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† Fundación Lucha contra las Enfermedades Neurológicas Infantiles (FLENI) Montañeses 2325, C1428AQK CABA, Argentina 5 cdigiano@fleni.org.ar Abstract-Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals.

Resumen-La epilepsia es una enfermedad causada por una descarga excesiva de un grupo de neuronas en la corteza cerebral. Obtener esta información a partir de un EEG es un desafío continuo en el procesamiento de se ñales biomédicas. En este artículo se propone un nuevo método para la detección del comienzo de una crisis epiléptica en se ñales de EEG basado en la distribución t-location-scale junto con la varianza y el coeficiente de correlación de Pearson. La clasificación 1-vecino más cercano utilizado alcanzó una sensitividad (Verdaderos positivos) del 91% y una especificidad (Verdaderos negativos) del 95% con un retraso en promedio de 4.5 segundos en las 45 se ñales analizadas, lo que sugiere que es una metodología potencialmente útil para la detección del comienzo de una crisis epiléptica en se ñales de EEG.

I. INTRODUCTION

Neurons generate electrochemical impulses that act on other neurons, glands and muscles to produce human thought, feelings and action. In epilepsy the normal pattern of neuronal activity is disturbed causing strange sensations, emotions and behaviors and can sometimes lead to convulsions, muscle spasms and loss of consciousness [START_REF] Parker | The Official Patient's Sourcebook on Seizures and Epilepsy[END_REF].

Epilepsy is a chronic brain disorder that results from the hyper-excitability of neurons. It is the tendency to have recurrent, unprovoked seizures [START_REF] Smithson | ABC of Epilepsy[END_REF]. Electroencephalography (EEG) is a non-invasive and widely available biomedical modality that is used to make a diagnosis of the latter.

According to the International League Against Epilepsy (ILAE) [START_REF] Fisher | ILAE official report: A practical clinical definition of Epilepsy[END_REF] an epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Elements defining an epileptic seizure include: mode of onset and offset, clinical manifestations and abnormal enhanced synchrony [START_REF] Luders | Textbook of Epilepsy Surgery[END_REF].

The t-location-scale distribution is a statistical model for univariate and multivariate signals that describe its features through three parameters estimated by maximum likelihood: location (µ), shape (ν) and a non-negative scale (σ). This distribution was recently applied in spike-and-wave pattern recognition in epileptic signals [START_REF] Quintero-Rincón | Study on spike-and-wave detection in epileptic signals using t-location-scale distribution and the k-nearest neighbors classifier[END_REF]. Based on the results of this study and [START_REF] Zhu | Analysis of spike waves in epilepsy using hilbert-huang transform[END_REF], [START_REF] Haneef | Functional connectivity homogeneity correlates with duration of temporal lobe epilepsy[END_REF], [START_REF] Paldino | Repeatability of graph theoretical metrics derived from resting-state functional networks in paediatric epilepsy patients[END_REF], the following question arose: what if this distribution could be used to detect a seizure onset in epileptic EEG signals?

A k-nearest neighbor classifier (kNN) has been successful in a large number of classification problems such as handwritten digits, satellite, image signal processing and biosignal patterns. kNN fits a specific point in the EEG data with the k-nearest neighbor EEG data points in the training set. For 1NN this point depends only of 1 single other EEG point. Therefore the similarity between two EEG points is established based on the fitting of the features extracted from the EEG signals. See [START_REF] Quintero-Rincón | Study on spike-and-wave detection in epileptic signals using t-location-scale distribution and the k-nearest neighbors classifier[END_REF]- [START_REF] Acharya | Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals[END_REF] for some recent works in epileptic EEG signals and [START_REF] Muja | Fast approximate nearest neighbors with automatic algorithm configuration[END_REF] for a fast approximate automatic algorithm configuration.

In this paper, a new method is proposed based on parameters of the t-location-scale distribution, the variance (σ 2 ) and the Pearson correlation coefficient (ζ) as features for onset seizure detection in epileptic EEG signals. In addition the 1NN classifier was incorporated based on its classification performance; it is simple, accurate, fast, and has low bias [START_REF] Hastie | The Elements of Statistical Learning Data Mining Inference and Prediction[END_REF].

The remaining paper is organized as follows; Section II describes the methodology, in Section III the methodology is applied to real EEG data and Sections III and IV include the results, discussion, conclusions and future works.

II. METHODOLOGY

Let X ∈ R N ×M denote the matrix gathering M EEG signals x m ∈ R N ×1 measured simultaneously on different channels and at N discrete time instants. In this research the EEG signals of nine patients were analyzed, twenty three bipolar channels per patient. The proposed methodology is composed of three stages. To begin with, 5 channels per patient, where the epileptic seizure was most visible, were selected by an expert neurologist. Since a matrix X exists per patient, M=5 and N is determined by each individual patient according to the length of the seizure. Secondly, two rectangular sliding empirical windows ω(n) i = 1, each with a length of 3 seconds (n ∈ [i : i + 3]) and an overlap of 50% were created and applied to each signal, such that

x i = ω i x m and x (i+1.5) = ω (i+1.5) x m , with 1 ≤ m ≤ M .
The resulting time segmentation of the original channel was analyzed utilizing 5 feature parameters: µ, σ, ν from tlocation-scale distribution, σ 2 (variance) and ζ (Pearson correlation coefficient). Therefore, there are 5 parameters that correspond to each window applied. The third stage includes the implementation of the 1-nearest-neighbor classifier using the feature predictor vector θ = [µ, σ, ν, σ 2 , ζ] associated with each window time segment and the response vector for each signal, both composed of seizure (1) or non-seizure (0). It is important to note that the response vector was generated with the information provided by an experienced neurologist that located the seizure onset and offset. Therefore, the classification resulted in a vector composed of 1's and 0's for each channel. The explanations of parameters used can the found below.

A. t-location-scale distribution

The t-location-scale distribution is a statistical model that belongs to the location-scale family formed by translation and rescaling of the Student's t-distribution.

The probability density function (PDF) of a location-scale distribution, is given by

g(x|µ, σ) = 1 σ ψ x -µ σ (1) 
The probability density function (PDF) of the Student's t-distribution, is given by

ψ(x) = Γ ν+1 2 √ νπ Γ ν 2 ν + x 2 ν -( ν+1 2 ) (2) 
Therefore applying (2) to (1), the probability density function (PDF) of the t-location-scale is obtained:

f tls (x|µ, σ, ν) = Γ ν+1 2 σ √ νπ Γ ν 2 ν + x-µ σ 2 ν -( ν+1 2 ) (3) 
where -∞ < µ < ∞ is the location parameter, σ > 0 is the scale parameter, ν > 0 is the shape parameter, and Γ(.) is the Gamma function. See [START_REF] Quintero-Rincón | Study on spike-and-wave detection in epileptic signals using t-location-scale distribution and the k-nearest neighbors classifier[END_REF] for more details.

B. Pearson correlation coefficient

The Pearson correlation coefficient (ζ) is a variation of the basic correlation equation, it is normalized so the outcome lies between ±1. The modification to the covariance equation for two sliding windows (ζ xix (i+1.5) ) is as follows:

1 (W -1)σ 2 xi σ 2 x (i+1.5) W n=1 (x in -x i )(x (i+1.5)n -x (i+1.5) ) (4) 
Where x i and x i+1.5 are the two sliding windows, W is the length of the window (both windows share the same length), σ 2 xi and σ 2 x (i+1.5) are the variances and x i and x (i+1.5) are the means. If the correlation value is equal to +1 then the two signals are identical, -1 implies that the signals are the exact opposites and if it is equal to 0 there is no correlation [START_REF] Semmlow | Biosignal and Medical Image Processing[END_REF].

C. Variance

The variance is a measure of signal variability irrespective of its average given by

σ 2 = 1 N -1 N i=1 (x (i+1.5) -x) 2 (5) 
where N represent the length of the total signal, x i+1.5 is the sliding window and x is the mean of that given time laps. Note that ( 5) is applied to one window as it was moved along the whole EEG signal.

D. 1-nearest neighbor classifier (1NN)

k-Nearest-neighbor fit uses the observations in the binary training sets

θ 1 = [µ 1 , σ 1 , ν 1 , σ 2 1 , ζ 1 ]
for seizure events and θ 0 = [µ 0 , σ 0 , ν 0 , σ 2 0 , ζ 0 ] for non-seizure events, closest in input space to x to form Y .

Y (x) = 1 k xi∈N k (x) y i (6) 
Where N k (x) is the neighborhood of x defined by the k closest points x i in the training sample. The idea is to find the k observations with x i closest to x in input space, and average their responses. The Euclidean distance metric in a feature space is given by:

d i = ||x i -x 0 || (7) 
In other words, in kNN given a query point x 0 , the k training points x i with i = 1, ..., k closest in distance to x 0 are found, and then classified using the majority vote among the k neighbors. If k = 1 a 1NN classifier is used and Y is assigned the value y i of the closest point x i to x in the training data (based on an Euclidean distance) [START_REF] Hastie | The Elements of Statistical Learning Data Mining Inference and Prediction[END_REF].

The following [START_REF] Hastie | The Elements of Statistical Learning Data Mining Inference and Prediction[END_REF], [START_REF] Alpaydin | Introduction to Machine Learning[END_REF] contain a comprehensive treatment of the mathematical properties of nearest neighbors classifiers.

III. EXPERIMENTS

A. Dataset

In this section the proposed methodology is evaluated using the Children Hospital Boston database. This dataset consists of 36 bipolar 256Hz EEG recordings from pediatric patients suffering from intractable seizures [START_REF] Goldberger | Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals[END_REF]. In this work 45 recordings chosen from 9 different patients were used. Each recording contains a seizure event, whose onset time has been labeled by an expert neurologist. These annotations were used to extract a short epoch from each recording that contains the seizure and short time intervals before and after the crisis. To be exact, if the seizure lasts a given time interval ∆ than the total length of the signal is 3∆ such that the same given time interval is taken before and after the seizure. In the case that the information after or before the seizure is shorter that ∆ than the information available was taken. It is important to note that the patients suffered one seizure in the recording used.

The electrodes where placed according to the International 10-20 system which can be seen in Table I and Figure 1. 

B. Results and discussion

To check the quality of our seizure onset detection classifier, the set was trained off-line with 40 signals with the 5 features for each vector

θ 1 = [µ 1 , σ 1 , ν 1 , σ 2 1 , ζ 1 ]
for seizure events and θ 0 = [µ 0 , σ 0 , ν 0 , σ 2 0 , ζ 0 ] for nonseizure events. The classifier, using Leave-one-out crossvalidation, was applied to the training signals, where leaveone-out refers to a patient which has 5 channels. one patient), which where not included in the training but the seizure onset and offset were known, where predicted. This prediction was done 9 times in order to predict the 5 channels corresponding to each patient, resulting in a total of 45 predictions. The percentage of correct classifications was analyzed, in terms of sensitivity, specificity and accuracy. The values obtained are; 91% sensitivity (True positive rate), 95% specificity (True negative rate) and 95% accuracy for seizure on set detection in epilepsy signals. For each iteration, the prediction speed was 230000 obs/sec and training time was 4.4014 sec for 12480 observations. The Figures 3 to 5 show all the scatter plots from the parameters estimated in pairs in the leave-one-out cross validation. The objective is to find parameters that distinguish seizure events (red) and non-seizure events (blue) and furthermore permit onset detection in epileptic EEG signals.

In Figure 3, for t-location-scale parameters, both seizure events and non-seizure events have a range of values that allow them to be differentiated in the combinations of σ, ν and µ. For µ vs. σ, a cluster of points can be found for non seizure events where σ takes relatively low values and µ tends to zero. For the seizure, the points are spread out and separated from the blue cluster, σ takes much higher values and µ belongs to a wider range of negative and positive values. In the case of ν and σ, σ allows to differentiate seizure and non seizure, as σ has low values for blue and high values for red, while ν has a relatively similar nature for both cases.

Figure 4 show the relationship between t-location-scale parameters and σ 2 . For µ vs. σ 2 it can be observed that σ 2 is set at high numerical values for seizure events with respect to µ and that non-seizure events are concentrated in a small range near zero. With respect to ν vs. σ 2 , σ 2 is able to differentiate non-seizure events from seizure events as it takes high values for the latter and low values for the former. For σ and σ 2 non-seizure events are set at low values of both parameters (cluster), while seizure events are set at high values of σ 2 with respect to σ.

In Figure 5 t-location-scale parameter vs ζ can be analyzed. It is visible that ζ, in all the cases, acquires numerical values around zero for seizure events. The subfigure that demonstrates the greatest segmentation between red and blue is ζ vs σ, for seizures σ values are high and ζ tends to zero.

As for non seizures, σ values are low and ζ can be found around a wider numerical range.

The research reflected in this paper using a feature vector θ = [µ, σ, ν, σ 2 , ζ] in 45 epileptic signals for the classes seizure and non-seizure, suggests that the proposed methodology based on the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient and the 1NN-based classifier, is potentially useful for seizure onset detection in epileptic EEG signals. The signals studied have a delay on average of 4.5 seconds caused by the length of the empirical windows and their overlap. The latter is an acceptable time, from a clinical point of view, in automatic detection systems in EEG extracranial signals [18].

IV. CONCLUSION

This work presents a new method based on parameters of the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient as features for onset seizure detection in epileptic EEG signals with a delay of 4.5 seconds in average. The performance of the proposed method was evaluated on a real dataset containing 45 epileptic signals achieving an accuracy of 95% through the 1NN-based classifier, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals. Even though the values of specificity, sensitivity and accuracy are not optimum, the user interface of the algorithm provides clear visual detection of the onset, given that it is handled by an expert on the matter.

Perspective for future work include; determining the optimal window length, improving the specificity, sensitivity and accuracy, predict the seizure onset detection in new signals without ground truth, estimate the weights of the 5 features parameters used in order to localize a possible spread of the seizure and relate them to the principal components analysis (PCA) of the EEG raw. Fig. 3. Scatter plots example for t-location-scale parameters: location (µ), shape (ν) and a non-negative scale (σ). Both seizure events (red circles) and non-seizure events (blue circles) have a range of values that allow them to be differentiated clearly. Fig. 4. Scatter plots example for t-location-scale parameters (location (µ), shape (ν) and a non-negative scale (σ)) and variance (σ 2 ). σ 2 is set at high values for seizure events (red circles). For non-seizure events (blue circles) µ, σ and ν are set low values with respect to σ 2 .

[17] F. Sharbrough, G. Chatrian, R. Lesser, H. ζ is concentrated in the center around zero for seizure events (red circles), while µ, σ and ν are dispersing outside the center for non-seizure events (blue circles).

Fig. 1 .

 1 Fig. 1. Location and nomenclature of electrodes, as standardized by the American Electroencephalographic Society, from [17].

Figure 2

 2 Figure 2 displays how the t-location-scale distribution fits the data utilized. On the left hand side, the epileptic signal time domain is found; before, during and after the seizure, with the corresponding histogram on the right hand side. Note how the values of the parameters µ, σ and ν vary in each signal time window.

Fig. 2 .

 2 Fig. 2. Signal time domain example show the evolution of the signal through time in seconds (before, during and after the seizure) fitted by the t-location scale distribution and the value of the three parameters for each time window. Note the high amplitude in the time domain during the seizure and the different values for the parameters µ, σ and ν.

7 Fig. 5 .

 75 Fig.5. Scatter plots example for t-location-scale parameters (location (µ), shape (ν) and a non-negative scale (σ)) and Pearson correlation coefficient (ζ). ζ is concentrated in the center around zero for seizure events (red circles), while µ, σ and ν are dispersing outside the center for non-seizure events (blue circles).
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