Paul Donato 
  
Patrick Iglesias-Zemmour 
  
EVERY SYMPLECTIC MANIFOLD IS A (LINEAR) COADJOINT ORBIT

Keywords: Mathematics Subject Classification. 53D05, 58B99. Key words and phrases. Di feology, Symplectic Geometry, Quantization. 1

A

. We prove that every symplectic manifold is a coadjoint orbit of the group of automorphisms of the integration bundle of the symplectic manifold, acting linearly on its space of momenta. And that, for any group of periods of the symplectic form. This result generalizes the Kirilov-Kostant-Souriau theorem when the symplectic manifold is homogeneous under the action of a Lie group, and the symplectic form is integral.

I

It is well known since Kostant, Souriau and Kirillov [START_REF] Kostant | Orbits and quantization theory[END_REF] [Sou70] [START_REF] Kirillov | Elements de la théorie des représentations[END_REF], that a symplectic manifold (X, ω), homogeneous under the action of a Lie group, is isomorphic -up to a covering -to a coadjoint orbit, possibly a ne.

It is less known that any symplectic manifold 1 is isomorphic to a coadjoint orbit of its group of symplectomorphisms (or Hamiltonian di feomorphisms), possibly a ne [START_REF]Every symplectic manifold is a coadjoint orbit[END_REF]. This has been established, in particular, in the rigorous framework of di feology and uses essentially the notion of Moment Map for that category [PIZ10]. But this theorem still seems to lack something. Although this is not a fundamental aw, we would like to get rid of the a ne action, de ned by a twisted cocycle of the automorphisms, and prefer to identify the symplectic manifold with an ordinary coadjoint orbit, that is an orbit of the usual linear coadjoint action 2 . That could be done by integrating the a ne cocycle in some extension of the group of automorphisms rst, and then identify the a ne coadjoint orbit with an ordinary coadjoint orbit of this extension. This is quite a standard procedure in ordinary di ferential geometry, when it is possible.

But we recall that we are no more in the classical framework but in di feology, and we shall see that the di culty to integrate this cocycle in an extension of the automorphisms is absorbed in this category by the ability to treat irrational toruses. The fundamental element is the integration bundle existing for any symplectic manifold, as it has been established in the paper "La Trilogie du Moment" [START_REF] Iglesias-Zemmour | La Trilogie du Moment[END_REF]. This is a principal ber bundle over the manifold, with group the torus of periods of the symplectic form. That is, the quotient of the real line by the group of periods, i.e. the integrals of the 2-form on every 2-cycles. This principal bundle comes equipped with a connexion form, with curvature the symplectic form. Of course the torus of periods is almost never a manifold, but still a regular di feological group, non-trivial as a few examples have shown [START_REF] Donato | Exemple de groupes di érentiels : flots irrationnels sur le tore[END_REF] [IZL90]. And this is here where di feology is inevitable. We establish rst the following T 1. -Let (X, ω) be a symplectic manifold. Let P ω be its group of periods and T ω = R/P ω be its torus of periods. Let π : Y → X be an integration bundle equipped with a connexion form λ with curvature ω. Let Aut(Y, λ) be the (neutral component of the) group of automorphisms of the integration structure. Then, the kernel of the projection pr: Aut(Y, λ) → Diff(X, ω) is reduced to the action of the torus T ω , and its image is the group Ham(X, ω) of Hamiltonian di eomorphisms. In other words, we get an exact sequence of homomorphisms, which is a central extension:

1 T ω Aut(Y, λ) Ham(X, ω) 1.
The group of Hamiltonian di feomorphisms is de ned precisely in terms of di feology in [PIZ13, §9.15]. Then, denoting by * the space of momenta of the group Aut(Y, λ), we prove the following theorem which reveals the universal model of symplectic manifolds.

T 2. -The Moment Map µ Y : Y → * of the action of Aut(Y, λ) on (Y, d λ), is equivariant: µ Y (φ(y)) = Ad * (φ)(µ Y (y)
) for all φ ∈ Aut(Y, λ), and invariant by T ω . Its projection µ X : X → * is injective and caries out an identification of X with the orbit λ = µ Y (Y) = µ X (X). Therefore, every symplectic manifold is a coadjoint orbit of a linear action of a di eological group, at least Aut(Y, λ).

N

1. -The idea that every symplectic manifold is a coadjoint orbit of its group of symplectomorphisms (or Hamiltonian di feomorphisms), is not new. It appeared already at an early age of symplectic mechanics, a few decades ago. It is mentionned for example, in a functional analysis context, by Marsden & Weinstein in their paper on Vlasov equation [MW82, Note 3, p. 398], Taken up later by Omohundro, Weinstein's student, in his book on geometric perturbation theory in physics [START_REF] Malvern | Geometric Perturbation Theory in Physics[END_REF]p. 364]. What was already original in the rst paper [START_REF]Every symplectic manifold is a coadjoint orbit[END_REF] was the rigorous di feology framework in which the result was proved, the role of the universal moment map, the identi cation of Souriau's cocycle of the action of the automorphisms and the a ne action rather than linear if the cocycle is not trivial. What is original in this paper is that the a ne coadjoint orbit is made linear anyway, by integrating the cocycle into a central extension of the group of Hamiltonian di feomorphisms thanks to the integration bundle.

N

2. -We follow the vocabulary introduced in a previous work. We call parasymplectic form any closed 2-form on a di feological space; and a parasymplectic space any di feological space equipped with a parasymplectic form, which we denote in general by (X, ω). We refer to the textbook [START_REF] Di Eology | Mathematical surveys and monographs[END_REF] for all generic constructions in di feology.

R D C

This construction of a universal model for symplectic manifolds builds on three major constructions already established:

(1) The construction of the Moment Map for any parasymplectic form, on any di feological space and any preserving smooth action of any di feological group, which can be found in "Moment Map in Di feology" [PIZ10].

(2) The general construction of the group of Hamiltonian di feomorphisms that follows this construction op. cit. §9.2. (3) The integration bundle of a parasymplectic form on a manifold, in [START_REF] Iglesias-Zemmour | La Trilogie du Moment[END_REF].

To which is added the previous work on symplectic manifolds as affine coadjoint orbits of the group of symplectomorphisms [START_REF]Every symplectic manifold is a coadjoint orbit[END_REF]. In this section we recall the basis of these main constructions.

1. T M M P S -First of all, let G be a diffeological group. We denote by * its space of its momenta, that is, the space of the left-invariant di ferential 1-forms on G,

* = {ε ∈ Ω 1 (G) | L(g ) * (ε) = ε, for all g ∈ G}.
Now, let (X, ω) be a parasymplectic space with a parasymplectic action of G on X. That is, a smooth morphism ρ : G → Diff(X, ω), denoted by g → g X . Where Diff(X, ω) ⊂ Diff(X) is the group of automorphisms of ω, equipped with the functionnal di feology.

Hence, g * X (ω) = ω for all g ∈ G.

To understand the essential nature of the moment map, which is a map from X to * , it is good to consider the simplest case, and use it then as a guide to extend this simple construction to the general case. The Simplest Case. Consider the case where X is a manifold, and G is a Lie group. Let us assume that ω is exact ω = dα, and that α is also invariant by G. Regarding ω, the moment map3 of the action of G on X is the map µ : X → * de ned by µ(x) = x * (α), where x : G → X is the orbit map x(g ) = g X (x).

As we can see, there is no obstacle, in this simple situation, to generalize, mutatis mutandis, the Moment Map to a di feological group acting by symmetries on a di feological parasymplectic space. But, as we know, not all closed 2-forms are exact, and even if they are exact, they do not necessarily have an invariant primitive. We shall see now, how we can generally come to a situation, so close to the simple case above, that modulo some minor subtleties we can build a good Moment Map in all cases.

The General Case. We consider a connected parasymplectic di feological space (X, ω), and a di feological group G acting on X and preserving ω. Let be the Chain-Homotopy Operator, de ned in [START_REF] Di Eology | Mathematical surveys and monographs[END_REF]§6.83]. We recall that

: Ω k (X) → Ω k-1 (Paths(X))
is a linear operator which satis es the property

d • + • d = 1 * -0 * , (♥)
where t (γ) = γ(t ), with t ∈ R and γ ∈ Paths(X). Then, the di ferential 1-form ω, de ned on Paths(X), is related to ω by d and γ : G → Paths(X) is the orbit map γ(g ) = g X • γ of a path γ. The moment of paths is additive with respect to the concatenation,

[ ω] = ( 1 * -0 * )(ω),
Ψ(γ ∨ γ ) = Ψ(γ) + Ψ(γ ).
This paths Moment Map Ψ is equivariant by G, acting by composition on Paths(X), and by coadjoint action on * . Next, de ning the Holonomy of the action of G on X by

Γ = {Ψ( ) | ∈ Loops(X)} ⊂ * ,
the Two-Points Moment Map is de ned by pushing Ψ forward on X × X,

ψ(x, x ) = class(Ψ(γ)) ∈ * /Γ,
where γ is a path connecting x to x , and where class denotes the projection from * onto its quotient * /Γ. The holonomy Γ is the obstruction for the action of G to be Hamiltonian. The additivity of Ψ becomes the Chasles' cocycle condition

ψ(x, x ) + ψ(x , x ) = ψ(x, x ).
Let Ad : G → Diff(G) be the adjoint action, Ad(g ): k → g k g -1 . That induces on * a linear coadjoint action

Ad * : G → L( * ) with Ad * (g ) : ε → Ad(g ) * (ε) = Ad(g -1 ) * (ε).
Next, the group Γ is made of closed forms, invariant by the linear coadjoint action. Thus, the coadjoint action passes to the quotient * /Γ, and we denote the quotient action the same way:

Ad * (g ) : class(ε) → class(Ad * (g )(ε)).
The 2-points Moment Map ψ is equivariant for the quotient coadjoint action. Note that the quotient * /Γ is a legit di feological Abelian group4 

Now, because X is connected, there always exists a map

µ : X → * /Γ such that ψ(x, x ) = µ(x ) -µ(x).
The solutions of this equation are given by

µ(x) = ψ(x 0 , x) + c,
where x 0 ∈ X is an arbitrary point and c ∈ * /Γ is any constant. But this map is a priori no longer equivariant with respect to Ad * on * /Γ. Its variance introduces a 1-cocycle θ of G with values in * /Γ such that

µ( g (x)) = Ad * (g )(µ(x)) + θ( g ), with θ( g ) = ψ(x 0 , g (x 0 )) -∆c( g ), and ∆(c) : g → Ad * (g )(c) -c
is the coboundary due to the constant c in the choice of µ. The cocycle θ de nes then a new action of G on * /Γ, that is, a quotient affine action :

Ad θ * (g ) : τ → Ad * (g )(τ) + θ( g ) for all τ ∈ * /Γ.
The Moment Map µ is then equivariant with respect to this a ne action:

µ( g (x)) = Ad θ * (g )(µ(x)).
Note that, in particular, if G is transitive on X, then the image of the Moment Map µ is an a ne coadjoint orbit in * /Γ.

This construction extends to the category {Di feology}, the Moment Map for {Manifolds} introduced by Souriau in the sixties [START_REF] Souriau | Structure des systèmes dynamiques[END_REF].

The group of all automorphisms of a parasymplectic space is denoted by Diff(X, ω) or by G ω , it is a legitimate di feological group. The constructions above give the space of momenta * ω , the universal path moment map Ψ ω , the universal holonomy Γ ω , the universal two-points moment map ψ ω , the universal moment maps µ ω , and the universal Souriau's cocycles θ ω .

T C

S M -Let (X, ω) be a connected parasymplectic manifold. The value of the paths Moment Map Ψ ω at the point p ∈ Paths(X) = C ∞ (R, X), evaluated on the n-plot F : U → G ω is explicitely given by

Ψ ω ( p)(F) r (δr ) = 1 0 ω p(t ) (ṗ(t ), δ p(t )) d t
where r ∈ U and δr ∈ R n , δ p denotes the lifting in the tangent space TX of the path p, de ned by

δ p(t ) = [D(F(r ))( p(t ))] -1 ∂ F(r )( p(t ))
∂ r (δr ) for all t ∈ R.

In that case we have the foolowing theorem, see [START_REF]Every symplectic manifold is a coadjoint orbit[END_REF] for example: T (P.I-Z). Let X be a connected Hausdor manifold. A parasymplectic form ω on X is symplectic if and only if the following two conditions are satisfied:

(1) The manifold X is homogeneous under the action of G ω .

(2) The universal Moment Map µ ω : X → * ω /Γ ω is injective. Hence, the Moment Map identifies the manifold X with a, a priori affine, [START_REF] Donato | Revêtement et groupe fondamental des espaces di érentiels homogènes[END_REF], ω is equipped with the pushforward di feology of G ω by π , and µ ω is then a di feomorphism.

(Γ ω , θ ω )- coadjoint orbit ω of G ω , µ ω (X) = ω ⊂ * ω /Γ ω . The situation is summarized by the diagram G ω X ω π π X µ ω (♣) where π X (φ) = φ(x 0 ), π (φ) = Ad θ * (φ)(µ ω (x 0 )), for all φ ∈ G ω and x 0 ∈ X is any base point. The projections π X is a subduction [Boo69,

H

D -In the construction of the Moment Map of a parasymplectic action of a di feological group G on (X, ω), the holonomy group Γ is the obstruction of the action of G to be Hamiltonian.

D

. A parasymplectic action of a di eological group G on (X, ω) is said to be Hamiltonian if Γ = {0}.

Hence, the moment maps have their values in * . We get then the following theorem [PIZ10, §9.2] T (P.I-Z). Let (X, ω) be a connected parasymplectic di eological space. There exists a largest connected subgroup Ham(X, ω) ⊂ Diff(X, ω) whose action is Hamiltonian, that is, whose holonomy is trivial. The elements of Ham(X, ω) are called Hamiltonian di feomorphisms. An action ρ of a di eological group G on X is Hamiltonian if and only if, restricted to the identity component of G, ρ takes its values in Ham(X, ω).

The group Ham(X, ω) is precisely built as follows. Let G

• ω be the neutral component of G ω = Diff(X, ω). Let π : G • ω → G • ω be the universal covering. Since the universal holonomy Γ ω is made of closed momenta [PIZ10, §4.7], every γ ∈ Γ ω de nes a unique homomorphism k(γ) from G • ω to R such that π * (γ) = d [k(γ)] [PIZ10, §3.11]. Let H ω = γ∈Γ ω ker(k(γ)), then Ham(X, ω) = π( H • ω ),
where H • ω ⊂ H ω is its neutral component. The space of momenta and the universal moment maps objects associated to H ω = Ham(X, ω) are denoted by: * ω , Ψω , ψω , μω , and θω .

T I

B P F -Let (X, ω) be a parasymplectic manifold, connected, Hausdor f and second countable. Let P ω its group of periods, that is,

P ω = σ ω σ ∈ H 2 (X, Z) ⊂ R.
Since X is second countable P ω is di feogicaly discrete, that is, the di feology induced by the standard di feology of R is the discrete di feology. The plots are locally constant. Let T ω = R/P ω be its torus of periods. Except in the case where the group of periods has only one generator, the torus of periods is not a manifold but a legitimate non trivial di feological group. See for example the paper on the irrational torus T α = R/Z + αZ [START_REF] Donato | Exemple de groupes di érentiels : flots irrationnels sur le tore[END_REF], where α / ∈ Q,

for an example of such irrational torus.

Then, we get the following theorem in [PIZ95, Theorem 1.5].

T (P.I-Z)

. Let (X, ω) be a second countable Hausdor parasymplectic manifold. There exists always a T ω -principal fiber bundle π : Y → X equipped with a connexion 1-form λ with curvature ω. That is, π * (ω) = d λ. The various such integration bundles are classified by the extension group Ext(H 1 (X, Z), P ω ).

We may need to precise that a connexion 1-form λ on Y is a T ω -invariant 1-form, such that, for all y ∈ Y, ŷ * (λ) = θ, where ŷ : T ω → Y is the orbit map ŷ(τ) = τ Y (y); and θ is the canonical 1-form on T ω de ned by class * (θ) = d t , with class: R → T ω the projection.

A E S

For a symplectic manifold, the transition from an a ne orbit to a linear orbit5 needs to absorb the Souriau's cocycle somewhere. We do it by building an extension of the group of Hamiltonian di feomorphisms, associated with the the integration bundle of the symplectic form ( §4).

T C E H D

-Let (X, ω) be a symplectic manifold. Let P ω be its group of periods and T ω = R/P ω be its torus of periods. Let π : Y → X be its T ω -principal integration ber bundle, and λ be its connection form. Let Aut(Y, λ) be the group of automorphisms of the integration structure, that is:

Aut(Y, λ) = {φ ∈ Diff(Y) | φ * (λ) = λ and ∃ f ∈ Diff(X), π • φ = f • π}
Actually we reduce Aut(Y, λ) to its the neutral component. Then, the di feomorphism f belongs naturally to the group of Hamiltonian di feomorphisms Ham(X, ω). The mapping η : φ → f is then a surjective homomorphism. Its kernel is the torus of periods T ω , and η is a central extension. Which is summarized by the exact sequence:

1 T ω Aut(Y, λ) Ham(X, ω) 1 η . N .
-The integration bundle of a parasymplectic form is not necessarily unique. They are all classi ed by Ext(H 1 (X, Z), P ω ) [START_REF] Iglesias-Zemmour | La Trilogie du Moment[END_REF]. The theorem above applies to any of them indi ferently, which had been noticed by Bertram Kostant and Jean-Marie Souriau in the integral case P ω = aZ. And by the way, this extension is called the Kostant-Souriau Extension in that case.

It is notable too, that all this construction is purely di feologial, involves only di ferential forms and do not need tangent vectors or integration of vector elds. That aspect of di feology had been already underlined in the construction of the Moment Map in particular in [PIZ10].

Proof. Let us begin by xing our notation. The action of an element τ ∈ T ω on y ∈ Y will be noted indi ferently by τ • y or by τ Y (y).

Now, let φ ∈ Aut(Y, λ) and f = η(φ). Since f • π = π • φ, φ * (λ) = λ and π * (ω) = d λ, π being a subduction, we get f ∈ Diff(X, ω).
(A) Let us to prove that ker(η) = T ω , acting on Y by τ : y → τ •y. Let φ ∈ ker(η), that is, π • φ = π. Then, for all y ∈ Y, there exists a unique τ(y) ∈ T ω such that φ(y) = τ(y) • y.

(a) Let us rst check that τ : Y → T ω is smooth. Let r → y r by a plot in Y, composed by φ, we get the plot r → τ(y r ) • y r . We need to prove that r → τ(y r ) itself is smooth. The pullback of π : Y → X by the plot r → x r = π(y r ) is localy trivial, then we can restrict these plots to a ball B over wich the pullback

[r → x r ] * (Y) = {(r, y) ∈ B × Y | π(y) = x r }
is trivial. Any T ω -principal bundle isomorphism F from this pullback to the product B × T ω writes F(r, y) = (r, t (r )(y)), and the smooth map t with values in T ω satis es the equivariance t (r )(τ • y) = τ • t (r )(y). Thus, r → t (r )(y r ) is smooth as well as r → t (r )(τ(y r )(y r )) = τ(y r ) • t (r )(y r ). Hence, r → τ(y r ) is smooth. Therefore, the function τ is smooth.

(b) Let us prove now that the function τ is constant. The invariance φ * (λ) = λ implies λ(r → τ(y r ) • y r ) = λ(r → y r ), for all plots r → y r . That is, thanks to the partial derivatives formula [PIZ13, §8.37 ♣]

λ(r → y r ) = λ(r → τ(y r ) • y r ) = λ(r → y r ) + τ * (θ)(r → y r ),
where θ is the canonical 1-form on T ω . Thus, τ * (θ) = 0. Then τ is constant. Hence, ker η = T ω .

(B) Let us prove that η takes its value in Ham(X, ω). That is, that the holonomy group of Aut(Y, λ) vanishes when acting on (X, ω) through the action

φ X (x) = f (x) with f = η(φ).
We shall denote by * the space of momenta of Aut(Y, λ). The Moment Map Ψ X of the action of Aut(Y, λ) on (X, ω) is given, according to previous notations by:

Ψ X : Paths(X) → * with Ψ(γ) = γ * ( X (ω)),
where γ : φ → f • γ is the orbit map. Let us prove now that Ψ X ( ) = ˆ * ( X (ω)) = 0, for all ∈ Loops(X).

Let us recall rst of all that the principal ber bundle π : Y → X induces, in particular, a subduction of loops spaces:

π * : Loops(Y) → Loops(X) by pushforward π * ( ) = π • , see [PIZ13, §8
.32] and [PIZ19]. That is, every plot r → r in Loops(X) has a local smooth lifting r → r , everywhere, in Loops(Y). Note that we shall underline the paths in Y, to distinguish them from paths in X. Now, let and such that π • = . We have

ˆ (φ) = f • = f • π • = π • φ • = π • ˆ (φ), that is, ˆ = π * • ˆ . Thus, ˆ * ( X (ω)) = (π • ˆ ) * ( X (ω)) = ˆ * π * * X (ω)
Then, let us recall the variance of the chain-homotopy operators X and Y , relatives to X and Y [PIZ13, §6.84], summarized by the commutative diagram:

Ω k (Y) Ω k-1 (Paths(Y)) Ω k (X) Ω k-1 (Paths(X)) Y X π * (π * ) *
We have then:

π * * X (ω) = Y π * (ω) = Y (d λ).
Hence:

ˆ * π * * X (ω) = ˆ * Y (d λ) .
Thus:

Ψ X ( ) = ˆ * X (ω) = ˆ * Y (d λ) = Ψ Y ( ),
where Ψ Y is the Moment Map for the action of Aut(Y, d λ) acting on (Y, d λ). Note that, that could have been deduced directly from [PIZ13, §9.13]. Now, according to the fundamental property of the Chain-Homotopy Operator, we have:

ˆ * Y (d λ) + ˆ * d Y (λ) = ˆ * ( 1 * (λ) -0 * (λ)) = ( 1 • ˆ ) * (λ) -( 0 • ˆ ) * (λ) = 0,
because is a loop. Therefore,

ˆ * Y (d λ) = -d ˆ * Y (λ) .
But, for every plot r → φ r in Aut(Y, λ), for all r in its domain :

ˆ * Y (λ) (φ r ) = Y (λ)(φ r • ) = φ r * ( ) λ = φ * r (λ) = λ.
Hence ˆ * Y (λ) is constant, its derivative vanishes and therefore

Ψ X ( ) = ˆ * X (ω) = ˆ * Y (d λ) = 0. (♦)
And that achieves to prove that η : Aut(Y, λ) → Diff(X, ω) takes its values in Ham(X, ω).

(C) Let us show now that

T ω ⊂ Aut(Y, λ) is central, that is, η : Aut(Y, λ) → Ham(X, ω) is a central extension. Let φ ∈ Aut(Y, λ).
We have seen that T ω = ker(η). Thus, for all τ ∈ T ω there exists τ ∈ T ω such that τ = φ • τ • φ -1 . Obviously, h φ : τ → τ de nes a group isomorphism of T ω : h φ (τ 1 τ 2 ) = h φ (τ 1 )h φ (τ 2 ), and h φ (τ

) -1 = φ -1 • τ -1 • φ.
But φ is connected to the identity map 1 Y via a smooth path s → φ s ∈ Aut(Y, λ), de ned on an open interval open interval containing [0, 1], with φ 0 = 1 Y and φ 1 = φ. That de nes a smooth path of isomorphisms

h φ s = φ s • τ • φ -1 s .
Let us denote h s for h φ s . The map (s, t ) → h s (class(t )) is a plot de ned on × R, in T ω . By the monodromy theorem [PIZ13, §8.25], it has a global lifting (s, t ) → H s (t ), de ned on × R, which is a smooth plot in R. And the lift is unique with H 0 (0

) = 0. × R (s, x) H s (x) ∈ R × T ω (s , class(x)) h s (class(x)) = class(H s (x)) ∈ T ω H 1 × class class h
For every parameter s, the restriction H s : R → R is a smooth lifting of the isomorphism h s : T ω → T ω . Thus, up to a constant b s ∈ R, H s is a smooth morphism from R to R. Hence, H s (x) = a s x + b s . Where s → a s and s → b s are smooth, and a s = 0 since H s lifts an isomorphism. Now, for all s ∈ , all x, x ∈ R, h s (class

(x + x )) = h s (class(x)) + h s (class(x )), that is, class(H s (x + x )) = class(H s (x)) + class(H s (x )),
i.e. a s (x + x ) + b s = a s x + b s + a s x + b s + p, and then b s ∈ P ω for all s ∈ P ω .

Since s → b s is smooth and P ω is (di feologically) discrete in R, b s is constant and equal to b 0 which is 0. Thus, H s (x) = a s x. Next, h s (class(x)) = class(H s (x)) implies that, for all p ∈ P ω there exists p ∈ P ω such that H s (x + p) = H s (x) + p . That is, a s (x + p) = a s x + p , and then a s p ∈ P ω for all p ∈ P ω . Again, since P ω is discrete in R, s → a s is constant and the lifting H writes H s (x) = a x, for some number a = 0. Finally, since H 0 lifts the identity h 0 = 1 T ω by a morphism, H 0 (x) = x and a = 1. Therefore H s (x) = x for all s and h s

(τ) = τ, that is, φ • τ Y = τ Y • φ, and the extension η : Aut(Y, λ) → Ham(X, ω) is central. (D) Let us show nally that η : Aut(Y, λ) → Ham(X, ω) is surjective. Let f ∈ Ham(X, ω).
There exists a smooth path t → f t ∈ Ham(X, ω), such that f 0 = 1 X and f 1 = f . We de ne, for all x ∈ X, the path γ X in X by γ x (t ) = f t (x). It satis es γ x (0) = x and γ x (1) = f (x). The map x → γ x is smooth.

Given any y ∈ Y and x = π(y) ∈ X, we will denote by γ y the unique horizontal lifting of γ x with origin y. Moreover, the map y → γ y is smooth and equivariant under the action of T ω [PIZ13, §8.32]. We de ne then:

φ(y) = γ y (1) and φ ∈ C ∞ (Y) (op. cit.)
The map φ is a smooth lifting of f , that is,

π • φ = f • π. Moreover, the equivariance of γ y by T ω also implies that τ Y • φ = φ • τ Y for all τ ∈ T ω . But if φ is equivariant, it
has no reason to preserve the contact form λ. We shall show then that there exists a map τ ∈ C ∞ (Y, T ω ) such that

Φ : y → τ(y) • φ(y),
which is still a smooth lifting of f , preserves the contact form λ, that is, Φ ∈ Aut(Y, λ).

Thanks to the partial derivatives formula (op. cit.), for any plot r → y r of Y, we get:

Φ * (λ)(r → y r ) = λ(r → τ(y r ) • φ(y r )) = θ(r → τ(y r )) + λ(r → φ(y r )) = τ * (θ)(r → y r ) + φ * (λ)(r → y r ). That is, Φ * (λ) = τ * (θ) + φ * (λ). Consider now Φ * (λ) -λ = τ * (θ) + β with β = φ * (λ) -λ. L 1. The 1-form β is the pullback of a closed 1-form ε on X : β = π * (ε).
Let us check that β is closed: 

d (φ * (λ) -λ) = φ * (d λ) -d λ = φ * (π * ω) -π * ω = π • φ) * ω -π * ω = ( f • π) * ω -π * ω = π * f * ω -π * ω = 0. Also, β is invariant by T ω : τ * (β) = τ * (φ * (λ)-λ) = (φ•τ) * (λ)-τ * (λ) = (τ•φ) * (λ)-λ = φ * (τ * (λ))-λ = φ * (λ)-λ = β.
0 = Ψ X ( ) = ˆ * X (ω) = ˆ * Y (d λ) = -ˆ * d Y (λ) = -d ˆ * Y (λ) ,
for all ∈ Loops(X) and all ∈ Loops(Y) over , because 1 • * = 0 • * . Now, evaluating the Moment Map on the plot t → φ t connecting 1 Y to φ, using = π • and φ t • = φ t * ( ), we get:

d ˆ * Y (λ) (t → φ t ) = d Y (λ)(t → φ t * ( )) = d t → φ t * ( ) λ = d t → φ * t (λ) = φ * (λ) -λ = φ * (λ) -λ = β = π * ε = ε.
Thus, for all ∈ Loops(X), ε = 0. Therefore, according to [PIZ13, §6.89], there exists ν ∈ C ∞ (X, R) such that ε = d ν.

Now we can achieve to prove that

Φ ∈ Aut(Y, λ). Indeed, let ν = ν • π ∈ C ∞ (Y, R). Let us de ne τ ∈ C ∞ (Y, T ω ) by τ = -class • ν = -class • ν • π,
where class: R → T ω . Hence:

τ * (θ) = -π * (ν * (class * (θ))) = π * (ν * (d t )) = -π * (d ν) = -π * (ε) = -β.
Thus τ * (θ) = -φ * (λ) + λ. Therefore:

Φ * (λ) = τ * (θ) + φ * (λ) = -φ * (λ) + λ + φ * (λ) = λ, and Φ ∈ Aut(Y, λ).
Until now, we have proved that η : Aut(Y, λ) → Ham(X, ω) is surjective, we have to prove then that it is a subduction [START_REF] Di Eology | Mathematical surveys and monographs[END_REF]§1.46]. For this, we need to check that any plot P: r → f r in Ham(X, ω), admits a local lifting P such that P = locally η • P, everywhere.

Thanks to the functional di feology and to both subductions π * : Paths(Y) → Paths(X) [PIZ13, §8.32] and π : Y → X, the map (r, t , x) → f r,t (x) is smooth and then admits a smooth lifting on Y. Thus, for x = π(y), the time t = 1 of this lifting de nes the smooth family φ r (y) of di feomorphisms, the shift by

τ ∈ C ∞ (Y, T ω ) preserves the smoothness of r → Φ r ∈ Aut(Y, λ). M M U E B A
In this section we will show how the sympletic manifold (X, ω) identi es, through the Moment map of the Hamiltonian action of Aut(Y, ω) with an orbit of this group for its linear coadjoint action on its space of momenta. We again emphazise the fact that this result generalizes the Kostant-Kirilov-Souriau theorem when the symplectic manifold is homogeneous under the action of a Lie group, and the symplectic form is integral. In the non-integral case but homogeneous, the optimal result in the category of manifolds states that the symplectic manifold is, up to a covering, an a ne coadjoint orbit of the group. That result had been extended to the group of all Hamiltonian di feomorphism in [START_REF]Every symplectic manifold is a coadjoint orbit[END_REF].

6. S M A (L ) C O -Let (X, ω) be a symplectic manifold, and as it is described in ( §5), let P ω be its group of periods, π : Y → X be an integration bundle with connection λ, and Aut(Y, λ) be the group of automorphisms of the integration structure.

Let * be the space of Momenta of Aut(Y, λ), that is, the space of left-invariant 1forms on Aut(Y, λ). The action of Aut(Y, λ) on Y has a moment map, relatively to the parasymplectic form d λ, given by

µ Y : → * , with µ Y (y) = ŷ * (λ).
Then,

(1) The moment µ Y projects on µ X : X → * , µ Y = µ X • π.

(2) µ Y is equivariant under the coadjoint action of Aut(Y, λ).

(3) µ X is injective. (4) µ X de nes a di feomorphism from X onto the coadjoint orbit

* ⊃ λ = µ Y (Y) = µ X (X).
Therefore the symplectic manifold X inherits the structure of a coadjoint orbit. And this is a universal characterization of symplectic manifolds:

Every Symplectic Manifold is a (Linear) Coadjoint Orbit.
Which completes the statement made in [START_REF]Every symplectic manifold is a coadjoint orbit[END_REF] that Every Symplectic Manifold is a (Affine) Coadjoint Orbit of its group of Symplectomorphisms.

Proof. Let us begin by checking that µ Y is constant on each ber. The action of T ω is central in Aut(Y, λ), so for any τ ∈ T ω , for all y ∈ Y and for all φ ∈ Aut(Y, λ) we have: τ

• y(φ) = φ(τ • y) = τ • φ(y) = τ • (ŷ(φ)), hence τ • y = τ • ŷ. Thus, µ Y (τ • y) = ( τ • y) * (λ) = (τ • ŷ) * (λ) = ŷ * (τ * (λ)) = ŷ * (λ) = µ Y (y).
Now, let us denote, for all φ, ψ in Aut(Y, λ), R(φ)(ψ) = ψ • φ -1 , the right action of the group on its momenta. Then, the equivariance follows from: µ Y (φ(y)) = φ(y) * (λ) = (ŷ • R(φ -1 ) * (λ) = R(φ -1 ) * (ŷ * (λ)) = R(φ -1 ) * (µ Y (y)) = R(φ -1 ) * L(φ -1 ) * (µ Y (y)) = Ad(φ -1 ) * (µ Y (y)) = Ad(φ) * (µ Y (y)).

Finally, pushing forward the moment maps [PIZ13, §9.12 & 9.13] leads to the commutative diagram below, where μX is the Moment Map for the group Ham(X, ω), and * denotes its space of momenta.

Y * X * π µ Y μX µ X η *
The Moment Map μX is known to be injective [START_REF]Every symplectic manifold is a coadjoint orbit[END_REF], as well as η * since η is a subduction ( §5, Proof (C)). Hence, µ X = η * • μX is injective and a subduction on λ = µ Y (Y). Therefore, µ X is a di feomorphism from X to λ = µ Y (Y), equiped with the quotient di feology of Aut(Y, λ) by the stabilizer of any point y ∈ Y.

C

This paper answers the question of the ontological nature of symplectic manifolds, if we can use such a big word. But that question has indeed arised in social networks, for example in mathoverfolw.net [Com17]. That is a good justi cation a posteriori of this work.

As we have seen in this construction, for a symplectic manifold, to pass from an orbit of the a ne action of the Hamiltonian di feomorphisms, to an orbit of a linear action needs the integration of the Souriau's cocycle. This integration is done by considering the integration bundle of the symplectic manifold, which adds a oor to the construction (♣) and is summarized in the following diagram (♠). We have denoted by G λ the group of automorphisms of the integration structure, and π the subduction from Y onto its orbit, by quotient.

G λ Y λ X π π Y µ Y π µ X (♠)
It is important to emphasize this, if the identi cation of the symplectic manifold as an a ne-coadjoint orbit may possibly be adapted in another framework, dealing with in nite dimension spaces and groups, it seems not possible to avoid di feology to transform the symplectic manifold into a linear-orbit of a group of di feomorphisms. Indeed, the key of this construction being the integration bundle, there is no other known smooth theory for which it exists, except in the trivial case of an integral symplectic manifold, where it is a manifold. That is due to the dense nature of the group of periods of the symplectic form in general. Think for example to the simple case of the product S 2 × S 2 , equiped with the symplectic form Surf ⊕ 2 Surf. Its group of periods Z + 2 Z ⊂ R is dense and its torus of periods not Hausdor f, but indeed not di feologically trivial. 

  and ω is invariant by G (op. cit. §6.84). Considering ω = ( 1 * -0 * )(ω) and ᾱ = ω, we are in the simple case: ω = d ᾱ with ᾱ invariant. We can apply the construction above and de ne then the Moment Map of Paths by Ψ : Paths(X) → * with Ψ(γ) = γ * ( ω),

  Moreover, β vanishes vertically. Indeed, let us rst remark that τ • φ = φ • τ, for all τ ∈ T ω , implies φ • ŷ = ŷ , for all y ∈ Y and y = φ(y). Then, ŷ *(β) = ŷ * (φ * (λ)λ) = ŷ * (φ * (λ)ŷ * (λ) = (φ • ŷ) * (λ)ŷ * (λ) = (ŷ ) * (λ)ŷ * (λ) = θ-θ = 0. Thus λ = λ+β is a new connection 1-form, the di ference β is then the pullback of a 1-form on X, according to [PIZ13, §8.37, Note]. L 2. The 1-form ε is exact: ε = d ν, ν ∈ C ∞ (X, R).Indeed, considering the fundamental property of the Chain-Homotopy Operator• d + d • = 1 * -0 * (♥), on the one hand, and the vanishing of the holonomy of the action of Aut(Y, λ) on Y (♦) on the other hand, we get,

  address: paul.donato@univ-amu.fr address: piz@math.huji.ac.il URL: http://math.huji.ac.il/~piz

 

Precisely, one moment map, since they are de ned up to a constant.

For the quotient of the functional di feology of * ⊂ Ω 1 (G) by Γ. In particular, for Lie groups, it is always a product R k × T , k, ∈ N.

We recall that we say "linear orbit" as a shortcut for "orbit of a linear action".