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This paper is devoted to the analysis of a singular perturbation problem for a 2-D incompressible MHD system with density variations and Coriolis force, in the limit of small Rossby numbers. Two regimes are considered. The first one is the quasi-homogeneous regime, where the densities are small perturbations around a constant state. The limit dynamics is identified as an incompressible homogeneous MHD system, coupled with an additional transport equation for the limit of the density variations. The second case is the fully non-homogeneous regime, where the densities vary around a general non-constant profile. In this case, in the limit, the equation for the magnetic field combines with an underdetermined linear equation, which links the limit density variation function with the limit velocity field. The proof is based on a compensated compactness argument, which enables us to consider general ill-prepared initial data. An application of Di Perna-Lions theory for transport equations allows to treat the case of density-dependent viscosity and resistivity coefficients.

Introduction

In this article, we study the → 0 + asymptotics of the following non-homogeneous incompressible MHD system with Coriolis force:

(1)

               ∂ t ρ + div ρ u = 0 ∂ t ρu + div ρ u ⊗ u + 1 ∇π + 1 ρ u ⊥ = div ν(ρ) ∇u + div b ⊗ b - 1 2 ∇|b| 2 ∂ t b + div u ⊗ b -div b ⊗ u = ∇ ⊥ µ(ρ) curl (b) div u = div b = 0 .
These equations are set in a two dimensional domain Ω, which is either the plane R 2 or the torus T 2 . The vector fields u and b are the velocity and the magnetic fields, the scalar fields ρ ≥ 0 and π represent the density and the pressure fields and ν and µ are two functions defined on R + . The notation u ⊥ refers the rotation of angle π/2 of the vector u: in other words, if u = (u 1 , u 2 ), then u ⊥ = (-u 2 , u 1 ). Analogously, we have set ∇ ⊥ = (-∂ 2 , ∂ 1 ). We have also defined curl u = ∂ 1 u 2 -∂ 2 u 1 to be the curl of the 2-D vector u. As we will see, since the first equation is written up to a gradient field, the term ∇|b| 2 /2 does not appear in the weak form of the equations.

The main goal of this article is to show that solutions (ρ , u , b ) >0 to system (1) converge (in some way) to some functions (ρ, u, b), and to describe the limit dynamics by proving that the limit (ρ, u, b) solves an evolution PDE system.

General physical remarks

Magnetohydrodynamic models are used whenever describing a fluid which is subject to the magnetic field it generates through its own motion. Examples of such fluids range from the industrial scale, with plasma confinement in fusion research or some types of electrolytics, to the geophysical or astrophysical scale, with atmospheric plasmas, planetary mantle convection or the solar interior. Their mathematical study thus combines the Navier-Stokes and the Maxwell equations.

We focus on fluids on which the Coriolis force -1 ρu ⊥ has a major influence compared to the kinematics of the said fluid, such as large-scale fluids evolving on a celestial body. The importance of this effect is measured by the Rossby number of the fluid Ro = , the condition 1 defining the regime of large-scale planetary or stellar fluid dynamics. At the mathematical level, in the limit → 0 + , the Coriolis force can only be balanced by the pressure term, which is reflected by the -1 factor in front of ∇π.

Derivation of the equations

Let us give a few additional details concerning the derivation of the MHD equations 1 . We conduct these computations in the physically relevant three-dimensional setting Ω = R 3 .

First of all, the Laplace force exerted on the fluid is f L = j × b, where j is the electric current density. We further assume the fluid viscosity ν(ρ) to depend on the density ρ, the precise nature of the function ν depending on the exact composition of the fluid (alternate models include anisotropic scaling in the viscosity to take into account the joint effects of turbulence and the asymmetry induced by the rotation, see [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF], [START_REF] Desjardins | Stability of mixed Ekman-Hartmann boundary layers[END_REF] for more on this topic). Writing Newton's law for a density-dependent fluid, we get

ρ∂ t u + ρ(u • ∇)u + 1 ∇π + 1 C[ρ, u] -div ν(ρ)∇u = j × b ,
where C[ρ, u] = e 3 × ρu = (-ρu 2 , ρu 1 , 0) is the (three-dimensional) Coriolis force. The rotation axis is taken constant, parallel to the vertical unit vector e 3 = (0, 0, 1). We will comment more on this in the next paragraph. The fluid is assumed to be non-relativistic, with negligible velocities |u| c when compared to the speed of light. This justifies the use of an electrostatic approximation in the Maxwell equations, which are simplified by omitting the time derivative of the electric field. Obviously, this is not a wild assumption since we intend to work on planetary or stellar fluids subject to the body's rotation (see also [START_REF] Desjardins | Stability of mixed Ekman-Hartmann boundary layers[END_REF], [START_REF] Ngo | A Global existence result for the anisotropic rotating magnetohydrodynamical system[END_REF]). Thus, Ampère's circuital law reads

curl (b) = j + ∂ t e ≈ j ,
where e is the electric field. The electrical resistivity is described by Ohm's law, which links the electrical current j to the electrical field e and the other physical quantities:

j = σ(ρ) e + u × b .
Note that we have assumed that the conductivity σ(ρ) depends on the density, the precise nature of the function σ depending on the exact composition of the fluid. Combining the above relation with the Maxwell-Faraday equation ∂ t b = -curl (e) gives a relation describing the evolution of the magnetic field:

∂ t b = -curl 1 σ(ρ) curl (b) -u × b .
By noting µ(ρ) = 1/σ(ρ) the electrical resistivity, we thus get

∂ t b + (u • ∇)b -(b • ∇)u = -curl µ(ρ)curl (b) .
Next, Gauss's law for magnetism, which rules out the possibility of magnetic monopoles, gives the divergence-free condition div(b) = 0. Finally, we assume the fluid to be incompressible, so that div(u) = 0. Therefore, the mass conservation equation reads

∂ t ρ + div(ρu) = ∂ t ρ + u • ∇ρ = 0 .
Putting everything together, and using the conservative form of the equations, we obtain the following three-dimensionnal MHD system, (

               ∂ t ρ + div(ρu) = 0 ∂ t (ρu) + div(ρu ⊗ u) + ∇π + 1 C[ρ, u] = div ν(ρ) ∇u + div(b ⊗ b) - 1 2 ∇ |b| 2 ∂ t b + div(u ⊗ b -b ⊗ u) = -curl µ(ρ)curl (b) 2) 
div(b) = div(u) = 0 , of which system (1) is the 2-D equivalent.

Physical relevance of the system

This paragraph is devoted to a few critical remarks concerning system [START_REF] Babin | Nicolaenko: Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids[END_REF], and the physical setting that led to its derivation. First of all, the model neglects any effect due to temperature variations, which is a debatable simplification, even in the case of non-conducting fluids. For instance, ocean water density is an intricate function of the pressure, salinity and temperature, and the temperature of air masses plays a major role in weather evolution. In those cases, dependence on the pressure is often neglected, and both temperature and salinity are assumed to evolve through a diffusion process (see [START_REF] Cushman-Roisin | Introduction to geophysical fluid dynamics[END_REF], Chapter 3). For conducting fluids, which are generally heated magma or plasmas, the temperature is expected to play an even greater role. However, the equations, as they are, already provide interesting challenges and are widely used by physicists for practical purposes.

Secondly, we spend a few words concerning the two-dimensional setting. Our main motivation for restricting to 2-D domains is purely technical: in our analysis, we face similar difficulties as in [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF], devoted to the fast rotation asymptotics for density-dependent incompressible Navier-Stokes equations in dimension d = 2. In particular, the fast rotation limit for incompressible nonhomogeneous fluids in 3-D is a widely open problem (see more details here below). However, let us notice that one of the common features of highly rotating fluids is to be, in a first approximation, planar: the fluid is devoid of vertical motion and the particles move in columns. This property is known as the Taylor-Proudman theorem (see [START_REF] Cushman-Roisin | Introduction to geophysical fluid dynamics[END_REF], [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF] for useful insight). Therefore, the 2-D setting is in itself a relevant approximation for geophysical fluids.

At this point, note that equations (1) per se do not describe a conducting fluid confined to a quasi-planar domain. If that were the case, the magnetic field would circulate around the current lines, hence being orthogonal to the plane of the fluid, assuming the form b = b 3 (t, x)e 3 for some scalar function b 3 . Our problem, which involves a 2-D magnetic field b = (b 1 , b 2 ) is a projection of the full three-dimensional MHD system [START_REF] Babin | Nicolaenko: Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids[END_REF]. Taking this step away from the physical problem brings us closer to the actual form of the physically relevant 3-D problem, and we hope it will provide a step towards its understanding.

Next, we remark that we have taken a quite simple form for the Coriolis force: namely, C[ρ, u] = ρu ⊥ . This means that the rotation axis is constant and normal to the plane where the fluid moves. Of course, more complicated choices are possible. However, on the one hand this form for the rotation term is physically consistent with a fluid evolving at mid-latitudes, in a region small enough compared to the radius of the planetary or stellar body. On the other hand, this choice is quite common in mathematical studies, and the obtained model is already able to explain several physical phenomena.

Finally, we point out that the incompressibility assumption div(u) = 0 is a valid approximation for flows in the ocean and in the atmosphere, and we will assume it. On the other hand, by our choice of considering domains with a very simple geometry, we completely avoid boundary effects.

Previous mathematical results on fast rotating fluids

The mathematical study of rotating fluids is by no means new in the mathematical litterature. It has started in the 1990s with the pioneering works [1]-[2]- [START_REF] Babin | Global regularity of 3D rotating Navier-Stokes equations for resonant domains[END_REF] of Babin, Mahalov and Nikolaenko, and has since been deeply investigated, above all for models of homogeneous incompressible fluids. We refer to book [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF] for a complete treatement of the incompressible Navier-Stokes equations with Coriolis force, and for further references on this subject.

The study of fast rotation asymptotics for non-homogeneous fluids has a much more recent history. However, efforts have mainly been focused on compressible fluid models: see e.g. [START_REF] Feireisl | A singular limit for compressible rotating fluids[END_REF], [START_REF] Feireisl | Multi-scale analysis of compressible viscous and rotating fluids[END_REF], [START_REF] Feireisl | Multiple scales and singular limits for compressible rotating fluids with general initial data[END_REF], [START_REF] Feireisl | Rotating compressible fluids under strong stratification[END_REF], [START_REF] Fanelli | Highly rotating viscous compressible fluids in presence of capillarity effects[END_REF], [START_REF] Kwon | Multiscale analysis in the compressible rotating and heat conducting fluids[END_REF]. We refer to [START_REF] Fanelli | Incompressible and fast rotation limit for barotropic Navier-Stokes equations at large Mach numbers[END_REF] for additional details and further references, as well as for recent developments. On the contrary, not so many results are available for density-dependent incompressible fluids. To the best of our knowledge, the only work in this direction is [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF], treating the case of the non-homogeneous Navier-Stokes equations in two-dimensional domains. The reason for such a gap between the compressible and the (non-homogeneous) incompressible cases is that the coupling between the mass and the momentum equation is weaker in the latter situation than in the former one. As a consequence, less information is available on the limit points of the sequences of solutions, and taking the limit in the equations becomes a harder task. This explains also the lack of results for 3-D incompressible flows with variable densities.

The case of rotating MHD equations has also recieved some attention in the past years. Once again, most of the available results concern the case of homogeneous flows: for instance, we mention papers [START_REF] Desjardins | Stability of mixed Ekman-Hartmann boundary layers[END_REF] and [START_REF] Rousset | Stability of large amplitude Ekman-Hartmann boundary layers in MHD: the case of ill-prepared data[END_REF], concerning the stability of boundary layers in homogenous rotating MHD, and [START_REF] Ngo | A Global existence result for the anisotropic rotating magnetohydrodynamical system[END_REF], about the stabilising effect the rotation has on solution lifespan. See also references therein, as well as Chapter 10 of [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF], for further references. On the density-dependent side, fast rotating asymptotics has recently been conducted in [START_REF] Kwon | Derivation of inviscid quasi-geostrophic equation from rotational compressible magnetohydrodynamic flows[END_REF] for compressible flows, in two space dimensions. We point out that the approach of [START_REF] Kwon | Derivation of inviscid quasi-geostrophic equation from rotational compressible magnetohydrodynamic flows[END_REF] is based on relative entropy estimates; if on the one hand this method enables to consider also a vanishing viscosity and resistivity regime, on the other hand it requires to assume well-prepared initial data.

Overview of the main results of the paper

Our main motivation here is to extend the results of [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF] to the case of the MHD equations. Therefore, we choose to work with incompressible density-dependent fluids, see system [START_REF] Babin | Nicolaenko: Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids[END_REF]. More precisely, we study the fast rotation asymptotics in two different regimes: the quasi-homogeneneous regime (meaning that the initial densities are small variations of a constant state) and the fully non-homogeneous regime (when the initial densities are perturbations of a fixed non-constant profile, in the sense of relation [START_REF] Desjardins | Remarks on a nonhomogeneous model of magnetohydrodynamics[END_REF] below). In the former case, the limit dynamics is identified as a homogeneous incompressible MHD system, coupled (via a lower order term) with a pure transport equation for the limit density variation function. In the latter case, we show convergence to an underdetermined equation, expressed in terms of the vorticity of the limit velocity field and the limit density oscillation function. The fact that the limit system is underdetermined can be viewed as an expression of the weaker coupling we mentioned above, between the mass and momentum equations. In order to prove our results, we will resort to the techniques of [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF], based on a compensated compactness argument, which allows us to consider general ill-prepared initial data. Roughly speaking, compensated compactness consists in exploiting the structure of the equations (wirtten in the form of a wave system governing oscillations, which propagate in the form of Poincaré-Rossby waves), in order to find special algebraic cancellations and relations which allow to pass to the limit in the non-linear terms, even in absence of strong convergence. That technique goes back to the pioneering work [START_REF] Lions | Incompressible limit for a viscous compressible fluid[END_REF] by P.-L. Lions and Masmoudi, where the authors dealt with the incompressible limit of the compressible Navier-Stokes equations; it was later adapted by Gallagher and Saint-Raymond in [START_REF] Gallagher | Weak convergence results for inhomogeneous rotating fluid equations[END_REF] to the context of fast rotating fluids, and then broadly exploited in similar studies (see e.g. [START_REF] Feireisl | Multi-scale analysis of compressible viscous and rotating fluids[END_REF], [START_REF] Fanelli | A singular limit problem for rotating capillary fluids with variable rotation axis[END_REF] and [START_REF] Fanelli | Incompressible and fast rotation limit for barotropic Navier-Stokes equations at large Mach numbers[END_REF]).

We remark that, in the fully non-homogeneous regime, the limit equation (combining the mass and momentum equations of the primitive system) is linear in the unknowns. This is a remarkable property, which is however now quite well-understood (see e.g. [START_REF] Gallagher | Weak convergence results for inhomogeneous rotating fluid equations[END_REF], [START_REF] Feireisl | Multi-scale analysis of compressible viscous and rotating fluids[END_REF]): let us give an insight of it. We will be able to show that, if the initial densities are small perturbations around a nonconstant state (say) ρ 0 , then, at any later time, the solutions stay close (in a suitable topology, but quantitatively, in powers of ) to the same state ρ 0 . Notice that this property is not obvious at all, as the densities satisfy a pure transport equation by the velocity fields. Anyhow, as a consequence the limit density profile is exactly the initial reference state ρ 0 . Roughly speaking, this fact restricts much more the limit motion than in the case when the target density is constant, since the kernel of the singular perturbation operator is smaller. The additional constraint implies that the average process (convergence in the weak formulation of the equations) tends to kill the convective term in the limit → 0 + .

As a last comment, let us point out that system (1) differs from the Navier-Stokes-Coriolis equations of [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF] in a crucial way: namely, the density-dependent viscosity and resistivity terms, respectively div ν(ρ)∇u and ∇ ⊥ µ(ρ) curl (b) , introduce new difficulties in the analysis. Indeed, the methods of [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF], which rely on compactness of the densities in spaces of negative index of regularity, are insufficient to take the limit in those non-linear terms: overcoming this obstacle requires almost everywhere convergence of the densities. Now, the sought almost everywhere convergence is implied by strong convergence in suitable Lebesgue spaces, which we achieve by using well-posedness results on linear transport equations proved by Di Perna and P.-L. Lions [START_REF] Di Perna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]. Besides, we point out that strong convergence of the densities has the additional advantage of providing simpler proofs: where the analysis of [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF] relies on paradifferential calculus to obtain convergence of some quadratic terms, we can often replace it by plain Hölder inequalities.

We conclude this introduction by giving a short overview of the paper. In the next section we fix our assumptions and state our main results, both for the quasihomogeneous and the fully non-homogeneous regimes. Section 3 is devoted to the derivation of uniform bounds for the sequence of weak solutions, which enable us to infer first convergence properties and to identify weak-limit points. There, we will also derive constraints those limit points have to satisfy, and establish strong convergence of the density functions. In Section 4 we complete the proof of the convergence; the main part of the analysis will be devoted to passing to the limit in the convective term. Section 5 focuses on the well-posedness of the limit system obtained in the quasi-homogeneous regime. An appendix about Littlewood-Paley theory and paradifferential calculus will end the manuscript.

Notation and conventions

Before starting, let us introduce some useful notation we use throughout this text.

The space domain will be denoted by Ω ⊂ R d : throughout the text, we will always work in the case d = 2. All derivatives are (weak) derivatives, and the symbols ∇, div and ∆ are, unless specified otherwise, relative to the space variables. Given a subset U ⊂ Ω or U ⊂ R + × Ω, we note D(U ) the space of compactly supported C ∞ functions on U . If f is a tempered distribution, we note F[f ] = f the Fourier transform of f with respect to the space variables.

For 1 ≤ p ≤ +∞, we will note L p (Ω) = L p when there is no ambiguity regarding the domain of definition of the functions. Likewise, we omit the dependency on Ω in functional spaces when no mistake can be made. If X is a Fréchet space of functions, we note L p (X) = L p (R + ; X). For any finite T > 0, we note L p T (X) = L p ([0, T ]; X) and L p T = L p [0, T ]. Let f >0 be a sequence of functions in a normed space X. If this sequence is bounded in X, we use the notation f >0 ⊂ X. If X is a topological linear space, whose (topological) dual is X , we note • | • X ×X the duality brackets.

Any constant will be generically noted C, and, whenever deemed useful, we will specify the dependencies by writing C = C(a 1 , a 2 , a 3 , ...). In all the text, M p (t) ∈ L p (R + ) will be a generic globally L p function; on the other hand, we will use the notation N p (t) to denote a generic function in L p loc (R + ).

Main assumptions and results

Let us fix the initial domain Ω to be either the whole space R 2 or the torus T 2 . In R + × Ω, we consider the following non-homogeneneous incompressible MHD system:

(3)

               ∂ t ρ + div ρ u = 0 ∂ t ρu + div ρ u ⊗ u + 1 ∇π + 1 ρ u ⊥ = div ν(ρ) ∇u + div b ⊗ b - 1 2 ∇|b| 2 ∂ t b + div u ⊗ b -div b ⊗ u = ∇ ⊥ µ(ρ) curl (b) div u = div b = 0 .
In the previous system, the viscosity coefficient ν and the resistivity coefficient µ are assumed to be continuous and non-degenerate: more precisely, they satisfy

ν , µ ∈ C 0 (R + ) , with, ∀ ρ ≥ 0 , ν(ρ) ≥ ν * > 0 and µ(ρ) ≥ µ * > 0 ,
for some positive real numbers ν * and µ * .

Our main goal here is to perform the limit for → 0 + in equations (3) for general ill-prepared initial data. Let us then specify the assumptions on the initial density, velocity field and magnetic field.

Initial data

We supplement system (3) with general ill-prepared initial data. Let us be more precise, and start by considering the density function: for any 0 < ≤ 1, we take

ρ 0, = ρ 0 + r 0, , with ρ 0 ∈ C 2 b (Ω) and r 0, >0 ⊂ L 2 ∩ L ∞ (Ω) .
Here above, we have denoted

C 2 b := C 2 ∩ W 2,∞
. We also assume that there is a constant ρ * > 0 such that, for any > 0, one has 0 ≤ ρ 0 ≤ ρ * and 0 ≤ ρ 0, ≤ 2ρ * .

In the case Ω = R 2 , we require the initial densities ρ 0, to fulfill an extra integrability assumption. Namely, we suppose that one of the two following (non-equivalent) conditions is satisfied: either

∃ δ > 0 1 ρ 0, 1 {ρ 0, <δ} >0 ⊂ L 1 (Ω) , (4) 
where the symbol 1 A stands for the characteristic function of a set A ⊂ Ω, or

∃ p 0 ∈ ]1, +∞[ , ∃ ρ > 0 ρ -ρ 0, + >0 ⊂ L p 0 (Ω) . (5) 
These two conditions allow for a low frequency control on the fluid velocity, uniformly with respect to . We will comment more about them at the end of the next subsection, and refer to Chapter 2 of [START_REF] Lions | Mathematical topics in fluid dynamics. Vol. 1: inompressible models[END_REF] (see conditions (2.8), (2.9) and (2.10) therein) for more details.

For the velocity field, in order to avoid the trouble of defining the speed of the fluid in a vacuum zone {ρ = 0}, we work instead on the momentum m = ρu. For any > 0, we take an initial momentum m 0, such that

m 0, >0 ⊂ L 2 (Ω) , |m 0, | 2 ρ 0, >0 ⊂ L 1 (Ω) ,
where we agree that m 0, = 0 and |m 0, | 2 / ρ 0, = 0 wherever ρ 0, = 0. Finally, let us now consider the magnetic field: we choose initial data

b 0, >0 ⊂ L 2 (Ω) , with, ∀ > 0 , div b 0, = 0 .
Because of the previous uniform bounds, we deduce that, up to an extraction, one has the weak convergence properties [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF] m 0,

m 0 in L 2 (Ω) , r 0, * r 0 in L 2 ∩ L ∞ (Ω) , b 0, b 0 in L 2 (Ω) ,
for suitable functions m 0 , r 0 and b 0 belonging to the respective functional spaces. Notice that we obviously have the strong convergence property ρ 0, -ρ 0 -→ 0 in L 2 ∩ L ∞ for → 0 + .

Finite energy weak solutions

For smooth solutions of (3) related to the initial data (ρ 0 , m 0 , b 0 ), we can multiply the momentum equation by u and the magnetic field equation by b and integrate both equations. We have, after integration by parts,

1 2 d dt Ω ρ|u| 2 dx + Ω ν(ρ) |∇u| 2 dx = Ω (b • ∇)b • u dx 1 2 d dt Ω |b| 2 dx + Ω µ(ρ) |curl (b)| 2 dx = Ω (b • ∇)u • b dx .
One more integration by parts show that the right-hand side of both equations are opposite. So, by summing the equations and integrating over t ∈ [0, T ] (for any fixed T > 0) and using the non-degeneracy hypothesis on the viscosity and resistivity coefficients, we get

(7) Ω ρ(T )|u(T )| 2 +|b(T )| 2 dx+ T 0 Ω ν * |∇u| 2 +cµ * |∇b| 2 dxdt ≤ Ω |m 0 | 2 ρ 0 + |b 0 | 2 dx.
In the above inequality, we have used the fact that b is divergence free, which implies that for almost all times t ≥ 0 the norms curl b(t) L 2 and ∇b(t) L 2 are equivalent2 . On the other hand, ρ is simply transported by the divergence-free velocity field u. Hence, for all t ≥ 0, one formally has

(8) ∀ p ∈ [1, +∞] , ρ(t) L p = ρ 0 L p .
The previous inequalities give us grounds to define the notion of finite energy weak solution.

Definition 2.1. Let T > 0 and let ρ 0 , m 0 , b 0 be initial data fulfilling the assumptions described in Section 2.1 above. We say that ρ, u, b is a finite energy weak solution to system (3) in [0, T ]×Ω related to the previous initial data if the following conditions are verified:

(i) ρ ∈ L ∞ [0, T ] × Ω and ρ ∈ C 0 [0, T ]; L q loc (Ω) for all 1 ≤ q < +∞; (ii) ρ|u| 2 ∈ L ∞ [0, T ]; L 1 (Ω) , with u ∈ L 2 [0, T ]; H 1 (Ω) ∩ C 0 w ([0, T ]; L 2 (Ω))
, where the index w refers to continuity with respect to the weak topology;

(iii) b ∈ L ∞ [0, T ]; L 2 (Ω) ∩ C 0 w ([0, T ]; L 2 (Ω)), with ∇b ∈ L 2 [0, T ]; L 2 (Ω) ;
(iv) the mass equation is satisfied in the weak sense: for any ψ ∈ D [0, T [ ×Ω , one has

T 0 Ω ρ∂ t ψ + ρu • ∇ψ dxdt = - Ω ρ 0 ψ |t=0 dx ;
(v) the divergence-free conditions div(u) = div(b) = 0 are satisfied in D ]0, T [ ×Ω ;

(vi) the momentum equation is satisfied in the weak sense: for any φ ∈ D [0, T [ ×Ω; R 2 such that div(φ) = 0, one has

T 0 Ω ρu • ∂ t φ + ρu ⊗ u -b ⊗ b : ∇φ - 1 ρu ⊥ • φ -ν(ρ)∇u : ∇φ dxdt = - Ω m 0 φ |t=0 dx ;
(vii) the equation for the magnetic field is satisfied in the weak sense: for all φ ∈ D([0, T [×Ω; R 2 ), one has

T 0 Ω b • ∂ t φ + u ⊗ b -b ⊗ u : ∇φ -µ(ρ)curl (b)curl (φ) dxdt = - Ω b 0 • φ |t=0 dx ;
(viii) for almost every t ∈ [0, T ] , the energy inequality ( 7) is satisfied.

The solution ρ, u, b is said to be global if the above conditions hold for all T > 0.

Existence of such finite energy weak solutions has been shown for fluids with density dependent viscosities in the case where there is no magnetic field (namely b ≡ 0 in system (3) above) by P.-L. Lions. His result even allows the initial density to vanish, under conditions (4) and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]. We refer to Chapter 2 of [START_REF] Lions | Mathematical topics in fluid dynamics. Vol. 1: inompressible models[END_REF] for more details and references.

Concerning conductive fluids, more limited results are available. Gerbeau and Le Bris prove in [START_REF] Gerbeau | Existence of solution for a density-dependent magnetohydrodynamic equation[END_REF] existence of finite energy weak solutions in a bounded domain of R 3 (their proof can be extended to R 2 or T 2 with standard modifications), but only for fluids with non-vanishing initial densities. Desjardins and Le Bris do so in [START_REF] Desjardins | Remarks on a nonhomogeneous model of magnetohydrodynamics[END_REF] for cylindrical or toroidal domains based on bounded subsets of R 2 , and for flows with translation invariance.

Even if we do not have a full existence result for flows presenting vacuum patches, as described above, our arguments are robust enough to consider possible (mild) vanishing of the density, in the same spirit of (4) and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]. Therefore, we will work under those conditions, in order to accommodate possible future existence results.

Statement of the results

We consider a sequence of initial data ρ 0, , m 0, , b 0, satisfying all the assumptions and uniform bounds described in Section 2.1 above. We further consider a sequence ρ , u , b of finite energy weak solutions (in the sense of Definition 2.1) related to those initial data. We aim at proving some kind of convergence of the solutions ρ , u , b and identify the limit dynamics for → 0 + in the form of a PDE solved by the limit points of the sequence. We consider two cases.

Firstly, we consider the case of a quasi-homogeneous density, meaning that the initial density ρ 0, is supposed to be a perturbation of a constant density state, say 1 for simplicity. We then write ρ 0, = 1 + r 0, : this assumption simplifies the equations very much. Indeed, on the one hand, at any later time we still have ρ = 1 + r , with r solving a linear transport equation ( 9)

   ∂ t r + div(r u ) = 0 r |t=0 = r 0, ,
thanks to the divergence-free condition div(u ) = 0. On the other hand, the momentum equation can be written (in a suitable sense)

∂ t (ρ u ) + div ρ u ⊗ u -b ⊗ b + 1 ∇π + 1 2 ∇ |b | 2 + 1 ρ u ⊥ -div ν(ρ ) ∇u = ∂ t u + div u ⊗ u -b ⊗ b -ν(1)∆u + r u ⊥ + 1 ∇π + 1 2 ∇ |b | 2 + 1 u ⊥ + O( ) ,
where the terms in the brackets (which are singular in ) are gradient terms, hence do not appear in the weak form of the equations. Therefore, taking the limit in this case will not be too complicated. In the end, we can prove the following result.

Theorem 2.2. Suppose that ρ 0 = 1 and consider a sequence ρ 0, , m 0, , b 0, >0 of initial data satisfying the assumptions fixed in Section 2.1. Let ρ , u , b >0 be a sequence of corresponding finite energy weak solutions to (3). Finally, let m 0 , b 0 and r 0 be as in [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF] and define r = (ρ -1)/ .

Then, there exists a triplet r, u, b in the space

L ∞ R + ; L 2 (Ω) ∩ L ∞ (Ω) × L ∞ R + ; L 2 (Ω) × L ∞ R + ; L 2 (Ω)
, with ∇u and ∇b belonging to L 2 R + ; L 2 (Ω) and div u = div b = 0, such that, up to the extraction of a subsequence, the following convergence properties hold: for any T > 0, we have

(1) r * r in L ∞ T (L 2 ∩ L ∞ ), and r -→ r in L 2 T (L 2 loc ); (2) u * u in L ∞ (L 2 ) ∩ L 2 T (H 1 ); (3) b * b in L ∞ (L 2 ) ∩ L 2 T (H 1 ), and b -→ b in L 2 T (H s loc ) for any s < 1.
The limit dynamics is described by a homogeneous MHD-type system, which the triplet r, u, b solves in the weak sense: namely,

             ∂ t r + div(r u) = 0 ∂ t u + div(u ⊗ u) + ∇π + 1 2 ∇ |b| 2 + r u ⊥ = ν(1) ∆u + div(b ⊗ b) ∂ t b + div(u ⊗ b -b ⊗ u) = µ(1) ∆b div(u) = div(b) = 0 , (10) 
for some pressure function π and with initial data r 0 , m 0 , b 0 . In addition, if r 0 , u 0 , b 0 ∈ H 1+β × H 1 × H 1 , for some β ∈ ]0, 1[ , then the solution (r, u, b) to system (10) is unique. As a consequence, the whole sequence r , u , b >0 converges.

We will study the limit system (10) in Section 5; there, we will also specify better in which functional class the uniqueness of solutions holds.

The second case we consider is the case of a fully non-homogeneous density, in the sense that the reference density profile ρ 0 is non-constant. Moreover, we need an extra technical assumption on ρ 0 : we suppose that ( 11)

∀ K ⊂ Ω , K compact, meas x ∈ K ∇ρ 0 (x) ≤ δ -→ δ→0 + 0 .
Roughly speaking, we are requiring that, for any fixed compact K ⊂ Ω, the set of critical points of ρ 0 in K is of zero measure. We remark that this condition is a relaxed version of the condition imposed in [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF] (see also [START_REF] Gallagher | Weak convergence results for inhomogeneous rotating fluid equations[END_REF], [START_REF] Fanelli | A singular limit problem for rotating capillary fluids with variable rotation axis[END_REF]), which involves no difficulties in the proof, and has the advantage of allowing for more general reference densities (for instance, profiles which exponentially decay to some positive constant at |x| ∼ +∞). This case is understandably more difficult, since none of the two previous simplifications can be made. However, we will see that, by using the structure of system (3), we can find an analogous decomposition ρ = ρ 0 + σ , where σ is bounded in a low regularity space. Unfortunately, this does not simplify much the singular term, as 1 ρ 0 u ⊥ is not a gradient term. Another problem is that the bounds we will find on σ are in such a low regularity space (H -3-δ in fact) that taking the limit → 0 + directly in the momentum equation is impossible. We will need to, instead, work on the vorticity and take the curl of the momentum equation.

The result in the fully non-homogeneous case is contained in the next statement.

Theorem 2.3. Assume that ρ 0 satisfies condition [START_REF] Desjardins | Remarks on a nonhomogeneous model of magnetohydrodynamics[END_REF] and (when Ω = R 2 ) either (4) or [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF].

Consider a sequence ρ 0, , m 0, , b 0, >0 of initial data satisfying the assumptions fixed in Section 2.1, and let ρ , u , b >0 be a sequence of corresponding weak solutions to (3). Finally, let m 0 , b 0 and r 0 be as in [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF] and define σ

:= ρ -1 / . Then, there exist σ ∈ L ∞ loc R + ; H -3-δ (Ω) for any δ > 0 arbitrarily small, u ∈ L ∞ R + ; L 2 (Ω) and b ∈ L ∞ R + ; L 2 (Ω)
, with ∇u and ∇b in L 2 R + ; L 2 (Ω) and div(ρ 0 u) = div u = div b = 0, such that, up to the extraction of a subsequence, the following convergence properties hold true: for any T > 0, one has

(1) ρ -→ ρ 0 in L 2 T (L 2 loc ); (2) σ * σ in L ∞ T (H -3-δ
), for all arbitrarily small δ > 0;

(3) u * u in L ∞ (L 2 ) ∩ L 2 T (H 1 ); (4) b * b in L ∞ (L 2 ) ∩ L 2 T (H 1 ), and b -→ b in L 2 T (H s loc ) for any s < 1.
Moreover, there exists a distribution

Γ ∈ D R + × Ω of order at most 1 such that            ∂ t curl (ρ 0 u) -σ -curl div ν(ρ 0 ) ∇u + curl ρ 0 ∇Γ -div(b ⊗ b) = 0 ∂ t b + div u ⊗ b -b ⊗ u = ∇ ⊥ µ(ρ 0 ) curl (b) div(ρ 0 u) = 0 div(u) = div(b) = 0 , with initial data curl ρ 0 u -σ |t=0 = curl (m 0 ) -r 0 and b |t=0 = b 0 .
Remark 2.4. The summand ρ 0 ∇Γ can be interpreted as a Lagrange multiplier associated to the constraint div(ρ 0 u) = 0, just as the pressure term ∇π in ( 3) and ( 10) can be seen as a Lagrange multiplier for the incompressibility constraint div(u) = 0.

Uniform bounds and convergence properties

The next three sections are devoted to the proofs of Theorems 2.2 and 2.3. In all that follows, ρ 0, , m 0, , b 0, is a sequence of initial data satisfying all the assumptions and uniform bounds described in Section 2.1 above, and ρ , u , b is an associated sequence of finite energy weak solutions related to those initial data, in the sense of Definition 2.1 above.

In this section, we first use uniform bounds on the solutions to prove their weak convergence. Then, we focus on convergence results for the density, which we will need later.

Uniform bounds

In this section, we establish uniform bounds (i.e. bounds independent of ) on the sequence of solutions ρ , u , b >0 , thus enabling us to extract weakly converging subsequences.

First of all, we notice that the solutions satisfy the energy inequality (7) (this is point (viii) of Definition 2.1): for almost every t > 0 fixed, we have

Ω ρ (t)|u (t)| 2 + |b (t)| 2 dx + t 0 Ω ν * |∇u | 2 + µ|∇b | 2 dxds ≤ Ω |m 0, | 2 ρ 0, + |b 0, | 2 dx .
In view of our assumptions on the initial data, the right-hand side of the previous inequality is uniformly bounded. Thus we get

√ ρ u >0 , b >0 ⊂ L ∞ R + ; L 2 (Ω) , (12) ∇u >0 , ∇b >0 ⊂ L 2 R + ; L 2 (Ω) . (13) 
Secondly, because both ρ and (in the quasi-homogeneous case) r := ρ -1 / solve a pure transport equation by the divergence-free vector field u (keep in mind ( 9) above), we see that, for all > 0, one has

∀ 0 ≤ α ≤ β < +∞ , meas α ≤ ρ ≤ β = meas α ≤ ρ 0, ≤ β ,
and the same holds for r (this is the same property as in Theorem 2.1, Chapter 2, p. 23 of [START_REF] Lions | Mathematical topics in fluid dynamics. Vol. 1: inompressible models[END_REF]).

On the one hand, this of course implies that

ρ >0 ⊂ L ∞ (L ∞ ) and r >0 ⊂ L ∞ (L 2 ∩ L ∞ ), together with the bounds (14) 0 ≤ ρ ≤ 2 ρ * almost everywhere in R + × Ω ,
in view of the assumptions on the initial datum ρ 0, . Therefore, up to extracting a subsequence, we gather the convergences

(15) ρ * ρ in L ∞ (L ∞ ) and r * r in L ∞ (L 2 ∩ L ∞ ) , for some ρ ∈ L ∞ (L ∞ ) and r ∈ L ∞ (L 2 ∩ L ∞ ).
On the other hand, the same property also shows that, for almost every t > 0, the density ρ (t) satisfies the extra regularity properties which we had required if Ω = R 2 , and it does so independently of t > 0 and uniformly with respect to > 0:

1 ρ (t) 1 {ρ (t)<δ} >0 ⊂ L 1 (Ω) or ρ -ρ (t) + >0 ⊂ L p 0 (Ω) , (16) 
where δ > 0, p 0 ∈ ]1, +∞[ and ρ > 0 are the same as in conditions ( 4) and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF].

Finally, we also see that u >0 is in fact uniformly bounded in L 2 T (L 2 ) for any finite time T > 0. Indeed, if Ω = R 2 , this is a consequence of either one of the two previous conditions in [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF] (see also [START_REF] Lions | Mathematical topics in fluid dynamics. Vol. 1: inompressible models[END_REF], point 8 in Remark 2.1 pp. [START_REF] Kwon | Multiscale analysis in the compressible rotating and heat conducting fluids[END_REF][START_REF] Lions | Mathematical topics in fluid dynamics. Vol. 1: inompressible models[END_REF]. If Ω = T 2 instead, the same can be shown without the extra assumptions, by means of the Poincaré-Wirtinger inequality (see again [START_REF] Lions | Mathematical topics in fluid dynamics. Vol. 1: inompressible models[END_REF], Subsection 2.3 p. 37). Therefore, up to an extraction, we deduce that

(17) u u in L 2 loc R + ; H 1 (Ω) and b b in L 2 loc R + ; H 1 (Ω) ,
for suitable functions u and b belonging to L 2 loc R + ; H 1 (Ω) . Remark that, in fact, we have a more precise convergence property for the magnetic fields: in view of ( 12)-( 13), we know that b ∈ L ∞ R + ; L 2 (Ω) , with ∇b ∈ L 2 R + ; L 2 (Ω) and, up to an extraction, we have the convergences b * b in L ∞ (L 2 ) and ∇b ∇b in L 2 (L 2 ). We will resort to those precise features when needed.

Strong convergence of the densities

This section is dedicated to the quest of pointwise convergence for the ρ . This will be useful for two reasons. Firstly, strong convergence makes the proofs simpler: on many occasions, the use of paradifferential calculus in [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF] can be replaced by more elementary arguments. Secondly, pointwise convergence is necessary to deal with the viscosity and resistivity terms: since we only have weak convergence of the velocity fields, strong convergence of both ν(ρ ) and µ(ρ ) is required to achieve convergence of the product terms div ν(ρ )∇u and ∇ ⊥ µ(ρ )curl u .

However, the uniform bounds alone are insufficient to prove the strong convergence we seek. So far, we have only obtained mere weak convergence ρ * ρ in L ∞ (L ∞ ) (recall uniform bound (15) above). We now resort to the arguments of Di Perna and P.-L. Lions [START_REF] Di Perna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]: if somehow we proved that (18)

ρ 2 * ρ 2 in L ∞ R + ; L ∞ (Ω) ,
then, by using the characteristic function 1 K of a compact subset K ⊂ Ω as a test function, we would recover convergence of the L 2 norms. Using the euclidean structure of L 2 T (L 2 (K)), we would then deduce local strong convergence, hence pointwise convergence, after extraction.

Therefore, the argument boils down to proving [START_REF] Feireisl | A singular limit for compressible rotating fluids[END_REF]. The quadratic non-linearity is the main challenge as, by the uniform bounds ρ >0 ⊂ L ∞ (L ∞ ), we only know that there exists some function g ∈ L ∞ (L ∞ ) such that ρ 2 * g in L ∞ (L ∞ ), and this function g need not be ρ 2 . The trick is that both g and ρ 2 are (weak) solutions of the transport PDE

(19)    ∂ t a + u • ∇a = 0 a |t=0 = a 0 ,
with same initial datum and divergence-free velocity field. After the work [START_REF] Di Perna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], problem [START_REF] Feireisl | Rotating compressible fluids under strong stratification[END_REF] is well-posed, so g and ρ 2 must be equal. To sum up, we get the following statement.

Proposition 3.1. The convergence property (18) holds true. In particular, in the limit ε → 0 + , we have the strong convergence

ρ -→ ρ in L 2 loc (R + × Ω) ,
and, up to the extraction of a suitable subsequence, the convergence holds also almost everywhere in R + × Ω.

Before proving the previous proposition, some preliminary lemmas are in order. First of all, we establish that all the ρ 2 are solutions to the continuity equation. Since this fact is to be shown for all > 0 independently, we drop the indices for more clarity. Lemma 3.2. Let ρ 0 ∈ L ∞ and u ∈ L 2 loc R + ; H 1 be a divergence-free vector field. Let ρ ∈ L ∞ (L ∞ ) be a weak solution to the Cauchy problem [START_REF] Feireisl | Rotating compressible fluids under strong stratification[END_REF], with initial datum ρ 0 .

Then ρ 2 is also a weak solution of the same equation, related to the initial datum ρ 2 0 .

Proof of Lemma 3.2. We wish to prove that ρ 2 is a weak solution of [START_REF] Feireisl | Rotating compressible fluids under strong stratification[END_REF], with initial datum ρ 2 0 : this means that, for all T > 0 and all ψ ∈ D([0, T [×Ω), one has

T 0 Ω ρ 2 (∂ t ψ + u • ∇ψ) dxdt + Ω ρ 2 0 ψ |t=0 dx = 0 .
We consider a smoothing kernel µ α α>0 such that, if

Ω = R 2 , we have µ α (x) = µ x/α /α d , where µ ∈ C ∞ (R 2 ) is such that Supp µ ⊂ B(0, 1) and µ(x) = µ(-x). For Ω = T 2 , instead, we set µ α (x) = k∈Z 2 µ α (x + k).
For all α > 0, we define ρ α = µ α * ρ (use µ α instead of µ α if Ω = T 2 ). Then, using also the divergence-free condition for u and the evenness of µ α , we deduce that ρ α solves (in the weak sense) the following approximate equation:

∂ t ρ α + u • ∇ρ α = u • ∇ , µ α * ρ , ρ α |t=0 = µ α * ρ 0 ,
where we have denoted [u • ∇ , µ α * ] the commutator between u • ∇ and the convolution by µ α . Multiplying this equation by 2ρ α shows that (20)

∂ t ρ 2 α + u • ∇ ρ 2 α = 2ρ α u • ∇ , µ α * ρ , ρ 2 α |t=0 = (µ α * ρ 0 ) 2 .
The space differentiation 2ρ α ∇ρ α = ∇(ρ 2 α ) is justified because ρ α (t) ∈ C ∞ for almost all times 0 ≤ t ≤ T (for any fixed T > 0), and the time differentiation

2ρ α ∂ t ρ α = ∂ t (ρ 2 α ) is justified because ρ α ∈ W 1,2
T (H s loc ) for every α > 0 and s ≥ 0. This comes from the property ρu ∈ L 2 T (L 2 ) and the relation ∂ t ρ α = -div µ α * (ρ u) (which follows from [START_REF] Feireisl | Rotating compressible fluids under strong stratification[END_REF] and div u = 0), which implies

∂ t ρ α ∈ L 2
T (H s loc ). Our next goal is to take the limit α → 0 + in the weak formulation of [START_REF] Feireisl | Multiple scales and singular limits for compressible rotating fluids with general initial data[END_REF], namely in the relation

(21) T 0 Ω ρ 2 α ∂ t ψ + u • ∇ψ dx dt + Ω µ α * ρ 0 2 ψ |t=0 dx + T 0 Ω 2ψρ α u • ∇, µ α * ρ dx dt = 0 ,
for any arbitrary test function ψ ∈ D [0, T [ ×Ω . On the one hand, we remark that, since u ∈ L 2 T (H 1 ) and ρ ∈ L ∞ (L ∞ ), we can apply Lemma II.1 in [START_REF] Di Perna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] to get

u • ∇ , µ α * ρ -→ α→0 + 0 in L 1 T (L 2 loc ) .
Using this, we find that the commutator term in (20) cancels in the limit α → 0 + , as, for every compact K ⊂ Ω, we have

2ρ α [u • ∇, µ α * ] ρ L 1 T (L 2 (K)) ≤ 2 ρ L ∞ t,x [u • ∇, µ α * ] ρ L 1 T (L 2 (K)) -→ α→0 + 0 .
On the other hand, since ρ ∈ L ∞ (R + × Ω), by standard properties of mollification kernels we gather the strong convergence ρ α -→ ρ in e.g. L 2 T (L 2 loc ) when α → 0 + , for any fixed T > 0. By the same token, we also have µ α * ρ 0 -→ ρ 0 in L 2 loc (Ω), in the limit α → 0 + . Thanks to those properties, it is easy to take the limit in the first and second term in [START_REF] Gallagher | Weak convergence results for inhomogeneous rotating fluid equations[END_REF].

The proof of the lemma is now completed.

We also need the following result.

Lemma 3.3. Let g ∈ L ∞ (R + ×Ω) be any weak- * limit point of the sequence ρ 2 >0 with respect to the L ∞ (R + × Ω) topology. Let ρ 0 be the limit density profile and u the limit velocity field identified in [START_REF] Feireisl | Multi-scale analysis of compressible viscous and rotating fluids[END_REF].

Then g is a solution of the linear transport equation

(22) ∂ t g + u • ∇g = 0 , with g |t=0 = ρ 2 0 .
Proof of Lemma 3.3. By Lemma 3.2 above, we know that the ρ 2 solve the transport equation ( 23)

∂ t ρ 2 + u • ∇ ρ 2 = 0 ,
related to the initial datum ρ 2 |t=0 = ρ 2 0, . Therefore, for proving our claim, it is enough to take the limit in the weak formulation of the previous equation. The main issue is showing that ρ 2 u converges in (say) D to gu: for doing so, we resort to some arguments of [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF] (see Paragraph 3.1.2. therein). The basic idea is to use the transport equation solved by the ρ 2 to trade space regularity for time compactness.

We start by remarking that, in view of ( 23), one has

∂ t (ρ 2 ) = -div(ρ 2 u ). Since |ρ 2 u | ≤ (ρ * ) 3/2 |
√ ρ u | by use of ( 14) and ( 12), we infer that

∂ t (ρ 2 ) >0 ⊂ L ∞ (H -1 ), hence ρ 2 >0 ⊂ W 1,∞ T (H -1 loc ) ,
where the localisation in space comes from the fact that the initial data ρ 2 0 is just L ∞ (Ω). Let now θ ∈ ]0, 1[ : standard Sobolev interpolation gives, for almost all 0 ≤ s, t ≤ T , the estimate

ρ (t) -ρ (s) χ H -θ ≤ ρ (t) -ρ (s) χ θ H -1 ρ (t) -ρ (s) χ 1-θ L 2 ,
where χ ∈ D(Ω) is an arbitrary compactly supported function. This shows that (ρ 2 ) >0 is bounded in every space C 0,θ T (H -θ loc ). Therefore, by the Ascoli-Arzelà theorem, we gather the strong convergence

ρ 2 -→ g in C 0,θ [0, T ]; H -θ loc (Ω)
, for all 0 < θ < 1 and all fixed T > 0. Combining this property with the Lemma A.5, which provides continuity of the function product (a, b) → ab in the H -θ × H 1 → H -θ-δ topology (for δ > 0 arbitrarily small), we get

ρ 2 u g u in D ]0, T [ ×Ω .
It is now possible to take the limit → 0 + in the weak form of equation ( 23), thus recovering equation [START_REF] Gerbeau | Existence of solution for a density-dependent magnetohydrodynamic equation[END_REF].

We can now complete the proof to Proposition 3.1.

Proof of Proposition 3.1. In view of Lemmas 3.3 and 3.2, it follows that both ρ 2 and g are weak solutions to the initial value problem [START_REF] Gerbeau | Existence of solution for a density-dependent magnetohydrodynamic equation[END_REF], and they both belong to L ∞ R + × Ω . But problem [START_REF] Gerbeau | Existence of solution for a density-dependent magnetohydrodynamic equation[END_REF] is in fact well-posed in the previous space, as a consequence of Di Perna and P.-L. Lions theory. More precisely, in order to apply their uniqueness result (see Theorem II.2 of [START_REF] Di Perna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]), we have to make sure that the limit velocity field u ∈ L 2 loc R + ; H 1 (Ω) fulfills the following condition: for any fixed T > 0, [START_REF] Kwon | Multiscale analysis in the compressible rotating and heat conducting fluids[END_REF] u(t, x)

1 + |x| ∈ L 1 T (L 1 ) + L 1 T (L ∞ ) .
To see this, let us set an arbitrary R > 0 and decompose according to whether |u| < R or not:

|u(t, x)| 1 + |x| = 1 {|u|<R} |u(t, x)| 1 + |x| + 1 {|u|≥R} |u(t, x)| 1 + |x| .
On the one hand, the measure of the set A R (t) := {|u(t)| ≥ R} is bounded by the Bienaymé-Chebyshev inequality, as

meas A R (t) ≤ 1 R 2 Ω |u(t, x)| 2 dx .
Observe that the term on the right-hand side of the previous estimate belongs to L 1 T for all fixed T > 0. Therefore, Hölder's inequality yields

T 0 A R |u(t, x)| 1 + |x| dx dt ≤ T 0 u(t) L 1 (A R ) dt ≤ T 0 u(t) L 2 meas A R (t) 1/2 dt < +∞ , implying that 1 A R (t) u(t, x) (1 + |x|) -1 ∈ L 1 T (L 1
). On the other hand, we obviously have

1 {|u(t)|<R} |u(t, x)| 1 + |x| ≤ R ∈ L 1 T (L ∞ ) .
Therefore, ( 24) is indeed satisfied by u, so we can apply Theorem II.2 of [START_REF] Di Perna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]. This result implies that we do have ρ 2 ≡ g almost everywhere. In particular, we also deduce the weak convergence [START_REF] Feireisl | A singular limit for compressible rotating fluids[END_REF]. As already remarked above, that property in turn yields local strong convergence of the ρ to ρ. Indeed, let K ⊂ Ω be a compact set; then, using [START_REF] Feireisl | A singular limit for compressible rotating fluids[END_REF] we get

ρ 2 , 1 K L ∞ t,x ×L 1 t,x = ρ 2 L 2 T L 2 (K) -→ ρ 2 , 1 K L ∞ t,x ×L 1 t,x = ρ 2 L 2 T L 2 (K) .
At this point, the fact that L 2 T L 2 (K) has a Euclidean structure gives strong convergence: because of the weak- * convergence [START_REF] Fanelli | Incompressible and fast rotation limit for barotropic Navier-Stokes equations at large Mach numbers[END_REF] of the ρ , we infer that ρ , ρ

L ∞ ( ]0,T [ ×K)×L 1 ( ]0,T [ ×K) tends to ρ L 2 T (L 2 (K)) and hence ρ -ρ 2 L 2 T (L 2 (K)) = ρ 2 L 2 T (L 2 (K)) + ρ 2 L 2 T (L 2 (K)) -2 T 0 K ρ ρ dxdt -→ →0 + 0 .
In particular, after extracting one more time, we deduce the pointwise convergence ρ -→ ρ, in the limit → 0 + .

The singular part of the equations

In this part, we focus our attention on the singular part of system (3), namely on the term -1 ∇π + ρ u ⊥ in the momentum equation. Note that any singular gradient term disappears in its weak formulation, due to the divergence-free condition on the test functions.

Proposition 3.4. Let ρ , u , b >0 be a sequence of weak solutions to system (3), associated with the sequence of initial data ρ 0, , u 0, , b 0, >0 satisfying the assumptions fixed in Subsection 2.1. Let (ρ, u, b) be a limit point of the sequence ρ , u , b >0 , as identified in Subsection 3.1.

1) In the case of a quasi-homogeneous density, for all test function φ ∈ D R + × Ω; R 2 such that div φ = 0, we have

1 +∞ 0 Ω ρ u ⊥ • φ dx dt -→ →0 + +∞ 0 Ω r u ⊥ • φ dx dt .
2) In the fully non-homogeneous case, the limit density satisfies ρ(t, x) = ρ 0 (x) for almost every (t, x) ∈ R + × Ω. Moreover, we have the relations div(ρ 0 u) = div u = 0 almost everywhere in R + × Ω. In particular, ∇ρ 0 • u = 0 almost everywhere in R + × Ω.

Proof. We start by attending to the quasi-homogeneous setting, where the singularity de facto disappears. Indeed, we can write

1 ∇π + ρ u ⊥ = 1 ∇π + u ⊥ + r u ,
and the terms in the brackets are perfect gradients. Therefore, if T > 0 and φ ∈ D [0, T [ ×Ω; R 2 is a divergence-free test function, one gets

1 T 0 Ω ρ u ⊥ • φ dx dt = T 0 Ω r u ⊥ • φ dx dt .
To take the limit → 0 + in this last integral, we observe that the functions r solve the linear transport equation ( 9); hence, Proposition 3.1 applies to the sequence r >0 , yielding the strong convergence r -→

→0 + r in L 2 T (L 2 loc ) ,
for any fixed T > 0. Using the weak convergence [START_REF] Feireisl | Multi-scale analysis of compressible viscous and rotating fluids[END_REF] for u , we finally infer that

r u -→ r u in D ]0, T [ ×Ω .
This completes the proof of the first property of the proposition.

The study of the fully non-homogeneous case is very much similar, with the exception that the singularity does not disappear. We start by remarking that, exactly as done above, as a consequence of Proposition 3.1 we deduce that ρ u -→ ρ u in the sense of distributions. Now, multiplying the momentum equation in its weak form by , we see that, for any divergence-free

φ ∈ D [0, T [ ×Ω; R 2 , one has T 0 Ω ρ u ⊥ • φ dx dt = O( ) .
Indeed, the uniform bounds established in Section 3.1 show that, for any T > 0, one gets

ρ u >0 ⊂ L 2 T (L 2 ), ρ u ⊗ u >0 and b ⊗ b >0 uniformly bounded in L ∞ T (L 1 ), and ν(ρ )∇u >0 ⊂ L 2
T (L 2 ), while by assumption m 0, >0 is bounded in L 2 . Therefore, we can take the limit → 0 + and get, for any test function φ as above, that

T 0 Ω ρ u ⊥ • φ dx dt = 0 .
This means that ρu ⊥ = ∇p for some suitable function p, which implies, after taking the curl , the constraint div(ρu) = 0. With this latter relation at hand, we look at the mass equation: using again that ρ u → ρ u in D , we have no trouble in taking the limit → 0 + , and we obtain

∂ t ρ + div(ρ u) = 0 , which implies ∂ t ρ = 0 .
The consequence is that ρ(t, x) = ρ 0 (x) for almost every (t, x). In particular, the relation div(ρ 0 u) = ∇ρ 0 • u = 0 is satisfied almost everywhere in R + × Ω.

Quantitative convergence properties for the density

This paragraph centers on the density functions in the fully non-homogeneous case. In Subsection 3.2 above, we have shown strong convergence of the densities in L 2 loc R + × Ω . However, this convergence is not enough for the convergence in the fully non-homogeneous case, since neither quantitative nor uniform with respect to time.

As we have seen, there is no obvious way to write ρ = ρ 0 + σ , with σ being bounded in some Banach space. Nonetheless, it turns out that the previous decomposition holds true thanks to the structure of the system, but will yield uniform bounds for σ in the very low regularity space H -3-δ . We refer to Subsection 3.3 of [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF] for the original proofs (the presence of the magnetic field introduces only minor modifications). Proposition 3.5. Define the functions σ := ρ -ρ 0 / . Then the sequence σ >0 is uniformly bounded in L ∞ loc R + ; H -3-δ (Ω) for all δ > 0. In particular, up to an extraction, it weakly- * converges to some σ in that space.

Proof. For notational convenience, set

(25) V = ρ u and f = div ν(ρ ) ∇u + div b ⊗ b -ρ u ⊗ u .
Because of the Sobolev embedding H 1+δ ⊂ L ∞ (see the note following Proposition A.3), which holds for any δ > 0, we see that L 1 ⊂ H -1-δ . Hence, arguing as in the proof of Proposition 3.4, we see that, for any T > 0 and any arbitrarily small δ > 0, one has

(26) f ⊂ L 2 T (H -1 ) + L ∞ T (H -2-δ ) ⊂ L 2 T (H -2-δ ) .
Now, because ρ 0 is time-independent, we can write the mass and momentum equations as

(27) ∂ t σ + div V = 0 ∂ t V + ∇π + V ⊥ = f .
Taking the curl of the second equation and computing the difference with the first one leads to

(28) ∂ t (η -σ ) >0 = curl (f ) >0 ⊂ L 2 T (H -3-δ ) ,
where we have set η

= curl V . Notice that η ⊂ L ∞ T (H -1
) for all T > 0 and all δ > 0, in view of ( 12) and ( 14), whence the uniform bound (σ ) ⊂ L ∞ T (H -3-δ ). In particular, there exists σ ∈ L ∞ T (H -3-δ ) such that σ * σ in this space.

Next, for any > 0 let us set

s := ρ -ρ 0 = σ .
By interpolating between the regularity of s and the one of σ , we want to show convergence of the densities in better spaces, at the cost of losing the linear convergence speed O( ), which we will have to replace by O( θ ), for some 0 < θ < 1.

Proposition 3.6. Given 0 < γ < 1, there exists θ, β, k ∈ R 3 , satisfying

0 < β < γ < k < 1 and 0 < θ < 1 ,
such that the following uniform embeddings,

-θ s >0 ⊂ C 0,β [0, T ]; H -k (Ω) and -θ s u >0 ⊂ L 2 [0, T ]; H -k-δ (Ω) ,
hold true for any T > 0 and any arbitrarily small δ > 0. In addition,

-θ s -→ 0 in L ∞ [0, T ]; H -k-δ loc (Ω) and -θ s u 0 in L 2 [0, T ]; H -k-δ loc (Ω)
for any T > 0 and any small δ > 0.

Proof. The function s solves a transport equation with a second member:

∂ t s + div(s u ) = -u • ∇ρ 0 .
with initial datum s |t=0 = r 0, . Because we have assumed that ρ 0 ∈ C 2 b , Sobolev embeddings show that, for any fixed T > 0, the sequence u • ∇ρ 0 ⊂ L 2 T (H 1 ) is bounded in every space L 2 T (L q ), for 2 ≤ q < +∞. In addition, s = ρ -ρ 0 is trivially uniformly bounded in L ∞ (L ∞ ); therefore, we finally infer, for all fixed T > 0, the uniform bounds

s >0 ⊂ L ∞ T (L 2 ∩ L ∞ )
. Furthermore, writing ∂ t s = -div(ρ u ) and reasoning as in the proof of Lemma 3.3, we see that

s >0 ⊂ W 1,∞ T (H -1
) for all T > 0; after interpolation between Sobolev spaces, we get, for every 0 ≤ γ ≤ 1, the embedding s >0 ⊂ C 0,γ T (H -γ ) . On the other hand, from Proposition 3.6 we know that σ ⊂ L ∞ T (H -3-δ ) for T > 0 and arbitrarily small δ > 0. Therefore, for 0 ≤ t 1 , t 2 ≤ T , and for 0 < θ < 1 such that k = γ(1 -θ) + (3 + δ)θ, we have

s (t 2 ) -s (t 1 ) H -k ≤ s (t 2 ) -s (t 1 ) 1-θ H -γ s (t 2 ) -s (t 1 ) θ H -3-δ ≤ 2 s 1-θ C 0,γ T (H -γ ) |t 2 -t 1 | γ(1-θ) θ σ θ L ∞ T (H -3-δ ) .
By setting β = (1 -θ)γ, we get -θ s ⊂ C 0,β T (H -k ), as claimed. We deduce from the Ascoli-Arzelà theorem that the sequence

-θ s is compact in L ∞ T (H -k-δ loc
), for arbitrarily small δ > 0, so that it converges strongly to some s in that space. Finally, we remark that we must have s = 0, because -θ s = 1-θ σ -→ 0 in D .

Next, Corollary A.6 gives continuity of the function product in the H -k × H 1 -→ H -k-δ topology, for arbitrarily small δ > 0, whence the uniform bound

-θ s u >0 ⊂ L 2 T (H -k-δ ) ,
for all fixed T > 0. In addition, using the strong convergence

-θ s -→ 0 in L ∞ T (H -k-δ loc ), we get the weak convergence -θ s u 0 in L 2 T (H -k-δ loc ).

Convergence

In this section we complete the proof of Theorems 2.2 and 2.3, up to the uniqueness part of the former statement (which will be considered in Section 5 below). Subsections 4.1 and 4.2 are common to both the quasi-homogeneous and the fully non-homogeneous case. In Subsection 4.3 we take care of the convective term in the quasi-homogeneous case. Subsections 4.4 and 4.5 are dedicated to the fully non-homogeneous case. Discussion first bears on the convergence of the convective term, which is the most involved part of the proof; lastly, we handle the Coriolis term.

In both parts, we thoroughly exploit the decomposition ρ = ρ 0 + σ and the vorticity form of the momentum equation.

The magnetic field

In this section, we take care of all the terms containing the magnetic fields b ε , except for the resistivity term ∇ ⊥ µ(ρ ) curl b . As in the previous section with the continuity equation, we use the magnetic field equation to trade space regularity against time compactness.

Proposition 4.1. We have the following strong convergence for the magnetic fields: up to the extraction of a suitable subsequence, for any 0 < s < 1 we have

b -→ →0 + b in L 2 loc R + ; H s loc (Ω) .
In particular, we deduce the convergence of all bilinear terms involving the magnetic field:

div b ⊗ b -→ div b ⊗ b in D R + × Ω ,
and analogous convergence properties hold for div u ⊗ b and div b ⊗ u .

Proof. Let T > 0 be a fixed positive time. Recall that we have (b ) ⊂ L ∞ (L 2 ), as well as (u ) , (b ) ⊂ L 2 T (H 1 ). The magnetic field equation reads ), for any small δ > 0. Using the uniform bound in L 2

∂ t b = div b ⊗ u -u ⊗ b + ∇ ⊥ µ(ρ ) curl (b ) .

Gagliardo-Nirenberg inequality of

T (H 1 ) and Sobolev interpolation gives strong convergence of the magnetic fields b in L 2 T (H s loc ), for any 0 ≤ s < 1. As a consequence, we gather strong convergence of the tensor products b ⊗ b in, say,

L 1 T (L 1 loc ), which implies in particular that div b ⊗ b -→ div b ⊗ b in D ]0, T [ ×Ω .
In an analogous way, we can achieve weak convergence of the mixed tensor products b ⊗ u and u ⊗ b : for the sake of brevity, we omit the details here.

Note that this proposition does not complete the study of the magnetic field equation: the convergence of the resistivity term ∇ ⊥ µ(ρ ) curl (b ) still remains. This is the goal of the next paragraph.

The viscosity and resistivity terms

In this section, we take care of the convergence of the viscosity and resistivity terms, namely div ν(ρ )∇u and ∇ ⊥ µ(ρ ) curl (b ) respectively. Remember that we have taken ν and µ to be continuous on R + .

Proposition 4.2. The following convergence of the viscosity and resistivity terms holds true, in the sense of

D (R + × Ω): div ν(ρ )∇u -→ div ν(ρ 0 )∇u and ∇ ⊥ µ(ρ ) curl (b ) -→ ∇ ⊥ µ(ρ 0 ) curl (b) ,
where ρ 0 is either 1 (in the quasi-homogeneous case) or the truly variable profile satisfying the assumptions of Theorem 2.3 (in the fully-non-homogeneous case).

Proof. We only prove the convergence of the viscosity term, the one of the resistivity term being, in all that matters, identical.

In the case where the density is quasi-homogeneous, we already have strong convergence

ρ -→ 1 in L ∞ (L ∞ ), because r is bounded in L ∞ (L 2 ∩ L ∞ ).
This makes the viscosity term easy to handle: let T > 0 and φ ∈ D [0, T [ ×Ω; R 2 be a test function, then

T 0 Ω ν(ρ )∇u : ∇φ dx dt - T 0 Ω ν(1)∇u : ∇φ dx dt = T 0 Ω ν(ρ ) -ν(1) ∇u : ∇φ dx dt + T 0 Ω
ν(1) ∇u -∇u : ∇φ dx dt .

The second integral has limit zero, because of the weak convergence of the u in L 2 T (H 1 ). As for the first integral, uniform convergence of the ρ and continuity of ν gives

T 0 Ω ν(ρ ) -ν(1) ∇u : ∇φ ≤ ν(ρ ) -ν(1) L ∞ (L ∞ ) ∇u L 2 T (L 2 ) ∇φ L 2 T (L 2 ) -→ →0 + 0 .
Obviously, this does not work as well in the fully non-homogeneous case. Hence, we will need to use the strong convergence result of Proposition 3.1: namely, in the limit → 0 + , one has ρ -→ ρ 0 in L 2 loc R + × Ω and almost everywhere in R + × Ω, where we have used also the information coming from the second item of Proposition 3.4.

The uniform bounds ρ >0 ⊂ L ∞ (L ∞ ) and the continuity of ν show that the ν(ρ ) are also uniformly bounded in L ∞ (L ∞ ): namely, there is a constant ν * > 0 such that ν(ρ ) ≤ ν * for all > 0. The dominated convergence theorem then gives strong convergence of the viscosities:

(29) ν(ρ ) -→ →0 + ν(ρ 0 ) in L 2 loc R + × Ω .
Now, let T > 0 and K ⊂ Ω be a compact set. For any φ ∈ D [0, T [ ×K , we can estimate

T 0 Ω ν(ρ )∇u • ∇φ dxdt - T 0 Ω ν(ρ 0 )∇u • ∇φ dxdt ≤ T 0 Ω ν(ρ 0 ) ∇u -∇u • ∇φ dxdt + T 0 Ω ν(ρ ) -ν(ρ 0 ) ∇u • ∇φ dxdt .
The first intergral obviously tends to zero as → 0 + , because of weak convergence ∇u ∇u in L 2

T (L 2 ). The second integral, instead, can be bounded as follows:

T 0 Ω ν(ρ ) -ν(ρ 0 ) ∇u • ∇φ dxdt ≤ ∇φ L ∞ (L ∞ ) ν(ρ ) -ν(ρ 0 ) L 2 T (L 2 (K)) ∇u L 2 (L 2 ) ,
where the quantity on the right-hand side goes to 0 in view of ( 29). The proposition is now proved.

The convective term: the quasi-homogeneous case

In the slightly non-homogeneous case, the convective term div(ρ u ⊗ u ) is the last one we have to study. The argument is in three steps. First of all, we reduce the problem to the study of div(u ⊗ u ), taking advantage of the approximation ρ ≈ 1. Then, we use the uniform H 1 regularity to find an approximation of u by smooth functions, which we will need for the last step, a compensated compactness argument. Proof. Let T > 0 be a fixed positive time. To start the proof, recall that we can write ρ = 1+ r , with (r ) ⊂ L ∞ (L 2 ∩ L ∞ ). Then, by virtue of the the L 2 T (L 2 ) uniform boundedness of u , for all divergence-free φ ∈ D([0, T [×Ω; R 2 ) we have (30

) T 0 Ω ρ u ⊗ u -u ⊗ u : ∇φ dx dt -→ →0 + 0 .
Next, we seek a uniform approximation of u by a smooth function (that is, smooth in the space variable). Let S j be the low-frequency cut-off operator from the Littlewood-Paley decomposition given by (56) in the appendix. Then, using the uniform bound (u ) ⊂ L 2

T (H 1 ) and the characterisation (57) of Sobolev spaces, it immediately follows that

I -S j u L 2 T (L 2 ) ≤ C 2 -j
, for some constant C > 0 possibly depending on T , but independent of both j and . Using the previous bound, we can thus estimate (31)

T 0 Ω u ⊗ u -S j u ⊗ S j u : ∇φ dx dt ≤ ∇φ L ∞ (L ∞ ) (I -S j )u ⊗ u L 1 T (L 1 ) + S j u ⊗ (I -S j )u L 1 T (L 1 ) ≤ C 2 -j .
Therefore, the problem is now to prove convergence of the term

T 0 Ω S j u ⊗ S j u : ∇φ dx dt = - T 0 Ω div S j u ⊗ S j u • φ dx dt
when → 0 + , for any fixed j ≥ -1. Notice that the integration by parts is justified, since all the quantities are now smooth with respect to the space variable. For convenience purposes, we henceforth note u ,j = S j u . Because the operator S j is a Fourier-multiplier, it commutes with all the partial derivatives: in particular, div(u ,j ) = 0 and therefore, after denoting ω := curl u and ω ,j := S j ω = curl u ,j , we deduce

(32) div u ,j ⊗ u ,j = 1 2 ∇ u ,j 2 + ω ,j u ⊥ ,j .
The first term in the right-hand side disappears when tested against a divergence-free function, hence we deduce

T 0 Ω u ,j ⊗ u ,j : ∇φ dx dt = - T 0 Ω ω ,j u ⊥ ,j • φ dx dt .
As for the vorticity term, we resort to the reformulation ( 27) of the momentum equation, which can be rewritten, in the quasi-homogeneous case, in the following way:

∂ t V + ∇π + 1 2 ∇|b | 2 + u ⊥ = f -r u ⊥ ,
where V and f have been defined in [START_REF] Lions | Mathematical topics in fluid dynamics. Vol. 1: inompressible models[END_REF]. Then, applying the operator S j to the previous equation and taking the curl gives

∂ t η ,j = curl f ,j -S j r u ⊥ ,
where we have set η ,j := S j curl (V ) and f ,j = S j f . From (26), we known that f is bounded in L 2 T (H -2-δ ) for any δ > 0, and so, for any fixed j, the sequence f ,j is bounded in every L 2

T (H m ), with m ∈ R. Likewise, because the sequence(r u ) is bounded in L 2 T (L 2 ), we also see that r u ⊥ ⊂ L 2

T (H m ) for every m ∈ R. We deduce a uniform bound for the η ,j : for m ∈ R,

(33) η ,j ⊂ C 0,1/2 T (H m ) .
Hence, the Ascoli-Arzelà theorem provides strong convergence (up to the extraction of a subsequence) to some η j ∈ L ∞ loc (H m loc ): more precisely, for all fixed T > 0 and m ∈ R, ∀j ≥ 1, η ,j -→

→0 + η j in L ∞ T (H m loc ) .
But since we already know that V u in L 2 T (L 2 ), it follows that η j = ω j . Thanks to the previous strong convergence property, for fixed j ≥ 1 and for every m ∈ R, we get also the strong convergence of ω ,j : namely,

ω ,j = η ,j -S j curl (r u ) -→ →0 + ω j in L ∞ T (H m loc ) .
Combining this information with the weak convergence u u in L 2 T (H 1 ) finally yields ω ,j u ⊥ ,j -→

→0 + ω j u ⊥ j in D [0, T [ ×Ω .
Thus, we have proved that, for any divergence-free test function φ ∈ D [0, T [ ×Ω , we have

div u ,j ⊗ u ,j , φ D ×D = ω ,j u ⊥ ,j , φ D ×D -→ →0 + ω j u ⊥ j , φ D ×D = div u j ⊗ u j , φ D ×D .
Now, keeping in mind [START_REF] Rousset | Stability of large amplitude Ekman-Hartmann boundary layers in MHD: the case of ill-prepared data[END_REF], using the uniform approximation property (31) yields the claimed convergence result.

The convective term: the fully non-homogeneous case

The main ideas for handling the convective term in the fully non-homogeneous case are very similar to those used for the quasi-homogeneous case, although many complications occur. Because ρ 0 is not constant, the equivalent of decomposition (32) will instead be (omitting for the time being the regularisation argument)

div ρ u ⊗ u ≈ div ρ 0 u ⊗ u = 1 2 ρ 0 ∇|u | 2 + ρ 0 ω u ⊥ + (u • ∇ρ 0 ) u .
To simplify those terms, we can no longer rely on the fact that we use divergence-free test functions: ρ 0 ∇|u | 2 , φ = 0 even when div(φ) = 0. However, any term of the form ρ 0 ∇Λ or Λ ∇ρ 0 will give rise to a term of the form ρ 0 ∇Γ in the limit (see below), which can be considered as a "pressure" term associated to the constraint div ρ 0 u = 0.

In the end, we can prove the next statement.

Proposition 4.4. There is a distribution Γ (of order at most one) such that, for all φ ∈ D R + × Ω; R 2 such that div(φ) = 0, one has

+∞ 0 Ω ρ u ⊗ u : ∇φ dx dt -→ →0 + ρ 0 ∇Γ, φ D ×D .
The rest of this subsection is devoted to the proof of the previous proposition. Our argument, mainly borrowed from [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF], consists of several steps. We start by taking a positive time T > 0, a compact set K ⊂ Ω and a divergence-free test function φ ∈ D [0, T [ ×K; R 2 , which we keep fixed throughout all the proof.

Step 1: approximation of the densities. First of all, we justify the approximation ρ u ⊗ u ≈ ρ 0 u ⊗u . Note that, because we have accounted for the presence of vacuum, the best uniform bound we have for the velocity field is u ⊂ L 2 T (H 1 ). This means that, when estimating the difference (ρ -ρ 0 )u ⊗ u , we must use strong convergence of the densities uniformly with respect to time. In particular, we cannot benefit of the convergence properties proved in Proposition 4.2, which only provides strong convergence ρ -→ ρ 0 in the spaces L p T (L q loc ) for 1 ≤ p, q < +∞ (thanks to the uniform bound 0 ≤ ρ ≤ ρ * and dominated convergence). Instead, from Proposition 3.6 we know that ρ = ρ 0 + s , with s -→ 0 in C 0,β T (H -k loc ), where β, k ∈]0, 1[ are as in that proposition (relatively to some γ ∈]0, 1[ ).

Firstly, using Corollary A.6, we see that, for every δ > 0, the function product is continuous in the H 1 × H 1 -→ H 1-δ topology. This implies that the tensor product (u ⊗ u ) is bounded in the space L 1

T (H 1-δ ), for every δ > 0. Next, using Lemma A.5, we get continuity of the product in the H -k × H 1-δ -→ H -k-δ topology provided that δ > 0 be small enough (i.e. small enough for 1 -k -δ to be positive). We therefore gather that

s u ⊗ u L 1 T (H -k-δ ) ≤ s L ∞ T (H -k ) u ⊗ u L 1 T (H 1-δ ) -→ →0 + 0
and are reconducted to taking the limit → 0 + in the integral

T 0 Ω ρ 0 u ⊗ u : ∇φ dx dt .
At this point, the idea is to resort once again to a compensated compactness argument: for this, we need first to smooth out the velocity fields.

Step 2: regularisation. We use the same regularisation procedure than in the quasihomogeneous case: here S j still is the Littlewood-Paley operator defined by (56) below. We continue to note S j g = g ,j for any sequence of functions (g ) >0 , whenever we feel it make things more legible. We set as above η = curl V = curl ρ u . We now state a simple approximation lemma: its proof is simple, hence omitted. It is enough to recall that η ) is bounded in L ∞ T (H -1 ) and that σ is bounded in every L ∞ T (H -3-δ ), with δ > 0. Lemma 4.5. The following uniform properties hold, in the limit for j → +∞:

1) for all s > 3, we have sup >0 σ -S j σ L ∞ T (H -s ) -→ 0; 2) for all s > 1, we have sup >0 η -S j η L ∞ T (H -s ) -→ 0. The first new problem we face, after introducing S j , is that S j (ρ u ) = ρ 0 S j u , because ρ 0 is no longer constant. With the same notation introduced in Section 3.4, we write (34) S j (ρ u ) = S j (ρ 0 u ) + θ S j ( -θ s u ) = ρ 0 u ,j + S j , ρ 0 u + θ S j ( -θ s u ).

In the above, S j , ρ 0 is the commutator between S j and the multiplication by ρ 0 operator. By Proposition 3.6, we already know that S j -θ s u ⊂ L 2 T (H s ) for any s ≥ 0. To deal with the second summand, we use Lemma A.9 on S j , ρ 0 u . On the one hand, we have

S j , ρ 0 u L 2 T (L 2 ) ≤ C 2 j ∇ρ 0 L ∞ u L 2 T (L 2 ) ≤ C 2 -j .
On the other hand, by differentiating the commutator, we get, for i ∈ {1, 2},

∂ i S j , ρ 0 u = S j , ∂ i ρ 0 u + S j , ρ 0 ∂ i u .
Therefore, from Lemma A.9 we infer

∂ i S j , ρ 0 u L 2 T (L 2 ) ≤ C 2 j ∇ 2 ρ 0 L ∞ u L 2 T (L 2 ) + ∇ρ 0 L ∞ ∇u L 2 T (L 2 ) ≤ C 2 -j .
Thus, from (34), we have obtained the following decomposition of S j (ρ u ):

(35) S j ρ u = ρ 0 u ,j + θ ζ ,j + h ,j ,
where we have defined ζ ,j := S j -θ s u and h ,j := S j , ρ 0 u . Notice that (36)

∀ j ≥ -1 , ∀ s ≥ 0 , ζ ,j ⊂ L 2 T (H s ) and sup >0 h ,j L 2 T (H 1 ) ≤ C 2 -j .
We make a couple of remarks before going onwards. Firstly, we have seen in Proposition 3.6 that -θ s u is bounded in L 2 T (H -k-δ ), where 0 < k < 1 has been fixed in that proposition and δ > 0 is arbitrarily small. Therefore, we can further write (37)

η ,j = S j curl ρ 0 u + θ ( -θ s u ) = η (1) 
,j + θ η

,j , with the uniform bounds (with respect to )

η (1) ,j L 2 T (L 2 ) ≤ C 1 and η (2) ,j L 2 T (H s ) ≤ C(s, j) ,
for any given s ≥ 0. Note that the constant C 1 does not depend on nor on j.

Finally, exactly as in the quasi-homogeneous case (keep in mind estimate (31) above), thanks to the uniform approximation properties of S j , we note that it is enough to prove the convergence of the term

T 0 Ω ρ 0 u ,j ⊗ u ,j : ∇φ dx dt = - T 0 Ω div ρ 0 u ,j ⊗ u ,j • φ dx dt ,
where the integration by parts is now well-justified, since all the quantities in the integral are smooth in the space variable.

Step 3: reformulation. In view of the previous discussion, we are left with div(ρ 0 u ,j ⊗u ,j ). Since all functions are smooth, we can write

div ρ 0 u ,j ⊗ u ,j = u ,j • ∇ρ 0 u ,j + ρ 0 ω ,j u ⊥ ,j + 1 2 ρ 0 ∇|u ,j | 2 ,
with ω ,j = S j curl (u ). We remark that the last term in the righthand side of this equation contributes ρ 0 ∇Γ in the limit, for some distribution Γ of order at most one. In the same way, any term of the form Λ ,j ∇ρ 0 , φ has a limit of the same form ρ 0 ∇Γ, φ : since div φ = 0, an integration by parts gives

T 0 Ω Λ ,j ∇ρ 0 • φ dx dt = T 0 Ω Λ ,j div(ρ 0 φ) dx dt = - T 0 Ω ρ 0 ∇Λ ,j • φ dx dt .
Since all terms of the form ρ 0 ∇Λ

,j + Λ

(2)

,j ∇ρ 0 can be treated in this way, we will generically note any of them by Γ ,j . Likewise, we note R ,j any remainder term, that is any term such that lim j→+∞ lim sup

→0 + T 0 Ω R ,j • φ dx dt = 0 .
With that notation, we can write

div ρ 0 u ,j ⊗ u ,j = u ,j • ∇ρ 0 u ,j + ρ 0 ω ,j u ⊥ ,j + Γ ,j .
We are now going to deal with the vorticity term, namely the second term in the right-hand side of the previous equation.

Step 4: the vorticity term. By use of (35), we get

η ,j = curl ρ 0 u ,j + θ curl ζ ,j + curl h ,j = ρ 0 ω ,j + ∇ ⊥ ρ 0 • u ,j + θ curl ζ ,j + curl h ,j .
Therefore, by virtue of (36), we gather that ρ 0 ω ,j u ⊥ ,j = η ,j u ⊥ ,j -u ,j • ∇ ⊥ ρ 0 u ⊥ ,j + R ,j , which in turn gives

div ρ 0 u ,j ⊗ u ,j = η ,j u ⊥ ,j + u ,j • ∇ρ 0 u ,j -u ,j • ∇ ⊥ ρ 0 u ⊥ ,j + Γ ,j + R ,j .
Step 5: a geometric property. Now we focus on the term

X ,j := u ,j • ∇ρ 0 u ,j -u ,j • ∇ ⊥ ρ 0 u ⊥ ,j .
The main idea to treat this term is to decompose u ,j (t, x) in the orthonormal basis of R 2 given by ∇ρ 0 (x) |∇ρ 0 (x)| , ∇ ⊥ ρ 0 (x) |∇ρ 0 (x)| . However, to avoid complications, we have first to deal with those x ∈ Ω for which |∇ρ 0 (x)| is small. More precisely, let B ∈ D(R 2 ) be such that

0 ≤ B ≤ 1 and    B(y) = 1 for |y| ≤ 1 B(y) = 0 for |y| ≥ 2 ,
and let B j (x) = B 2 j/2 ∇ρ 0 (x) . The function B j is so chosen that |∇ρ 0 | ≥ 2 -j/2 on Supp (1-B j ).

Recall that Supp φ ⊂ [0, T ] × K, where φ is the divergence-free test function we have fixed at the beginning of the argument. Then, for any 2 < q < +∞, Hölder's inequality with 1 = (2/q) + (q -2)/q yields

B j X ,j L 1 T (L 1 (K)) ≤ C X ,j L 1 T (L q/2 ) meas x ∈ K |∇ρ 0 (x)| ≤ 2 1-j/2 (q-2)/q
.

Using the Sobolev embedding H 1 ⊂ L q , we get

X ,j L 1 T (L q/2 ) ≤ C ∇ρ 0 L ∞ u ,j 2 L 2 T (H 1 ) ≤ C .
Hence we see that B j X ,j = R ,j is a remainder term, thanks to the assumption (11) on ρ 0 . Next, we look at (1 -B j ) X ,j : following the idea explained here above, we get

(1 -B j ) u ,j = 1 -B j |∇ρ 0 | 2 u ,j • ∇ρ 0 ∇ρ 0 + u ,j • ∇ ⊥ ρ 0 ∇ ⊥ ρ 0 (1 -B j ) u ⊥ ,j = 1 -B j |∇ρ 0 | 2 -u ,j • ∇ ⊥ ρ 0 ∇ρ 0 + u ,j • ∇ρ 0 ∇ ⊥ ρ 0 .
Putting this in (1 -B j )X ,j , we see that the two terms parallel to ∇ ⊥ ρ 0 cancel out. All that remains is

(1 -B j ) X ,j = 1 -B j |∇ρ 0 | 2 u ,j • ∇ρ 0 2 + u ,j • ∇ ⊥ ρ 0 2 ∇ρ 0 = Γ ,j .
We have thus proved that X ,j = Γ ,j + R ,j , therefore

div ρ 0 u ,j ⊗ u ,j = η ,j u ⊥ ,j + Γ ,j + R ,j .
Step 6: the new vorticity term. It remains us to deal with the new vorticity term η ,j u ⊥ ,j . First we prove that B j η ,j u ⊥ ,j is a remainder term R ,j . Writing η ,j = η

,j as in (37), we see that, for 2 < q < +∞, one has

B j η ,j u ⊥ ,j L 1 T (L 1 (K)) ≤ C η (1) ,j L 2 T (L 2 ) u ,j L 2 T (L q ) meas x ∈ K |∇ρ 0 (x)| ≤ 2 1-j/2 (q-2)/(2q) + C θ η (2) ,j L 2 T (L 2 ) u ,j L 2 T (L 2 ) ,
which implies the bound

B j η ,j u ⊥ ,j L 1 T (L 1 (K)) ≤ C meas x ∈ K |∇ρ 0 (x)| ≤ 2 1-j/2 (q-2)/(2q) + C(j) θ .
Therefore, we do in fact see that B j η ,j u ⊥ ,j = R ,j , as claimed. Next, we use one last time the decomposition of u ,j on the basis

∇ρ 0 |∇ρ 0 | , ∇ ⊥ ρ 0 |∇ρ 0 | to get (1 -B j ) η ,j u ⊥ ,j = 1 -B j |∇ρ 0 | 2 η ,j u ⊥ ,j • ∇ρ 0 ∇ρ 0 + u ,j • ∇ρ 0 ∇ ⊥ ρ 0 = 1 -B j |∇ρ 0 | 2 η ,j u ,j • ∇ρ 0 ∇ ⊥ ρ 0 + Γ ,j .
At this point, observe that, by taking the divergence of equation ( 35), we can write u ,j • ∇ρ 0 = div ρ 0 u ,j = div V ,j -div θ ζ ,j + h ,j , so

(1 -B j ) η ,j u ⊥ ,j = 1 -B j |∇ρ 0 | 2 η ,j div V ,j ∇ ⊥ ρ 0 + Γ ,j + R ,j .
Indeed, on the one hand θ div ζ ,j η ,j = R ,j ; on the other, we can estimate

1 -B j |∇ρ 0 | 2 η ,j div h ,j L 1 T (L 1 ) ≤ C η (1) ,j L 2 T (L 2 ) h ,j L 2 T (H 1 ) + θ η (2) ,j L 2 T (L 2 ) h ,j L 2 T (H 1 )
, so also that term is a remainder, thanks to the uniform bound (36) on h ,j . So far, we have thus obtained

div ρ 0 u ,j ⊗ u ,j = 1 -B j |∇ρ 0 | 2 η ,j div V ,j ∇ ⊥ ρ 0 + Γ ,j + R ,j .
Step 7: end of the proof. Recalling equation ( 27), we compute

η ,j div V ,j = -η ,j ∂ t σ ,j = - 1 2 ∂ t |σ ,j | 2 -(η ,j -σ ,j ) ∂ t σ ,j = - 1 2 ∂ t |σ ,j | 2 -∂ t η ,j -σ ,j σ ,j + curl f ,j σ ,j ,
where we have used also equation [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF] in passing from the first to the second line. By virtue of the uniform bounds we have already obtained on σ ,j , η ,j and f ,j , we see that

1 -B j |∇ρ 0 | 2 η ,j div V ,j ∇ ⊥ ρ 0 = R ,j .
In the end, we have shown that

div ρ 0 u ,j ⊗ u ,j = Γ ,j + R ,j ,
which finally achieves the proof of Proposition 4.4.

Conclusion: taking the limit

For the quasi-homogeneous case, the results of Sections 3.3, 4.1, 4.2 and 4.3 combine to show convergence of the sequence (r , u , b ) >0 to a solution (r, u, b) of system [START_REF] Desjardins | Stability of mixed Ekman-Hartmann boundary layers[END_REF]. Notice that we still have to prove the uniqueness part of Theorem 2.2.

In the fully non-homogeneous case, it remains to take care of the singular Coriolis force term: for this, we use the linear convergence properties for the density of Proposition 3.5.

Proposition 4.6. The Coriolis force term satisfies the following convergence property: for any divergence-free φ ∈ D R + × Ω; R 2 , write φ = ∇ ⊥ ψ; then

1 +∞ 0 Ω ρ u ⊥ • φ dx dt -→ →0 + - ∞ 0 Ω σ ∂ t ψ dx dt + Ω r 0 ψ |t=0 dx ,
where σ is the limit density oscillation function identified in Proposition 3.5, and we have improperly written the integral in space for the duality product in H -3-δ × H 3+δ .

Proof. Let T > 0 be a fixed positive time and let φ = ∇ ⊥ ψ be a divergence-free test function, with ψ ∈ D [0, T [ ×Ω . We use the decomposition ρ = ρ 0 + σ to write

1 T 0 Ω ρ u ⊥ • φ dx dt = - 1 div ρ u , ψ D ×D = 1 ∂ t ρ , ψ D ×D = ∂ t σ , ψ D ×D = - T 0 Ω σ ∂ t ψ dx dt - Ω r 0, ψ |t=0 dx .
It is now matter of applying the convergence properties of (6) and Proposition 3.5.

This last trick of using ψ as a test function rather than the divergence-free φ allows us to get rid of the singularity in the case of non-constant densities. However, it forces us to take the curl of the whole equation. Propositions 3.4 and 4.1 to 4.6 show that, for any divergence-free

φ ∈ D R + × Ω; R 2 , which we can write φ = ∇ ⊥ ψ with ψ ∈ D R + × Ω , one has +∞ 0 Ω σ ∂ t ψ dx dt + +∞ 0 Ω ρ 0 u • ∂ t ∇ ⊥ ψ -b ⊗ b : ∇∇ ⊥ ψ -ν(ρ 0 )∇u : ∇∇ ⊥ ψ dx dt + Γ, div(ρ 0 ∇ ⊥ ψ) D ×D = Ω r 0 ψ |t=0 -m 0 ∇ ⊥ ψ |t=0 dx dt .
Integration by parts show that we have indeed the weak form of the sought equation. The proof of Theorem 2.3 is then completed.

5 The quasi-homogeneous case: study of the limit system

In this section, we focus our attention on the limit system for the quasi-homogeneous case, which we recall for the reader's convenience:

(38)

             ∂ t r + div(r u) = 0 ∂ t u + div(u ⊗ u) + ∇π + 1 2 ∇ |b| 2 + r u ⊥ = ν(1) ∆u + div(b ⊗ b) ∂ t b + div(u ⊗ b -b ⊗ u) = µ(1) ∆b div(u) = div(b) = 0 ,
for some pressure function π. For simplicity, from now on we set ν(1) = µ(1) = 1.

We shall prove that the solutions to system (38) are unique in the energy space, given regular enough initial data. In particular, this completes the proof of Theorem 2.2, showing that the whole sequence of solutions (r , u , b ) weakly converges to the limit point (r, u, b), without the need to extract a subsequence. We proceed in four steps. First, we find energy estimates for (38) at the order of regularity suited to prove uniqueness with stability estimates. Then, we show rigorously the existence of solutions at this level of regularity. Finally, we prove uniqueness for system (38). The end result of this section is a well-posedness theorem for the limit system (38).

Theorem 5.1. Let 0 < β < 1 and let (r 0 , u 0 , b 0 ) ∈ H 1 × H 1 × H 1+β be a set of initial data. There exists a (unique) solution (r, u, b) of (38) related to those initial data such that (i) for all 0 < γ < β, we have r ∈ C 0 (R + ; H 1+γ );

(ii) we have u, b ∈ L ∞ loc (H 1 ) ∩ L 2 loc (H 2 ).
Moreover, such a solutions is unique in the energy space

L ∞ loc (L 2 ∩ L ∞ ) × L ∞ loc (L 2 ) × L ∞ loc (L 2 ).
Remark 5.2. (i) It goes without saying that the previous regularity properties for the solution (r, u, b) have also a quantitative counterpart, for which we refer to the estimates of Proposition 5.3.

(ii) The uniqueness of solutions is a consequence of a stability estimate and a weak-strong uniqueness result, which are stated in Proposition 5.5 below.

In what follows, we will make extensive use of the Gagliardo-Nirenberg inequality (GN inequality for short, see Lemma A.7) as well as the Young inequality in the following form: if 1/p + 1/q = 1 then, for any η > 0 and a, b ≥ 0, we have ab ≤ ηa p + η -q/p b q . From now on, η > 0 will always note a small positive constant to be fixed in the later parts of the proofs. In addition, we try to find inequalities that are as precise as (reasonably) possible in order to highlight which terms have the most impact on the final estimates.

Order 2 energy estimates

In this section, we focus on finding order 2 a priori estimates for the limit system; one way to do this (see e.g. Section 4.4.1 of [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF]) is to use ∆u and ∆b as test functions in (38). In addition, we attempt to optimise the estimates as far as growth in time is concerned: we show that the higher order energy grows slower than any polynomial function of T ≥ 0 of positive degree h > 0.

Proposition 5.3. Let (r, u, b) be a regular enough solution of (38) related to the (regular) initial datum (r 0 , u 0 , b 0 ). Then, we have the following properties:

(i) we have u, b ∈ L ∞ (L 2 ) and ∇u, ∇b ∈ L 2 (L 2 ), with the standard energy estimate (41) below;

(ii) for any fixed T > 0, we have ∇u, ∇b ∈ L ∞ T (L 2 ) and ∆u, ∆b, ∂ t u, ∂ t b ∈ L 2 T (L 2 ), with explicit bounds: for all h > 0, there is a constant

C = C r 0 L 2 ∩L ∞ , (u 0 , b 0 ) H 1 , h > 0 such that (39) ∇u L ∞ T (L 2 ) + (∆u, ∂ t u) L 2 T (L 2 ) + ∇b L ∞ T (L 2 ) + (∆b, ∂ t b) L 2 T (L 2 ) ≤ C(1 + T h );
(iii) for all 2 ≤ p ≤ +∞ and all t ≥ 0, r(t) L p = r 0 L p , and for all 0 < γ < β < 1 and any fixed T > 0, we also have

(40) r L ∞ T (H 1+γ ) ≤ C(β, γ) exp C(β, γ) T 0 ∇u H 1 dt 2 r 0 H 1+β .
Proof. First, testing the momentum equation with u and the magnetic field equation with b gives a basic energy estimate similar to [START_REF] Cushman-Roisin | Introduction to geophysical fluid dynamics[END_REF]: namely, (41)

1 2 u(t) 2 + b(t) 2 + t 0 ∇u(s) 2 + ∇b(s) 2 ds ≤ 1 2 u 0 2 + b 0 2 .
Next, we use the fact that r solves a pure transport equation with a divergence-free flow u to see that the L p norms of r(t) are preserved: r(t) L p = r 0 L p for all p ∈ [2, +∞] and all t ≥ 0. Now, we consider order 2 energy estimates. We test the momentum equation with -∆u and the magnetic field equation with -∆b; summing and integrating by parts gives

1 2 d dt ∇u 2 + ∇b 2 + ∆u 2 + ∆b 2 + Ω (b • ∇)b • ∆u dx + Ω (b • ∇)u • ∆b dx (42) = Ω (u • ∇)u • ∆u dx + Ω ru ⊥ ∆u dx + Ω (u • ∇)b • ∆b dx .
We start by handling the two inegrals which do not involve the magnetic field. On the one hand, using Hölder's inequality and then Proposition A.8 yields

Ω (u • ∇)u • ∆u dx ≤ ∆u L 2 u L ∞ ∇u L 2 ≤ C ∆u 3/2 L 2 u 1/2 L 2 ∇u L 2 .
Young's inequality with exponents 3 4

+ 1 4 = 1 gives in turn Ω (u • ∇)u • ∆u dx ≤ η ∆u 2 L 2 + C(η) u 2 L 2 ∇u 4 L 2 = η ∆u 2 L 2 + M 1 (t) ∇u 2 L 2 ,
where M 1 (t) := C(η) u(t) L 2 ∇u(t) 2 L 2 . Remark that, by (41), M 1 ∈ L 1 (R + ) is a globally integrable function, with M 1 L 1 (R + ) depending only on η, u 0 L 2 and b 0 L 2 .

On the other hand, we use Hölder's inequality with exponents 1 p + 1 q + 1 2 = 1 which we will choose later, followed by the GN inequality: for all η > 0,

Ω ru ⊥ • ∆u dx ≤ r L p u L q ∆u L 2 ≤ C(q) r 2/p L 2 r 1-2/p L ∞ u 2/q L 2 ∇u 1-2/q L 2 ∆u L 2 ≤ η ∆u 2 L 2 + C η, r 0 L 2 ∩L ∞ , q u 4/q L 2 ∇u 2 1-2/q L 2 . Since u L 2 ∈ L ∞ (R + ) and ∇u 2 L 2 ∈ L 1 (R +
) by the energy inequality (41), we see that, for any arbitrary h > 0, we can chose q so large that the function M 1+h (t) := C u(t)

4/q L 2 ∇u(t) 2 1-2/q L 2 belongs to the space L 1+h (R + ). Therefore (43) Ω r u ⊥ • ∆u dx ≤ η ∆u 2 L 2 + M 1+h (t) ,
with the norm M 1+h L 1+h (R + ) only depending on the quantities (η, r 0 L 2 ∩L ∞ , (u 0 , b 0 ) L 2 , h). Now we take care of the three remaining integrals in (42) involving the magnetic field. As with the first integral, Proposition A.8 yields

Ω (b • ∇)b • u dx ≤ ∆u L 2 b L ∞ ∇b L 2 ≤ C ∆u L 2 ∆b 1/2 L 2 b 1/2 L 2 ∇b L 2 ≤ η ∆u 2 L 2 + C(η) ∆b L 2 b L 2 ∇b 2 L 2 ≤ η ∆u 2 L 2 + ∆b 2 L 2 + M 1 (t) ∇b 2 L 2 ,
where we have set

M 1 (t) := C(η) b(t) 2 L 2 ∇b(t) 2 L 2 . Notice that M 1 ∈ L 1 (R + ), with M 1 L 1 (R + ) depending only on η, u 0 L 2 and b 0 L 2 .
Next, similarly as above, we use Hölder's inequality, the GN inequality and then Young's inequality twice, to obtain

Ω (b • ∇)u • ∆b dx ≤ b L 4 ∇u L 4 ∆b L 2 ≤ C b 1/2 L 2 ∇b 1/2 L 2 ∇u 1/2 L 2 ∆u 1/2 L 2 ∆b L 2 ≤ η ∆b 2 L 2 + C(η) b L 2 ∇b L 2 ∇u L 2 ∆u L 2 ≤ η ∆b 2 L 2 + ∆u 2 L 2 + M 1 (t) ∇b 2 L 2 ,
where this time

M 1 = C(η) b 2 L 2 ∇u 2 L 2 ∈ L 1 (R + ), with M 1 L 1 (R + ) = C(η, u 0 L 2 , b 0 L 2 )
. Exactly the same computations mutatis mutandi yield

Ω (u • ∇)b • ∆b dx ≤ η ∆b 2 L 2 + ∆u 2 L 2 + M 1 (t) ∇u 2 L 2 , with M 1 = C(η) u 2 L 2 ∇b 2 L 2 ∈ L 1 (R + ) and M 1 L 1 (R + ) = C(η, u 0 L 2 , b 0 L 2 ).
In the end, putting all these estimates together and choosing η > 0 small enough, we obtain the differential inequality

1 2 d dt ∇u 2 + ∇b 2 + 1 2 ∆u 2 + ∆b 2 ≤ M 1+h (t) + M 1 (t) ∇u 2 + ∇b 2 .
An application of Grönwall's lemma finally yields, for all fixed T > 0, the inequality

(44) sup t∈[0,T ] ∇u(t) 2 + ∇b(t) 2 + T 0 ∆u(t) 2 + ∆b(t) 2 dt ≤ 2 ∇u 0 2 L 2 + ∇b 0 2 L 2 + T 0 M 1+h (t) dt exp +∞ 0 M 1 (t) dt .
Observe that

T 0 M 1+h (t) dt = M 1+h L 1+h (R + ) T h/(1+h) ≤ C 1 + T h ,
which obviously implies estimate (39), up to the time derivative terms, which will be dealt with in a while. For the moment, remark that, since we have shown L 2 T (H 2 ) bounds on the velocity field, we can apply Proposition 5.2. of [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF] (which is also expressed in a much more thorough form in Theorem 3.33 of [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]) to the transport equation for r: for all 0 < γ < β < 1, we get propagation of the L ∞ T (H 1+γ ) regularity of r, together with estimate (40). Let us come back to the proof of (39): it remains us to bound the time derivative terms. We start by looking at ∂ t u. In order to get rid of the pressure term, we apply the Leray projector P, which is the L 2 -orthogonal projector on the subspace of divergence-free functions. It can be defined as a Fourier multiplier:

∀f ∈ L 2 , Pf (ξ) = f (ξ) - ξ |ξ| 2 • f (ξ) ξ = ξ ⊥ |ξ| 2 • f (ξ) ξ ⊥ .
In particular, it commutes with differential operators (both on time and space variables). Applying the Leray projector to the momentum equation in (38) gives (45)

∂ t u + P div(u ⊗ u -b ⊗ b) + ru ⊥ = ∆u ,
since div u = 0. In fact, since P is a Fourier multiplier associated to a homogeneous function of degree zero, it is a continuous operator over L 2 ; so we need only estimates on ∆u, ru and div(u ⊗ u -b ⊗ b) to conclude (39). First of all, for 1/p + 1/q = 1/2, Hölder's and the GN inequalities, combined with (41), give

r u L 2 ≤ r L p u L q ≤ C q, r 0 L 2 ∩L ∞ , u 0 L 2 , b 0 L 2 ∇u 1-2/q L 2 = C M 1/2 1+h ,
where M 1+h has been defined in (43). Hence, by taking q large enough, we see that ru ∈ L 2(1+h) (L 2 ). Secondly, using that div (u ⊗ u) = (u • ∇)u, an application of Proposition A.8 gives

div u ⊗ u 2 L 2 ≤ C u 2 L ∞ ∇u 2 L 2 ≤ C u L 2 ∆u L 2 ∇u 2 L 2 . ( 46 
)
Integrating over t ∈ [0, T ] and using estimate (41), after an application of Young inequality we obtain, for all h > 0, the bound

div u ⊗ u 2 L 2 T (L 2 ) ≤ C T 0 u 2 L 2 ∇u 4 L 2 + ∆u 2 L 2 dt ≤ C (u 0 , b 0 ) L 2 sup [0,T ] ∇u 2 L 2 + ∆u 2 L 2 T (L 2 )
.

In view of (44), this term can be finally bounded by the right-hand side of that inequality. The same computations with the magnetic field yield

div b ⊗ b 2 L 2 T (L 2 ) ≤ C (u 0 , b 0 ) L 2 sup [0,T ] ∇b 2 L 2 + ∆b 2 L 2 T (L 2 )
, which again can be bounded by the right-hand side of (41). In the end, the combination of all those estimates implies that also ∂ t u L 2 T (L 2 ) satisfies (39). It only remains to find the estimate on ∂ t b L 2 T (L 2 ) , for which we use the magnetic field equation, namely the third equation in (38). Estimate (44) already provides us with a bound for ∆b in the sought space. On the other hand, the quadratic terms can be estimated exactly as the corresponding ones appearing in the momentum equation. We finally deduce that also

∂ t b L 2 T (L 2 )
fulfills (39), and this completes the proof of the proposition.

Existence result

In this section, we explain how solutions of (38), whether they be weak solution in the energy space or with the level of regularity described in Proposition 5.3, can be constructed. Suppose now that r 0 ∈ H 1+β , for some β > 0, and that u 0 , b 0 ∈ H 1 . Then there exists a weak solution (r, u, b) of (38) such that, in addition to the previous properties, one also has, for all T > 0, r ∈ C 0 T (H 1+γ ) for all 0 < γ < min{1, β}, and u, b ∈ C 0 T (H 1 ) ∩ L 2 T (H 2 ). Moreover, this solution satisfies inequalities (39) and (40).

The proof of the previous proposition is standard (see e.g. [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF] or [START_REF] De Anna | Global well-posedness and long-time dynamics for a higher order quasigeostrophic type equation[END_REF]); we give here most of the details for reader's convenience. First of all, we implement Friedrichs scheme and construct smooth solutions to an approximate system. After deriving uniform bounds (of first and second order), we show that those solutions tend (weakly) to a solution of (38).

Step 1: approximate system. Let j ≥ 2 and A j be the spectral projection operator defined in the following way:

∀f ∈ L 2 , F A j f (ξ) = 1 |ξ|≤j f (ξ) .
Recall the Leray projector P from (45), and that we have set µ

(1) = ν(1) = 1. Set r 1 (t, x) = S 1 r 0 (x)
, where S 1 is the low frequency cut-off operator defined in (56). For j ≥ 2, we consider the sequence of approximate systems (47)

         ∂ t u j + PA j div u j ⊗ u j -b j ⊗ b j + PA j r j-1 u ⊥ j = ∆u j ∂ t b j + A j div u j ⊗ b j -b j ⊗ u j = ∆b j div(u j ) = div(b j ) = 0 ,
which we equip with the initial datum u j , b j |t=0 = A j u 0 , A j b 0 . Given r j-1 , applying the Cauchy-Lipschitz theorem in the Banach space

X j = f ∈ L 2 Supp f ⊂ B(0, j)
gives the existence of a unique C ∞ ]T -(j), T + (j)[ ; X j maximal solution. Then, we compute the function r j by solving the linear transport equation

   ∂ t r j + div r j u j = 0 r j |t=0 = S j r 0 .
We now look for uniform bounds for r j , u j , b j j in suitable spaces. First of all, using the fact that r j solves a pure transport equation by a divergence-free velocity field u j , one gathers that

r j (t) L 2 + r j (t) L ∞ = S j r 0 L 2 + S j r 0 L ∞ ≤ C r 0 L 2 ∩L ∞ .
for all t ∈ [0, T + (j)[ . This implies that r j j ⊂ L ∞ L 2 ∩ L ∞ . Next, we easily see that the maximal solution u j , b j satisfies the basic energy estimate (41); it also satisfies the order 2 estimates (39). Indeed, testing the momentum equation in (47) with -∆A j u (for example), which is both in X j and divergence-free, gives, for all 0 ≤ t < T + (j), the equality

1 2 d dt Ω |∇u j | 2 dx + Ω |∆u j | dx = Ω div u j ⊗ u j -b j ⊗ b j • ∆u j dx + Ω r j-1 u ⊥ j • ∆u j dx .
An analogous relation holds for the magnetic field b j . Then, one can repeat the same computations as in Subsection 5.1 to finally get (39), as claimed. We now show that the approximate solutions do not blow-up in finite time. For this, fix j ≥ 2: the basic energy estimates state that u j (t) L 2 and b j (t) L 2 are bounded for 0 ≤ t < T + (j), therefore (using the bounds on r j j and the spectral localisation) so are the norms of the time derivatives ∂ t u j (t) L 2 and ∂ t b j (t) L 2 . Hence, the solution of the ODE system (47) satisfies the Cauchy criterion for t < T + (j), and necessarily T + (j) = +∞.

Step 2: convergence. For the sake of generality, we prove convergence of the sequence of approximate solutions relying only on the basic energy estimates (41) and the conservation of L p norms for the r j . Specifically, we will be using only the following uniform bounds:

u j j≥2 , b j j≥2 ⊂ L ∞ (L 2 ) ∩ L 2 loc (H 1 ) and r j j≥2 ⊂ L ∞ (L 2 ∩ L ∞ ) .
Those bounds yield the following weak convergence properties (up to an extraction): there exists a triplet

(r, u, b) ∈ L ∞ (L 2 ∩ L ∞ ) × L 2 loc (H 1 ) × L 2 loc (H 1 ) such that, for all fixed T > 0, one has (48) u j , b j (u, b) in L 2 T (H 1 ) and r j * r in L ∞ (L 2 ∩ L ∞ ) .
In order to achieve convergence in the non-linear terms, we are going to prove that both ∂ t u j j and ∂ t b j j are uniformly bounded in L 2 loc (H -1 ). Notice that both P and A j are continuous for all the H s topologies (with s ∈ R). Therefore, by using (47), we get

∂ t u j L 2 T (H -1 ) + ∂ t b j L 2 T (H -1 ) ≤ u j L 2 T (H 1 ) + b j (t) L 2 T (H 1 ) + f,g∈{u j ,b j } div f ⊗ g L 2 T (H -1 ) + r j-1 u j L 2 T (H -1 ) .
The last term is bounded by r

j-1 u j L 2 T (H -1 ) ≤ C T r j-1 L ∞ T (L ∞ ) u j L ∞ T (L 2 )
, so we only have to worry about the quadratic terms. If f, g ∈ L 2

T (H 1 ), then, for all 0 ≤ t ≤ T , using the Sobolev embedding H 1 ⊂ L 4 followed by the Cauchy-Schwarz inequality in L 2 T , we get

div f ⊗ g 2 L 2 T (H -1 ) ≤ T 0 f (t) 2 L 4 g(t) 2 L 4 dt ≤ f 2 L 2 T (H 1 ) g 2 L 2
T (H 1 ) < +∞ .

These computations show that ∂ t u j j and ∂ t b j j are indeed bounded in L 2 T (H -1 ), from which we infer the uniform boundness of u j j and b j j in C 0,1/2 T (H -1 ). On the other hand, thanks to the the compact embedding L 2 (K) ⊂ H -1 (K) for all compact K ⊂ Ω, we deduce that, for almost all 0 ≤ t ≤ T , the sequences u j (t) j and b j (t) j are relatively compact in H -1

loc . An application of the Ascoli-Arzelà theorem gives then, for all T > 0, the strong convergence

u j , b j -→ (u, b) in L ∞ T (H -1 loc ) .
Because (u j ) j and (b j ) j are also bounded in L 2 T (H 1 ), interpolation between Sobolev spaces gives strong L 2 convergence

u j , b j -→ (u, b) in L 2 T (L 2 loc ) .
Next, using the fact that the r j solve a linear transport equation and arguing exactly as in Subsection 3.2, we get strong convergence

r j -→ r in L 2 T (L 2 loc ) ,
which in turn gives convergence of the products r j u j-1 j and r j u j j in the sense of distributions in R + × Ω.

Step 3: weak solutions. We aim to prove that the triplet (r, u, b), identified in (48), is in fact a weak solution of (38). The only terms whose convergence is not completely obvious at this point are the quadratic terms in u j and b j . Let φ ∈ D [0, T [ ×Ω; R 2 be a divergence-free test function. We will only prove the convergence of

T 0 Ω A j P u j ⊗ b j : ∇φ dx dt = T 0 Ω u j ⊗ b j : A j ∇φ dx dt ,
all other quadratic terms being similar. Taking the difference between the previous integral and the one we desire, we get

T 0 Ω (u j ⊗ b j ) : A j ∇φ -(u ⊗ b) : ∇φ dx dt ≤ T 0 Ω (u j ⊗ b j ) : (A j -I)∇φ dx dt + T 0 Ω u j ⊗ b j -u ⊗ b : ∇φ dx dt .
Using the Sobolev embedding H 1 ⊂ L 4 , we see that the first integral on the right-hand side is bounded by

T 0 Ω (u j ⊗ b j ) : (A j -I)∇φ dx dt ≤ u j L 2 T (L 4 ) b j L 2 T (L 4 ) (A j -I)∇φ L ∞ T (L 2 ) ,
which converges to 0 for j → +∞. This comes from the uniform bound (with respet to time)

(A j -I)∇φ(t) 2 L 2 ≤ 1 j 2 ∇ 2 φ(t) 2 L 2 ≤ C j 2 .
For the other integral, we simply recall that u j , b j -→ (u, b) in L 2 T (L 2 loc ), so that we have strong convergence of the tensor products (49)

u j ⊗ b j -→ u ⊗ b in L 1 T (L 1 loc ).
Thus, we have proved convergence for the quadratic term:

T 0 Ω A j P u j ⊗ b j : ∇φ dx dt -→ j→+∞ T 0 Ω (u ⊗ b) : ∇φ dx dt .
In the end, we have shown that (r, u, b) is indeed a weak solution of (38). Finally, the Banach-Steinhaus theorem makes sure that the inequalities of Proposition 5.3 are carried from the approximate solutions to the limit point (r, u, b). This completes the proof of Proposition 5.4.

Uniqueness for the limit system

The proof of the uniqueness for system (38) is based on stability estimates in the energy space. Hence, we require enough regularity to perform those energy estimates, without any attempt of sharpness in our statement (very likely, a well-posedness result like the one in [START_REF] Paicu | Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density[END_REF] may be proved also for our system).

Proposition 5.5. Fix 0 < β < 1. Let r 0,1 , u 0,1 , b 0,1 ∈ H 1+β × H 1 × H 1 and r 0,2 , u 0,2 , b 0,2 ∈ L 2 ∩ L ∞ × L 2 × L 2 be
two sets of initial data, and for i = 1, 2, consider r i , u i , b i two associated solutions of (38) such that:

(1) r i ∈ L ∞ (L 2 ∩ L ∞ ) and u i , b i ∈ L ∞ (L 2 ), with ∇u i , ∇b i ∈ L 2 (L 2 ); (2) for all T > 0, u 1 , b 1 ∈ L ∞ T (H 1 ) ∩ L 2 T (H 2 ) ∩ W 1,2 T (L 2 ) and r 1 ∈ L ∞ T (H 1+γ
) for all 0 < γ < β.

Define δr = r 2 -r 1 , δu = u 2 -u 1 and δb = b 2 -b 1 , and note by δr 0 , δu 0 , δb 0 the same quantities computed on the initial data. Then, we have the following stability estimate: for every 0 ≤ t ≤ T ,

(50) δu(t) 2 L 2 + δb(t) 2 L 2 + δr(t) 2 L 2 + t 0 ∇δu 2 L 2 + ∇δb 2 L 2 ds ≤ C δu 0 2 L 2 + δb 0 2 L 2 + δr 0 2 L 2 ,
where the constant C > 0 depends on T , µ(1), ν(1) and r 0,1

H 1+β , u 0,1 H 1 , b 0,1 H 1 .
Our statement is pretty much a weak-strong uniqueness result. In particular, we deduce uniqueness of the solutions in the energy space, given regular initial data.

Corollary 5.6. Consider 0 < β < 1 and (r 0 , u 0 , b 0 ) ∈ H 1+β × H 1 × H 1 . For that initial datum, there is exactly one solution (r, u, b) of (38) in the energy space, that is such that r ∈ L ∞ (L 2 ∩L ∞ ) and u, b ∈ L ∞ (L 2 ), with ∇u, ∇b ∈ L 2 (H 1 ).

Let us now prove the previous proposition.

Proof of Proposition 5.5. We start by remarking that the existence of the two sets of solutions r i , u i , b i i=1,2 , with the claimed level of regularity, is a consequence of Proposition 5.4.

In order to prove inequality (50), we take the difference between the equation solved by Omitting (for the sake of brevity) a standard regularisation process, let us perform energy estimates directly on the previous system. So, test the first equation with δu, the second one with δb and the third one with δr: one gets The first three integrals, which do not involve the magnetic field, can be dealt with as in [START_REF] Fanelli | Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions[END_REF] (see Paragraph 4.4.2 therein). We briefly summarise the computations. Firstly, using in turn the Hölder, the GN and Young's inequalities with exponents 1/4 + 3/4 = 1, we infer

Ω (δu • ∇)u 1 • δu dx ≤ δu L 4 u 1 L 4 ∇δu L 2 ≤ C δu 1/2 L 2 ∇δu 3/2 L 2 u 1 L 4 ≤ η ∇δu 2 L 2 + C(η) u 1 4 L 4 δu 2 L 2 = η ∇δu 2 L 2 + C(η)M 1 δu 2 L 2 .
Notice that the GN inequality again gives that M 1 (t) = u 1 (t) 4

L 4 ≤ C u 1 (t) 2 L 2 ∇u 1 (t) 2 L 2 , hence M 1 ∈ L 1 (R + ) is an integrable function.
Next, making use of Proposition A.8, we have

Ω δru ⊥ 1 • δu dx ≤ u 1 L ∞ δu 2 L 2 + δr 2 L 2 = N 4 δu 2 L 2 + δr 2 L 2 ,
with N 4 (t) = u 1 (t) L ∞ ≤ C u 1 (t)

1/2 L 2 ∆u 1 (t) 1/2 L 2 ∈ L 4
T for any fixed T > 0. As for the third integral, we use the fact that ∇r 1 ∈ L ∞ T (H γ ) for some γ > 0. By fractional Sobolev embedding (see equation (58) in the appendix), we know that ∇r 1 ∈ L ∞ T (L p ) for some p > 2. Let q be an exponent such that 1/p + 1/q = 1 2 . Applying the GN inequality first, and then Young's inequality with exponents 1/(1 -2/p) + 1/(2/p) = 1 gives Ω δu • ∇r 1 δr dx ≤ ∇r We still have to handle three integrals, which involve the magnetic field. Firstly, integration by parts gives

Ω (δu • ∇)b 1 • δb dx = Ω (δu • ∇)δb • b 1 dx ≤ δu L 4 ∇δb L 2 b 1 L 4 ≤ η ∇δb 2 L 2 + C(η) δu 2 L 4 b 1 2 L 4 ≤ η ∇δb 2 L 2 + δu L 2 ∇δu L 2 b 1 2 L 4 ≤ η ∇u 2 L 2 + ∇b 2 L 2 + M 1 (t) δb 2 L 2
, where we have also used the GN inequality in the second line, and Young's inequality in order to get the last inequality, and where we have set M 1 (t) = C(η) b 1 (t) 4 L 4 ∈ L 1 (R + ), because of the same bounds exhibited above for u 1 4 L 4 . The last integral in (54) can be treated in the same way: after integration by parts, we get

Ω (δb • ∇)b 1 • δu dx = Ω (δb • ∇)δu • b 1 dx ≤ δu L 4 ∇δb L 2 b 1 L 4 ≤ M 1 (t) δb 2 L 2 .
As a corollary of the previous proposition, we deduce the following continuity properties of the product in Sobolev spaces, which have been used in the course of the analysis. In the statement, we limit ourselves to the case of space dimension d = 2, the only relevant one for this study.

Lemma A.5. Take the space dimension to be d = 2. For appropriate f and g, one has the following properties:

(1) for s ∈ R and t > 0, T f (g) H s-t ≤ C f H 1-t g H s .

(2) for s ∈ R, T f (g) H s ≤ C f L ∞ g H s ;

(3) for s 1 , s 2 ∈ R such that s 1 + s 2 > 0, R(f, g) H s 1 +s 2 -1 ≤ C f H s 1 g H s 2 .

Proof. We start by proving the first point. From the second inequality in Proposition A.4, we get

T f (g) H s-t = T f (g) B s-t 2,2 ≤ C f B -t ∞,∞ ∇g B s-1 2,2 = C f B -t ∞,∞ ∇g H s-1 .
Because d = 2, Proposition A.3 gives the embedding H 1-t = B 1-t 2,2 → B -t ∞,∞ , from which we infer the first inequality.

Next, using the first inequality in Proposition A.4, we gather

T f (g) H s = T f (g) B s-t 2,2 ≤ C f L ∞ ∇g B s-1 2,2 ≤ C f L ∞ g H s ,
which proves the second point. Finally, using Proposition A.4 to estimate the remainder term, because we have assumed that s 1 + s 2 > 0, we get R(f, g) B s 1 +s 2 1,1

≤ C f H s 1 g H s 2 .
Proposition A.3 provides the embedding B s 1 +s 2 1,1

→ B s 1 +s 2 -1 2,2
= H s 1 +s 2 -1 , which gives the last inequality, thus completing the proof of the lemma.

Corollary A.6. As a consequence of the previous lemma, wee see that (i) for any δ > 0, the space H 1+δ is a Banach algebra;

(ii) for all s > -1 and all (f, g) ∈ H 1 × H s , we have f g ∈ H s-δ for any δ > 0, with

f g H s-δ ≤ C f H 1 g H s .
The next two propositions are functional inequalities which we use repeatedly in this article. The first one is the classical Gagliardo-Nirenberg inequality, whose proof can be found e.g. in Corollary 1.2 of [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF].

Lemma A.7. Let 2 ≤ p < +∞ such that 1/p > 1/2 -1/d. Then, for all u ∈ H 1 , one has

u L p ≤ C(p) u λ L 2 ∇u 1-λ L 2 , with λ = d(p -2) 2p .
In particular, in dimension d = 2, we have u L p ≤ u 

f L ∞ ≤ C f 1-α L 2 (-∆) s/2 f α L 2 .
In particular, when d = 2 and s = 2, then α = 1/2 and f L ∞ ≤ C f

1/2 L 2 ∆f 1/2 L 2 .
Proof. The main idea of the proof is to look separately at the high and low frequencies. Let N ≥ 1 be an integer to be fixed later on. Thanks to the Littlewood-Paley decomposition, we can write

f L ∞ ≤ j<N ∆ j f L ∞ + j≥N ∆ j f L ∞ .
Using the first Bernstein inequality in the fist sum gives ∆ j f L ∞ ≤ C2 jd/2 ∆ j f L 2 . On the other hand, the two Bernstein inequalities applied to the high frequency term yield ∆ j f L 2 ≤ C2 jd/2 2 -sj ∆ j (-∆) s/2 f L 2 . Therefore

f L ∞ ≤ C f L 2 j<N 2 jd/2 + C (-∆) s/2 f L 2 j≥N 2 -j(s-d/2) ≤ C f L 2 2 N d/2 + (-∆) s/2 f L 2 2 -N (s-d/2) .
By choosing N so that 2 N s ≈ (-∆) s/2 f L 2 f -1 L 2 (say that N is the largest integer such that 2 N s is smaller than (-∆) s/2 f L 2 f -1

L 2 ), we deduce the desired inequality. Finally, we recall a classical commutator estimate, which we have needed in our analysis (see Lemma 2.97 of [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] for the proof).

Lemma A.9. Let χ ∈ C 1 (R d ) be such that H(ξ) := (1 + |ξ|) χ(ξ) ∈ L 1 . There exists a constant C > 0 depending only on H L 1 such that

∀ f ∈ W 1,∞ , ∀ g ∈ L 2 , ∀ λ > 0 , χ 1 λ D , f g L 2 ≤ C 1 λ ∇f L ∞ g L 2 .
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 43243 Lemma A.7 gives b ⊂ L 4 T (L 4 ) and u ⊂ L 2 T (L 4 ). Hence u ⊗ b ⊂ L and ∂ t b ⊂ L (H -1 ). As a result, we get the Hölder bound b ⊂ C 0,3/4 T (H -1 ), and the Ascoli-Arzelà theorem gives compactness of b in e.g. C 0 T (H -1-δ loc

Proposition 4 . 3 .u

 43 For all divergence-free φ ∈ D R + × Ω; R 2 , one has +∞ 0 Ω ρ u ⊗ u : ∇φ dx dt -→ ⊗ u : ∇φ dx dt .

Proposition 5 . 4 .

 54 Assume that r 0 ∈ L 2 ∩ L ∞ and that u 0 , b 0 ∈ L 2 are two divergence-free functions. Then there exists a weak solution (r, u, b) of system (38) related to those initial data, such that r ∈ L ∞ (L 2 ∩ L ∞ ) and 3 u, b ∈ C 0 b (L 2 ), with ∇u and ∇b belonging to L 2 (L 2 ). Moreover this solution satisfies the basic energy inequality (41) and the conservation of the L p norms of r in time, for any p ∈ [2 + ∞].

r 2 ,∂

 2 u 2 , b 2 and the one solved by r 1 , u 1 , b 1 : this givest δu + (u 2 • ∇)δu + (δu • ∇)u 1 + ∇Π + r 2 δu ⊥ + δru ⊥ 1 = ∆δu + (δb • ∇)b 1 + (b 2 • ∇)δb ∂ t δb + (δu • ∇)b 1 + (u 2 • ∇)δb = (δb • ∇)u 1 + (b 2 • ∇)δu + ∆δb ∂ t δr + (u 2 • ∇)δr = -δu • ∇r 1 div(δu) = div(δb) = 0 ,where we have setΠ := π 2 -π 1 + 1 2 |b 2 | 2 -1 2 |b 1 | 2 inthe first equation. Recall that we are taking ν(1) = µ(1) = 1 for simplicity of presentation.

(u 2 |δu| 2 +|∇δu| 2 +⊥ 1 •

 2221 • ∇)b 1 • δu dx + Ω (b 2 • ∇)δb • δu dx 1 2 d dt Ω |δb| 2 dx + Ω (δu • ∇)b 1 • δb dx + Ω (u 2 • ∇)δb • δb dx + Ω |∇δb| 2 dx (52) = Ω (δb • ∇)u 1 • δb dx + Ω (b 2 • ∇)δu • δb dx 1 • ∇δr)δr dx = -Ω (δu • ∇r 1 )δr dx . (53)An integraton by parts shows that the second integral in (51), the third in (52) and the second in (53) are all equal to zero. Next, note that the last integrals in (51) and (52) are opposite. Therefore, by adding the three equations together, we gather|δb| 2 + |δr| 2 dx + Ω |∇b| 2 dx ≤ Ω (δu • ∇)u 1 • δu dx + Ω δru δu dx + Ω (δu • ∇r 1 )δr dx + Ω (δu • ∇)b 1 • δb dx + Ω (δb • ∇)u 1 • δb dx + Ω (δb • ∇)b 1 • δu dx .

L 2 for any p ∈ [ 2 ,

 22 +∞[ . The following proposition, which is in the same spirit of the Gagliardo-Nirenberg inequality, gives a bound for the endpoint case p = +∞. It is proved by resorting to Littlewood-Paley decomposition and the Bernstein inequalities. Proposition A.8. Let f ∈ H s , for some s > d/2. Then there exists a constant C = C(d, s) > 0 and an exponent α = α(d, s) = d/(2s) such that

  1 • δu 2 L 2 + δr 2 L 2 ≤ ∇r 1 2 L p δu 2 L q + δr 2 L 2 ≤ C p, r 0,1 H 1+β , u 0,1 H 1 , b 0,1 H 1 δu ≤ η ∇δu 2 L 2 + C η, β, r 0,1 H 1+β , u 0,1 H 1 , b 0,1 H 1 δu 2 L 2 + δr 2 L 2 .

	4/p L 2 ∇δu	2(1-2/p) L 2	+ δr 2 L 2

In order to simplify notations, we assume the electrical permittivity and the magnetic permeability to be of unit value, which can be done by working in an appropriate set of units.

In fact, in dimension 2 and for the L 2 norm, we have the exact equality: namely, curl b L 2 = ∇b L 2 . Indeed, since ξ • b(ξ) = 0, by Cauchy-Schwarz one has that ξ ⊥ • b(ξ) = |ξ| b(ξ) .

Given a Banach space X, we note C 0 b (X) the space fo continuous and globally bounded functions on R+ with values in X.
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Finally, for the remaining term we can apply one last time the GN inequality: we infer

and E 0 := δu 0 2

Putting all the previous bounds together and choosing η so small that the gradient terms can be absorbed in the left-hand side, from (54) we arrive at the differential inequality

where

T in the previous inequalities. Therefore, Grönwall's lemma implies that, for all t ≥ 0, one has

Coming back to (55), we finally get (50). The proposition is then proved.

A Appendix -Fourier and harmonic analysis toolbox

We recall here the main ideas of Littlewood-Paley theory, which we exploited in the previous analysis. We refer e.g. to Chapter 2 of [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] for details. For simplicity of exposition, let us deal with the R d case; however, the whole construction can be adapted also to the d-dimensional torus T d . First of all, let us introduce the so called "Littlewood-Paley decomposition", based on a nonhomogeneous dyadic partition of unity with respect to the Fourier variable. We fix a smooth radial function χ supported in the ball B(0, 2), equal to 1 in a neighborhood of B(0, 1) and such that r → χ(r e) is nonincreasing over R + for all unitary vectors e ∈ R d . Set ϕ (ξ) = χ (ξ) -χ (2ξ) and ϕ j (ξ) := ϕ(2 -j ξ) for all j ≥ 0.

The dyadic blocks (∆ j ) j∈Z are defined by 4

We also introduce the following low frequency cut-off operator:

(56)

Note that the operator S j is a convolution operator with a function

, and hence defines a continuous operator for the L p -→ L p topologies, for any 1 ≤ p ≤ +∞.

The following classical property holds true: for any u ∈ S , then one has the equality u = j ∆ j u in the sense of S . Let us also mention the so-called Bernstein inequalities, which explain the way derivatives act on spectrally localized functions.

Lemma A.1. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any couple (p, q) in [1, +∞] 2 , with p ≤ q, and any function u ∈ L p , we have, for all λ > 0,

4 Throughout we agree that f (D) stands for the pseudo-differential operator

By use of Littlewood-Paley decomposition, we can define the class of Besov spaces.

Definition A.2. Let s ∈ R and 1 ≤ p, r ≤ +∞. The non-homogeneous Besov space B s p,r is defined as the subset of tempered distributions u for which u B s p,r := 2 js ∆ j u L p j≥-1 r < +∞ . Besov spaces are interpolation spaces between Sobolev spaces. In fact, for any k ∈ N and p ∈ [1, +∞] we have the following chain of continuous embeddings:

, where W k,p denotes the classical Sobolev space of L p functions with all the derivatives up to the order k in L p . When 1 < p < +∞, we can refine the previous result (this is the non-homogeneous version of Theorems 2.40 and 2.41 in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]): we have

. In particular, for all s ∈ R we deduce the equivalence B s 2,2 ≡ H s , with equivalence of norms:

.

As an immediate consequence of the first Bernstein inequality, one gets the following embedding result.

Proposition A.3. The space B s 1 p 1 ,r 1 is continuously embedded in the space B s 2 p 2 ,r 2 for all indices satisfying p 1 ≤ p 2 and

In particular, in dimension d = 2, we get the regular Sobolev embeddings (58)

→ B 0 p,2 = B 0 p,min(p,2) → L p as long as 0 ≤ s < 1 and 2 ≤ p ≤ 2/(1 -s). Also note that, still for d = 2, one has the embedding H s → L ∞ ∩ C 0 for all s > 1.

Let us now introduce the paraproduct operator (after J.-M. Bony, see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]). Constructing the paraproduct operator relies on the observation that, formally, any product of two tempered distributions u and v, may be decomposed into (59)

where we have defined

The above operator T is called "paraproduct" whereas R is called "remainder". The paraproduct and remainder operators have many nice continuity properties.