications. For some
applications, an overhead is observed but it is still within the
2% measurement error considered by DUF.

In the remaining of this section, we discuss the three
behaviors we observed: applications which slowdown exceed
the user-defined limit, applications which performance are not
degraded, and applications which slowdown reach the user-
defined limit,

1) Slowdowns that exceed the tolerance threshold: Two
applications exceed the user-provided limit: SP on NOVA when
running with DUF20, and CG on YETI when running with
DUF5 and DUF10. We could not find the reason behind the
small overhead on CG, and we are still investigating.

When running SP with DUF20 on NOVA, the performance
degradation reaches 24 %. This overhead is due to SP memory
bandwidth usage. As stated in section IV-C, with DUF20, the
tolerated bandwidth drop is set to 80 %. However, for SP, 80 %
bandwidth decrease causes a large performance degradation.
Note that we tried a 85% lower bound on the bandwidth and
observed that in that case, SP slowdown was within the 20 %
limit. This problem is further discussed in section V-F.

2) Applications which performance do not degrade: Al-
though a performance degradation limit is allowed to appli-
cations running with DUF, some of them do not slow down
up to the limit. For most of the applications, this is due to
their behaviors. For instance, as EP is not impacted by uncore
frequency as discussed in III-B, it shows no overhead. The
other applications either switch phases rather often (nwchem)
or see a sudden increase in their flops and memory bandwidth
(MG). Both of these behaviors lead DUF to reset the uncore
frequency. Note that DUF still manages to reduce the uncore
frequency as discussed in section V-B. BT, on the other hand,
exhibits a different behavior where the flops actually drop by
more than the tolerated slowdown at some point, which lead
DUF to increase the uncore frequency. This is also the case
for UA, which in addition to that, needs to reach very low
frequencies to cause any slowdown (as shown in Figure 2).

The other reason behind the absence of overhead is the
condition on the memory bandwidth drop as stated in sec-
tion V-A1. With DUF5 on NOVA, SP shows no slowdown.
This is because, at some point, the memory bandwidth drop
by more than 95% which leads DUF to increase the uncore
frequency.

3) Slowdowns that reach the tolerance threshold: For most
of applications, the observed slowdown is close to the tolerated
slowdown or to the maximum possible slowdown (for the
situations where the maximum slowdown is lower than the
tolerated slowdown).

This indicates that DUF manages to (i) detect phase
changes, and (ii) properly regulates the uncore frequency. For
instance, on NOVA, one can see that HPL, LAMMPS, CG
and LU are very close to the tolerated slowdown while on
CHIFFLET only nwchem shows no change at all while hpl
shows an effect with DUF10 and DUF20. On YETI,

4) Conclusions: The experiments using DUF on different
applications and different platforms allowing 4 different slow-
downs show that : (i) DUF manages to respect the maximum
tolerated slowdown for all applications but one, and (ii) DUF
manages to get as close as possible to the tolerated slowdown.

B. DUF impact on socket power consumption

Figures 4b, 4d and 4f show the package power saving when
using DUF on NOVA, CHIFFLET and YETI respectively. The
figures show that most applications show power savings on all
platforms.

However, running nwchem with DUF on NOVA does not re-
duce the application power consumption. DUF only manages
to slightly decrease the uncore frequency for a short moment
before increasing it, as explained in section V-A2.

For the other applications, DUF manages to provide power
saving reaching maximum savings with DUF20 except for
EP. For instance, HPL provides the best saving at 19.21 % on
NOVA while CG reaches 22.55 % on CHIFFLET and 16.34%
on YETI.

EP reaches 12.5 % power saving on YETI regardless of the
tolerated slowdown. This is because EP is not impacted by
uncore frequency which is set to the minimum on all platform.
Note that the power savings observed on Figure 3a for EP are
16.67 %. The difference in power savings lies in the time DUF
requires to reach the minimum frequency as it decreases it by
100MHz at each time step.

The figures also show that in some cases the power con-
sumption of an application is reduced without impacting the
performance. On NOVA, this is the case for BT, MG and UA.
For instance, when running BT on NOVA, DUF10 reduces
the performance by only 0.67 %, but the power savings reach
4.89 %. A similar behavior is observed with CG, MG, and
SP on CHIFFLET. The reason behind this behavior is that
DUF manages to reduce uncore frequency but the application
behavior does not allow DUF to keep a low frequency. Thus,
during the steps when the uncore frequency is reset, DUF
manages to reduce the uncore frequency.

With DUF20, HPL power savings are 4.3 % on CHIFFLET
while we observe a high slowdown (21.84 %). This is because
HPL power consumption is roughly the same until 1.6 GHz
(when manually setting the uncore frequency). Moreover,
when manually setting the uncore frequency to 1.4 GHz in
order to reach a 20% slowdown, the observed that the power
consumption is reduced by 5.4 %. The uncore frequency when

using DUF reaches 1.4GHz, but the application does not run
all the time at this frequency, which explains the difference.

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 0 20 40 60 80 100 120 140

U
n

c
o

re
 F

re
q

u
e

n
c
y
 (

G
H

z
)

Time (s)

socket 0
socket 1

Fig. 5: Uncore frequency behavior during SP execution time
when using DUF on CHIFFLET with 20% tolerated slowdown

Moreover, as DUF handles each socket separately, the
uncore frequency may not be the same on each socket. Figure 5
shows, for SP on CHIFFLET, how the uncore frequency varies
on each socket when using DUF20. It shows that, on socket
0, the frequency is most of the time at the minimum while
it varies between 2.4 GHz and the maximum (2.7 GHz) on
socket 1. This is due to the fact that on socket 1, both the
flops and the memory bandwidth follow a pattern where they
both increase, then both decrease then both increase . . . etc.
Thus, DUF decreases the uncore frequency, then increases it
and so on and so forth. On the other hand, on socket 0, DUF
manages to reduce the uncore frequency since the pattern is
different as the memory bandwidth is stable.

Finally, Figure 5 also shows that DUF manages to reach a
stable phase (on socket 0) where the uncore frequency does
not vary until a variation is detected. It does so for all the
applications which behavior remain stable for some time.

C. DUF impact on DRAM power consumption

Although the power consumption of DRAM is small relative
to the socket power consumption, it may still significantly
affect the total power consumption. In our experiments, the
impact of DUF on the DRAM power consumption is roughly
the same on all platforms. Figure 6 reports the DRAM power
savings on CHIFFLET.

-4

-2

 0

 2

 4

 6

 8

 10

hp
l

la
m

m
ps

nw
ch

em BT
C
G EP FT LU M

G SP
U
A

D
R

A
M

 p
o

w
e

r
s
a

v
in

g
s
 (

%
)

DUF0
DUF5

DUF10

DUF20
min ufreq
max ufreq

Fig. 6: DUF impact on DRAM power consumption on CHIF-
FLET for a 200ms period measurement

The figure shows that for most applications, the DRAM
power consumption corresponds to the default DRAM power

consumption ± 2 %. The only exception is HPL whose DRAM
power consumption is reduced by up to 7.89 %.

D. DUF impact on energy consumption

Figures 4g, 4h and 4i show the impact of DUF on appli-
cation total energy consumption. In other words, the figures
show the sockets + memory energy consumption. For most
applications, using DUF allows to save energy. However, as
the energy consumption is computed as the product of the
execution time and the power consumption, if the application
slowdown is higher than the power consumption, then DUF
actually wastes energy instead of saving it.

As a consequence, limiting the slowdown to up to 10 %
allows to greatly reduces the power consumption, which
reduce the overall energy consumption. For instance, a 6 %
performance degradation for MG on CHIFFLET leads to
20.5 % power savings with DUF20. However, using DUF20

greatly reduces the performance of some applications while
only slightly reducing their power consumption. As a result,
the overall energy consumption is not always reduced with
DUF20. This is the case for SP (2.78 %) on NOVA, HPL
(5.03 % with DUF10, and 15.84% with DUF20) on CHIF-
FLET, and LU (4.07 %) on YETI.

On all the platforms, EP is the application with the best
energy savings (up to 16.54 % on NOVA). This is due to the
fact that lowering the uncore frequency does not affect EP
performance, but does reduce its power consumption. As a
result EP energy consumption is significantly reduced.

E. Going further with DUF : the impact of powercapping

As the uncore frequency has a positive impact on power
consumption, it can be used as a leverage to improve perfor-
mance. As a matter of fact, when reaching thermal design
power, the CPU frequency may be reduced to respect the
power limit, which degrades the performance.

Many of the applications that we studied merely reach the
thermal design power on the tested platforms. In order to put a
stronger constraint, we use a powercapping technique on YETI
on BT, EP, and FT in a similar fashion as described in [5].
We chose these three applications as they exhibit different
behavior as shown in Table III. Note that powercapping
may become a solution to limit power consumption as DoE
plans to limit the power budget for the exascale machines to
20 MW [1].

Figure 7 shows the performance increase when using DUF
compared to YETI default frequency scaling. We set the
powercap to 100W for BT and FT, and 98W for EP. EP
powercap is lower as its power consumption in the default
behavior is not as high as BT and FT.

The results show that for all applications, using DUF
improves the performance, with a maximum of 14.59% for
EP. The reason behind this behavior lies in the core frequency.
For instance for FT, when the default behavior is used under
powercapping, the average CPU frequency on all four sockets
is 1.97 GHz while the uncore frequency does not go below
2.23 GHz. When using DUF, the CPU frequency is 2.27 GHz

and the uncore frequency go as low as 1.7GHz. This shows
that even if YETI uncore frequency scaling algorithm is more
reactive to the behavior of the applications, DUF manages to
improve performance. Note that we also studied the impact of
power consumption, and as CPU frequency is increased, all
the applications reach the powercap, thus no power is saved.

-5

 0

 5

 10

 15

 20

BT
EP FT

P
e

rf
o

rm
a

n
c
e

 i
n

c
re

a
s
e

 (
%

) DUF0
DUF5

DUF10
DUF20

Fig. 7: Performance increase when using DUF under power-
capping constraints on YETI

F. Limitations and possible improvements

DUF evaluation shows how it can improve power consump-
tion while respecting the tolerated slowdown. However, we
identified some limitations which are discussed in this section.

As stated in section IV-C, DUF assumes that the band-
width drop is correlated to the performance drop. Although
this assumption did not impact the performance described in
section V-A (except for SP), it does not reflect the real impact
of the memory bandwidth. The best way to handle this issue
would be to model the impact of uncore frequency on memory
bandwidth and integrate the model to DUF.

The other limitation that DUF has is that it considers float-
ing point operations to control the overhead and detect a phase
change. This eliminates the applications that mainly performs
integer operations (IOPS). One solution to the problem would
be to consider the entire operations being performed such as
the UOPS. However UOPS include all operations, which may
impair the results.

Finally, depending on the application, DUF period should
be larger because the application behavior varies too fre-
quently. For now, this is done manually. Working on an
automatic way to adjust the period, by studying how often
the phase changes, is part of our future work. Note that this
solution will not help for applications which behavior varies
within the same phase.

G. Conclusions

This sections presents the results of DUF regarding execu-
tion time, socket and DRAM power consumption and energy
consumption. It also show the potential of uncore frequency
as a leverage to improve performance. The overall conclusions
of DUF are :

• DUF manages to stay within the tolerated slowdown

• DUF manages to reduce the socket and memory power
consumption of the applications

• DUF manages to reduce energy consumption when the
slowdown it not higher than the energy savings

• DUF manages to improve applications performance un-
der power capping constraints by allowing the cores
frequency to be increased

VI. RELATED WORK

One of the main differences between our work and the
following works is that our tool was used on different architec-
tures using different UFS algorithms and providing different
characteristics (vectorization, different TDP, different CPU
frequencies, . . .).

Very few studies exist on uncore frequency. In [4] the
authors provide a machine learning technique to predict the
optimal uncore frequency to be used and showed that the
nature of the application impacts the maximum energy saving
that can be reached. Note that in this study, the authors studied
the impact of different performance loss policies.

Won et al. use a similar approach: they design an artifi-
cial neural network to characterize applications and to apply
the best uncore power management policy to a network of
chips [18]. In this study, the authors emulate a new hardware
mechanism that would implement their approach.

In [12] the authors present a study of the potential energy
savings using DVFS and UFS for GAMESS. The work was
later extended in [11] where a performance model, a power
model and a runtime to adjust both core and uncore fre-
quencies were provided. The runtime also takes a maximum
performance degradation limit. The results show great energy
savings with, in some cases, very low overhead.

The work presented in [5] is the closest to our work. The
authors describe UPSCavenger, an uncore frequency scaling
library which adapts to application phases and manages to
reduce power consumption. Just like DUF and unlike the
default UFS, UPSCavenger tend to reduce uncore frequency
instead of core frequency which explains the performance
improvement under power capping constraints. However, the
provided tool does not consider a performance loss limit.
As a consequence, DUF can be seen as a generalization
of UPSCavenger, as tolerating a 0 % slowdown in DUF is
equivalent to UPSCavenger. Note that we could not compare
DUF to UPSCavenger as its source code is not available.

VII. CONCLUSION AND FUTURE WORK

This paper presents a study on uncore frequency. We start
by studying the impact of uncore frequency on application
performance and power consumption. Then we present DUF,
a daemon that dynamically adapts the uncore frequency in
order to reduce the power consumption of applications while
limiting the performance degradation to a user-defined limit.
The evaluation show that DUF significantly reduce the power
and energy consumption while respecting the slowdown limit.

As a future work, we plan to further study how uncore
frequency and powercapping can be combined, before also
considering CPU frequency.

REFERENCES

[1] Exascale computing project. https://exascale.llnl.gov/.
[2] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter,

L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S.
Schreiber, H.D. Simon, V. Venkatakrishnan, and S.K. Weeratunga. The
nas parallel benchmarks. Int. J. High Perform. Comput. Appl., 5(3):63–
73, September 1991.

[3] D. Balouek et al. Adding virtualization capabilities to the Grid’5000
testbed. In I. Ivanov, Marten van Sinderen, Frank Leymann, and Tony
Shan, editors, Cloud Computing and Services Science, volume 367 of
Communications in Computer and Information Science, pages 3–20.
Springer, 2013.

[4] S. A. Bekele, M. Balakrishnan, and A. Kumar. Ml guided energy-
performance trade-off estimation for uncore frequency scaling. In 2019
Spring Simulation Conference (SpringSim), pages 1–12, April 2019.

[5] Neha Gholkar, Frank Mueller, and Barry Rountree. Uncore power
scavenger: A runtime for uncore power conservation on hpc systems.
In Proceedings of the Conference for High Performance Computing,
Networking, Storage and Analysis, SC’19, 2019.

[6] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer. An Energy Efficiency Feature Survey of the Intel Haswell
Processor. In IEEE Int. Parallel and Distributed Processing Symposium
(IPDPS Workshops), pages 896–904, 2015.

[7] David L Hill, Derek Bachand, Selim Bilgin, Robert Greiner, Per
Hammarlund, Thomas Huff, Steve Kulick, and Robert Safranek. The
uncore: A modular approach to feeding the high-performance cores.
Intel Technology Journal, 14(3), 2010.

[8] Larry W McVoy and Carl Staelin. lmbench: Portable tools for per-
formance analysis. In Proceedings of the Usenix Annual Technical
Conference, USENIX ATC’96, pages 279–294, 1996.

[9] Antoine Petitet, R C. Whaley, Jack Dongarra, and A Cleary. Hpl - a
portable implementation of the high-performance linpack benchmark for
distributed-memory computers. Innovative Computing Laboratory, page
Available at http://icl.utk.edu/hpl/, September 2000.

[10] Steve Plimpton. Fast parallel algorithms for short-range molecular
dynamics. Journal of computational physics, 117(1):1–19, 1995.

[11] Vaibhav Sundriyal, Masha Sosonkina, Bryce Westheimer, and Mark
Gordon. Core and uncore joint frequency scaling strategy. Journal
of Computer and Communications, 06:184–201, 01 2018.

[12] Vaibhav Sundriyal, Masha Sosonkina, Bryce M. Westheimer, and Mark
Gordon. Comparisons of core and uncore frequency scaling modes in
quantum chemistry application gamess. In Proceedings of the High
Performance Computing Symposium, HPC ’18, pages 13:1–13:11, San
Diego, CA, USA, 2018. Society for Computer Simulation International.

[13] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Col-
lecting performance data with papi-c. In Tools for High Performance
Computing 2009, pages 157–173. 2010.

[14] TOP500 Supercomputer Site. http://www.top500.org.
[15] François Trahay, Manuel Selva, Lionel Morel, and Kevin Marquet. Nu-

maMMA: Numa MeMory Analyzer. In Proceedings of the International
Conference on Parallel Processing, ICPP’18, 2018.

[16] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A
Lightweight Performance-Oriented Tool Suite for x86 Multicore Envi-
ronments. In Int. Conf. on Parallel Processing (ICPP Workshops), pages
207–216, 2010.

[17] Marat Valiev, Eric J Bylaska, Niranjan Govind, Karol Kowalski, Tjerk P
Straatsma, Hubertus JJ Van Dam, Dunyou Wang, Jarek Nieplocha,
Edoardo Apra, Theresa L Windus, et al. Nwchem: A comprehensive
and scalable open-source solution for large scale molecular simulations.
Computer Physics Communications, 181(9):1477–1489, 2010.

[18] Jae-Yeon Won, Xi Chen, Paul Gratz, Jiang Hu, and Vassos Soteriou.
Up by their bootstraps: Online learning in artificial neural networks for
CMP uncore power management. In Proceedings of the symposium on
High Performance Computer Architecture, HPCA’14, pages 308–319,
2014.

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

hp
l

la
m

m
ps

nw
ch

em BT
C
G EP LU M

G SP
U
A

S
lo

w
d
o
w

n
 (

%
)

(a) slowdown on NOVA

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

hp
l

la
m

m
ps

nw
ch

em BT
C
G EP LU M

G SP
U
AP

a
c
k
a
g
e
 p

o
w

e
r

s
a
v
in

g
s
 (

%
)

(b) package power on NOVA

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

hp
l

la
m

m
ps

nw
ch

em BT
C
G EP FT LU M

G SP
U
A

S
lo

w
d
o
w

n
 (

%
)

(c) slowdown on CHIFFLET

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

hp
l

la
m

m
ps

nw
ch

em BT
C
G EP FT LU M

G SP
U
AP

a
c
k
a
g
e
 p

o
w

e
r

s
a
v
in

g
s
 (

%
)

(d) package power on CHIFFLET

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

hp
l

nw
ch

em BT
C
G EP FT LU SP

U
A

S
lo

w
d
o
w

n
 (

%
)

(e) slowdown on YETI

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

hp
l

nw
ch

em BT
C
G EP FT LU SP

U
AP

a
c
k
a
g
e
 p

o
w

e
r

s
a
v
in

g
s
 (

%
)

(f) package power on YETI

-5

 0

 5

 10

 15

 20

hp
l

la
m

m
ps

nw
ch

em BT
C
G EP LU M

G SP
U
A

T
o
ta

l
e
n
e
rg

y
 s

a
v
in

g
s
 (

%
)

(g) total energy on NOVA

-20

-15

-10

-5

 0

 5

 10

 15

 20

hp
l

la
m

m
ps

nw
ch

em BT
C
G EP FT LU M

G SP
U
A

T
o
ta

l
e
n
e
rg

y
 s

a
v
in

g
s
 (

%
)

(h) total energy on CHIFFLET

-10

-5

 0

 5

 10

 15

 20

hp
l

nw
ch

em BT
C
G EP FT LU SP

U
A

T
o
ta

l
e
n
e
rg

y
 s

a
v
in

g
s
 (

%
)

(i) total energy on YETI

DUF 0% performance loss
DUF 5% performance loss

DUF 10% performance loss
DUF 20% performance loss

min uncore frequency
max uncore frequency

Fig. 4: DUF impact on performance, power and energy consumption for a 200ms period measurement

