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The moment duration scaling relation for slow rupture arises from transient rupture speeds

A Burridge-Knopoff model with only two dimensionless parameters; the homogeneous stress on a fault and a velocity strengthening friction term.

• The simplicity of the model allows for both numerical and analytical calculations of moment versus duration scaling relationships during fault slip.

• Moment versus duration scaling relation for slow events arises from transient rupture speeds.

Plain language summary

Observations have shown that the duration of earthquakes is related to the seismic moment through a power law. The power law exponent is different for regular earthquakes and slow aseismic rupture, and the origin of this difference is currently debated in the literature. In this letter, we introduce a minimal mechanical friction model that contains both slow and regular earthquakes, and demonstrate that the different power laws emerge naturally within the model because the propagation speed of slow earthquakes decays as a power law in time whereas the propagation speed of regular earthquakes remains fairly constant.

Introduction

Over the last decades, an increasing number of slow slip events on faults have been reported [START_REF] Bürgmann | The geophysics, geology and mechanics of slow fault slip[END_REF]. A measure that is viewed as a key to unravelling the mechanism of slow and fast rupture is the relation between seismic moment M 0 and slip event duration T . Regular fast earthquakes have long been known to follow a moment duration scaling relation of M 0 ∝ T 3 . Ide et al. suggested that slow events follow a unified scaling relation M 0 ∝ T [START_REF] Ide | A scaling law for slow earthquakes[END_REF]. They suggested that the linear relation between moment and duration for slow events can be explained in two ways: (1) the average slip is proportional to the fault length as for fast propagation, and the stress drop is constant for all events, which gives the relation M 0 ∝ T . (2) the slip amount is constant for all events, and the fault area increases linearly with time L 2 ∝ T , which results in M 0 ∝ T . Peng et. al [START_REF] Peng | An integrated perspective of the continuum between earthquakes and slow-slip phenomena[END_REF]) elaborated on the ideas of Ide et. al [START_REF] Ide | A scaling law for slow earthquakes[END_REF] and reached a different conclusion; that rupture should span a continuum between fast and slow velocity end-members. However, almost 10 years after the suggestion of Peng et. al, observations of events between the fast and slow end-members are still sparse. Later studies have reported on a variety of scalings between moment and duration ranging from M 0 ∝ T to M 0 ∝ T 2 [START_REF] Ide | Bridging the gap between seismically and geodetically detected slow earthquakes[END_REF][START_REF] Aguiar | Moment release rate of cascadia tremor constrained by gps[END_REF][START_REF] Frank | Revealing the cluster of slow transients behind a large slow slip event[END_REF][START_REF] Gao | Scaling relationships of source pa-rameters for slow slip events[END_REF], although the definition of events can vary somewhat between different studies.

The shape of slip patches can also influence the observed scaling. [START_REF] Ben-Zion | Episodic tremor and slip on a frictional interface with critical zero weakening in elastic solid[END_REF] argued that fractal slip patches can result in a scaling relation M 0 ∝ T 2 / log(T ) because the average displacement is approximately constant rather than proportional to the rupture dimension. Bounded propagation can also play an important role [START_REF] Ben-Zion | Episodic tremor and slip on a frictional interface with critical zero weakening in elastic solid[END_REF][START_REF] Gomberg | Reconsidering earthquake scaling[END_REF]. Gomberg et. al [START_REF] Gomberg | Reconsidering earthquake scaling[END_REF] suggested that the scaling relation between moment and duration is the same for slow and fast events, but that a transition occurs between a two-dimensional scaling and a one-dimensional scaling when the rupture propagation switches from unbounded to bounded in one direction. Assuming the fault displacement can be approximated using dislocation theory, this results in a transition from T 3 to T . They suggest that there should be a bimodal but continuous distribution of slip modes, and that a difference in scaling relations alone does not imply a fundamental difference between fast and slow slip. The above mentioned theoretical considerations implicitly assume constant rupture velocity. However, this contradicts observations by Gao et. al [START_REF] Gao | Scaling relationships of source pa-rameters for slow slip events[END_REF] that show that the average rupture speed for slow events decreases with increasing seismic moment, which is a strong indication of transient rupture speeds.

Slow slip events emerge in numerical models with rate-and-state friction. Colella et. al [START_REF] Colella | Multi-event simulations of slow slip events for a cascadia-like subduction zone[END_REF]) simulated a Cascadia-like subduction zone using rate-andstate friction. They analyzed a large number of slip events, and found that the seismic moment M w scales as M w ∝ T 1.5 for M w ≤ 5.6 with a transition to M w ∝ T 2 for M w > 5.6. Shibazaki et. al [START_REF] Shibazaki | Modeling of slow slip events along the deep subduction zone in the kii peninsula and tokai regions, southwest japan[END_REF] modeled the subsuction zone of southwest Japan with rate-and-state friction. For slow events, they found a scaling M 0 ∝ T 1.3 . Liu et. al [START_REF] Liu | Source scaling relations and along-strike segmentation of slow slip events in a 3-d subduction fault model[END_REF] used rate-and-state friction on a 3D subduction fault model and found a scaling M 0 ∝ T 1.85 . Romanet et. al [START_REF] Romanet | Fast and slow slip events emerge due to fault geometrical complexity[END_REF] highlighted the role of interactions between faults. They argue that the scaling relationships of slow slip events and earthquakes emerge from geometrical complexities due to interactions between fault segments. The moment duration scalings have not only been addressed using rate-and-state friction. Ide et. al [START_REF] Ide | A brownian walk model for slow earthquakes[END_REF] introduced a Brownian walk model for slow rupture, where the assumption is that there is a random expansion and contraction of the fault area, so that its radius can be described as a Brownian walk with a damping term. This model predicts M 0 ∝ T for large T .

Here, our goal is to answer the following two questions: (1) Is there a separation of two distinct classes [START_REF] Ide | A scaling law for slow earthquakes[END_REF], or is there a continuum of possible scaling relations between the fast and slow end-members [START_REF] Peng | An integrated perspective of the continuum between earthquakes and slow-slip phenomena[END_REF])? (2) Can a difference in M 0 -T scaling relations alone be attributed to different physical mechanisms behind slow and fast rupture? We address both (1) and ( 2) through a Burridge-Knopoff type model with Amontons-Coulomb friction with a velocity strengthening friction term that has previously been shown to contain a large variety of rupture phenomena, including sub-shear, super-shear and slow propagation [START_REF] Thøgersen | A minimal model for slow, sub-rayleigh, supershear and unsteady rupture propagation along homogeneously loaded frictional interfaces[END_REF]. Velocity strengthening friction has been shown to be a generic feature of dry friction [START_REF] Bar-Sinai | On the velocity-strengthening behavior of dry friction[END_REF], and has been reported in Halite shear zones at low slip speeds or large confining pressures [START_REF] Shimamoto | Transition between frictional slip and ductile flow for halite shear zones at room temperature[END_REF]. The friction law can also be interpreted as a transition from a dry contact to a lubricated sliding regime with increasing velocity (a Stribeck curve) under the additional assumption that the transition from dry to contact to lubricated sliding occurs at a small sliding speed [START_REF] Gelinck | Calculation of stribeck curves for line contacts[END_REF][START_REF] Olsson | Friction models and friction compensation[END_REF].

For homogeneously stressed faults, the model can be reduced to only two dimensionless parameters τ and ᾱ representing the prestress and a velocity strengthening friction term, respectively. The advantage of such approach is that the simplicity of the model allows us to calculate moment duration scaling relations both through numerical simulations and through analytical calculations. Through numerical simulations, we demonstrate that there exists a continuum of rupture modes between the slow and fast end-members, but that the most likely selection of τ in nature produces two distinct classes separating sub-shear and slow rupture velocities. Through analytical calculations, we show that the scaling relation for slow fronts arises due to long-lived transients in the rupture velocity. Such transient rupture velocity has been observed in nature through a dependence on the average rupture speed on the seismic moment for slow fronts [START_REF] Gao | Scaling relationships of source pa-rameters for slow slip events[END_REF]. In addition, the model predicts a separate scaling for super-shear rupture not previously reported in the literature.

A one-dimensional Burridge-Knopoff containing slow and fast rupture

We solve the one-dimensional Burridge-Knopoff model [START_REF] Burridge | Model and theoretical seismicity[END_REF] with Amontons-Coulomb friction with a linear velocity strengthening term. The dimensionless equation of motion for a chain of N blocks can be written as (a detailed derivation can be found in the supplementary information)

üi -ūi-1 -ūi+1 + 2ū i + ᾱ ui -τ ± = 0, ∀i ∈ [0, N ],
(1) which is integrated using the Euler-Cromer method with d t = 10 -3 . ū is the dimensionless displacement, and

τ ± = τ /σ N ∓ µ k µ s -µ k (2)
is the dimensionless prestress where σ N is the normal stress, τ is the initial shear stress, and µ s and µ k are the static and dynamic coefficients of friction, respectively.

± denotes the sign of the block velocity. For positive velocities, we only need to consider τ + , but negative velocities can occur in a small subset of our simulations. In such situations, we need to prescribe the relation between µ s and µ k , which we set to µ s = 2µ k , so that τ -= τ + + 2. In the rest of the paper we will use τ as a reference to τ + . The second dimensionless parameter

ᾱ = α √ ρE (3) 
is a viscous term, where ρ is the density, E is the elastic modulus, and α is a velocity strengthening term with units [Pa s/m]. ᾱ can range from 0 to infinity, where ᾱ = 0 recovers the ordinary Amontons-Coulomb friction without viscosity. τ has an upper limit of 1, where the prestress equals the static friction threshold. For τ < 0, steady state The model can be written in dimensionless units with only two parameters: τ representing the prestress on the fault, and ᾱ representing the velocity strengthening friction term. This simple model produces a large variety of slip, including, slip pulses, cracks, sub-Rayleigh rupture, super-shear rupture, slow rupture, and arresting fronts (c). The colorbars show the fault length L of arresting fronts, and the steady state rupture speed vc,∞ for given τ and ᾱ (adapted from [START_REF] Thøgersen | A minimal model for slow, sub-rayleigh, supershear and unsteady rupture propagation along homogeneously loaded frictional interfaces[END_REF]). Each event consists of a single simulation, which gives the block sliding velocity u as a function of position l and time t (d), from which we extract the front position L (e). We also measure the block displacement ū( l, t) (f), from which we extract the average displacement ū (g). Using equation 6 we obtain the seismic moment and the duration of the event marked with a star in (h).

propagation does not occur [START_REF] Amundsen | Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces[END_REF]. This corresponds to a prestress below the dynamic friction level. We thus simulate τ ∈ [10 -7 , 1] and ᾱ ∈ [10 -3 , 10].

The boundary conditions assuming triggering through soft tangential loading (small driving velocity V and driving spring stiffness K) are given by ū-1 = ū0 + 1 -τ . The rightmost block is fixed so that ūN = 0. Blocks start to move once the static friction threshold is reached, which in dimensionless units can be written as

ūi-1 + ūi+1 -2ū i ≥ 1 -τ (4)
Moving blocks restick if the velocity changes sign. The system is sketched in Figure 1a.

This model has previously been used to determine the steady state rupture velocity which includes sub-shear, supershear, and slow rupture, as well as an arresting region at low τ and intermediate ᾱ [START_REF] Thøgersen | A minimal model for slow, sub-rayleigh, supershear and unsteady rupture propagation along homogeneously loaded frictional interfaces[END_REF]. The steady state front speed vc,∞ can be found exactly when ᾱ = 0 [START_REF] Amundsen | Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces[END_REF]. For ᾱ > 0 we can use the empirical expression [START_REF] Thøgersen | A minimal model for slow, sub-rayleigh, supershear and unsteady rupture propagation along homogeneously loaded frictional interfaces[END_REF] 

vc,∞ ≈ 1 -e -τ ᾱ(1-τ ) √ 1 -τ 2 . ( 5 
)
3 Moment duration scaling relations

Model results

For each simulation we predefine τ and ᾱ, and each simulation consists of a single event. From each event we extract the displacement ū and the fault length L, which is found from the position of the rightmost block that has ruptured. We run the simulations until all blocks are immobile, or until the average velocity reaches 0.1% of the steady state slip speed τ /ᾱ [START_REF] Thøgersen | A minimal model for slow, sub-rayleigh, supershear and unsteady rupture propagation along homogeneously loaded frictional interfaces[END_REF]. In dimensionless units the zeroth order moment for rupture propagation along a line is

M0,1D = ū L, ( 6 
)
where ū is the average displacement on a fault of length L. The seismic moment and the duration are measured when 99% of the total displacement has been reached.

Figure 1 shows how M0,1D and the event duration T is measured in the simulations.

For each simulation, we measure the duration, as well as the fault length L and the average block displacement ū . This results in a single point in the ( M0,1D , T ) diagram for each event.

Figure 2 shows the measured M0,1D and event duration T for 1120 simulations with N ∈ 5×2 {0,7} . If the stress drop is small compared to the absolute shear stress, as is often found for faults [START_REF] Shearer | Comprehensive analysis of earthquake source spectra in southern california[END_REF], τ should often lie close to the dynamic level, which corresponds to τ 0. For low values of τ , the arresting region in (τ ,ᾱ)

gives rise to a separation of these scaling relations, so that fast and slow rupture fall into two distinct lines in the moment duration diagram (Figure 2a). This is in line with the ideas of [START_REF] Ide | A scaling law for slow earthquakes[END_REF]. This separation occurs because steady state propagation at small τ and intermediate ᾱ is forbidden (Figure 1a). If we include also larger prestress values we obtain a continuum of slip modes in the moment duration diagram (Figure 2d), in line with the suggestions of [START_REF] Peng | An integrated perspective of the continuum between earthquakes and slow-slip phenomena[END_REF]. The model also predicts a second scaling relations for super-shear rupture, which is found at large τ , that has not previously been reported (Figure 2b).

Origin of scaling relations -analytical calculations

The simplicity of the model allows an analytical treatment of several aspects which helps explain the various scaling relations between seismic moment and event duration. We summarize the analytical predictions for slip, front speed and event duration, and explain why the different scaling relations appear. A detailed derivation is given in the supplementary information.

First, we can determine the average slip on a fault. If the stress is at the dynamic level after rupture (the stress drop equals τ ), we can calculate ū exactly

ū = τ L2 3 + (1 -τ ) L 2 . ( 7 
)
Equation 7 is derived for soft tangential loading, and we stress that a different boundary conditions could lead to different dependencies between L, ū and τ . Combining equation 7 with equation 6 we find that the seismic moment can be written as

M0,1D = τ L3 3 + (1 -τ ) L2 2 , (8) 
which only depends on the prestress τ and the length of the fault L. To obtain the moment duration scaling relation we need to determine L( T ), and thus have to combine equation 8 with information about the rupture propagation and the afterslip (i.e. the amount of slip after the propagation has stopped).

A key observation on the rupture propagation is shown in Figure 3. While fast fronts exhibit short transients and quickly reach the steady state propagation speed given by equation 5, slow rupture contains long transients where the propagation speed decays. In the figure, we have illustrated this effect as a decay in the average rupture speed vc ≡ L T with increasing seismic moment M0 . This result is in line with observations by [START_REF] Gao | Scaling relationships of source pa-rameters for slow slip events[END_REF].

Fast regime

The short transients in the fast regime indicate that we can approximate the fault length by

L = trupture 0 vc (t )dt ≈ vc,∞ trupture , (9) 
where t rupture is the time it takes for a rupture front to reach the end of the fault.

The time it takes to arrest completely depends upon the existence of a backward propagating arresting front. If we assume that this backward propagation occurs at roughly the same speed as the forward propagation we obtain 

T ≈ 2 L vc,∞ (10) 

Slow regime

For slow fronts, vc ( t) is transient, and we observe that vc ( t) is well described by a power law with exponent β for large ᾱ and small τ . To obtain an approximation for vc ( t, ᾱ, τ ), we plot vc ( t) for a selection of τ and ᾱ in Figure 3. All curves collapse when we subtract the steady state front velocity v c,∞ and scale with the initial rupture velocity v c,0 given in equation S32. We can then write down vc,slow

≈ (v c,0 -vc,∞ )(v c,0 t) -β + vc,∞ (14) 
Figure 3 shows that this relation fits well with simulations for small τ and large ᾱ, and we measure empirically the exponent β = 0.685 ± 0.002 (using τ = 10 -3 and ᾱ = 10).

To obtain a parametric equation for M0 and T , we need to find T ( L). T has two main components; the time it takes to rupture a fault of length L, trupture , and the time it takes for all motion to stop. Unlike for fast fronts, the arresting phase in the slow regime is not governed by a backward propagating arresting front, but rather a slow exponential decay in velocity. We denote this time tafterslip , and define

T = trupture + tafterslip . (15) 
trupture can be found from equation 14

L = trupture 0 vc ( t )d t (16) = (v c,0 -vc,∞ ) (1 -β)v β c,0 t1-β rupture + vc,∞ trupture , (17) 
The afterslip time can also be found analytically, and the detailed calculation is given in the supplementary information. The result is

tafterslip = log(100) 2 L2 ᾱ π 2 (18) 
where log(100) indicates that we take the time when 99% of the slip has been accumulated (which is necessary because the afterslip is exponentially decaying). The prediction of seismic moment versus duration can then be found using equation 8 for the seismic moment, equation 17 for trupture (this has to be solved numerically for nonzero τ ), and equation 18 for tafterslip , with T = trupture + tafterslip . The excellent agreement between the analytical approach and the numerical simulations is demonstrated in Figure 4.

We can determine the bound on the slow front scaling relation by noting that for infinitesimal τ , vc,∞ ≈ 0 and M0,1D ≈ L2 2 . This yields Tτ=0 = vc,0 (1 -β)

1 1-β L 1 1-β + log(100) 2 L2 ᾱ π 2 , (19) 
where the first term will dominate over the second term (negligible afterslip) for large L because 1 1-β > 2 for the measured β = 0.685 ± 0.002. We can then solve for

L ≈ T 1-β τ =0 (1 -β)v 1-β c,0 (20) 
which gives us

M0,slow,1D,τ=0 ≈ L2 2 ∝ T 2(1-β) (21) 
with 2(1 -β) ≈ 0.63. We also observe a transition to a different scaling at large M0,1D

when τ is nonzero. To obtain the exponent in this regime, we note that in this limit the steady state rupture velocity is reached, so that

T ≈ L vc,∞ + log(100) 2 L2 ᾱ π 2 . ( 22 
)
For large L and nonzero τ , the afterslip will dominate, so that L ∝ T 1 2 . The cubic term in equation 8 will eventually dominate, which results in

M0,slow,1D, L 1,τ >0 ∝ T 3 2 (23) 
This means that the moment duration scaling relation in the slow regime is expected to follow a power law with exponent 2(1 -β) with a possible transition to 3 2 at large M0,1D

Discussion

We have demonstrated that a simple Burridge-Knopoff model with Amontons-Coulomb friction is capable of reproducing the range of power law scaling relations between seismic moment and duration observed in nature. The simplicity of the model means that we can calculate the scaling relations analytically, and we find the onedimensional exponents 2(1 -β) with a transition to 3 2 for large seismic moments for slow rupture, 2 for sub-shear rupture, and 3 for super-shear rupture, where β is the power law exponent of the transient slow rupture velocity.

In this letter, we aimed to address two questions. First, whether there is a separation of two distinct classes, or is there a continuum of possible scaling relations between the fast and slow end-members. We argue that the most likely value for τ is close to 0, which corresponds to shear stress at the dynamic level, or to ruptures where the stress drop is small compared to the background stress like in faults [START_REF] Shearer | Comprehensive analysis of earthquake source spectra in southern california[END_REF]. If this is indeed the case, the moment duration scaling should contain a continuum of slip modes between the slow and fast end-members. However, because large τ would in this case be unlikely, it would result in a distinction of fast and slow scalings simply because this is more likely. This would indicate that both the interpretations by [START_REF] Ide | A scaling law for slow earthquakes[END_REF] and by [START_REF] Peng | An integrated perspective of the continuum between earthquakes and slow-slip phenomena[END_REF] hold in the sense that there is a continuum of slip modes, but the natural variation of τ could result in more frequent events along the end-member scalings. In our simulations, the separation into the slow and sub-shear scaling relations occurs spontaneously under the assumption that τ ≈ 0.

The second question we aimed to address was whether a difference in M 0 -T scaling relations alone could be attributed to different physical mechanisms behind 

(25) M0,slow,2D ∝ T {3(1-β),2} (26) 
where 3(1 -β) ≈ 0.945 is the exponent that is dominant for τ = 0 at large L. This is remarkably close to the hypothesized exponent of 1 from observations [START_REF] Ide | A scaling law for slow earthquakes[END_REF]. However, it should be noted that the prestress it not expected to be radially symmetric, which puts limitations on this extension. We stress that future studies should incorporate two-dimensional simulations to adress these scaling relations without such limitation.

The transition from 3(1-β) to 2 also indicates that a simple linear scaling relation between seismic moment and duration for slow events is not appropriate, because it is only valid at τ = 0. We find it likely that a scaling in the approximate range M 0 ∝ T to T 2 should be observed for slow events, depending also on the decaying exponent β. For a constant ᾱ, this variation in the power law exponent occurs due to changes in the stress state of the interface. This is in line with observations, where different studies have reported on scaling exponents ranging from approximately 1 to 2 [START_REF] Ide | A scaling law for slow earthquakes[END_REF][START_REF] Ide | A brownian walk model for slow earthquakes[END_REF][START_REF] Aguiar | Moment release rate of cascadia tremor constrained by gps[END_REF][START_REF] Frank | Revealing the cluster of slow transients behind a large slow slip event[END_REF][START_REF] Gao | Scaling relationships of source pa-rameters for slow slip events[END_REF].

From our results in Figure 3 we are in a position to explain the observed relation between average rupture speed and seismic moment [START_REF] Gao | Scaling relationships of source pa-rameters for slow slip events[END_REF]. Here, we have assumed that propagation is not bounded. [START_REF] Gomberg | Reconsidering earthquake scaling[END_REF] demonstrated that there will be a change from a two-dimensional scaling to a onedimensional scaling when the rupture propagation goes from unbounded to bounded in one of the directions. While we have demonstrated that different scalings can originate without such effect, a bounded system would add a number of possible transitions in moment duration, and would in principle allow for scaling relations following both the two-dimensional and the one-dimensional exponents.

Linear elasticity and Amontons-Coulomb friction with a viscous term is sufficient to produce a large variety in scaling exponents between seismic moment and duration.

This suggests that different scaling relations for fast and slow slip events do not require complex underlying physical mechanisms. However, our findings do suggest that whether rupture is dominated by inertia or not plays an important role because fast inertial rupture fronts propagate at fairly constant speeds while slow non-inertial rupture fronts contain long-lived transients. Our findings also suggest that there exists a continuum of slip modes between the slow and fast slip end-members, but that the natural selection of stress on faults can cause less frequent events in the intermediate range. We find that the sub-shear scaling follows M 0 ∝ T 2 (which corresponds to T 3 in 2D), while the slow scaling follows T 2(1-β) (which corresponds to T 3(1-β) in 2D) with a transition to T 3 2 (T 2 in 2D) for larger seismic moments depending on the prestress.

β ≈ 0.685 corresponds to the power law decay in the slow rupture velocity with time.

The model also predicts a separate scaling for super-shear rupture with M 0 ∝ T 3 (T 4 in 2D).

Figure 1 .

 1 Figure 1. (a) We solve the one-dimensional Burridge-Knopoff model with Amontons-Coulomb friction with velocity-strengthening dynamic friciction for homogeneously loaded faults. V is the driving velocity, K is the driving spring constant, m is the block mass, k is the spring constant, and fi is the friction force on block i. The friction law is given by a static friction coefficient µs, and a dynamic friction coefficient µ d plus a velocity strengthening term αv (b). To obtain the seismic moment and duration for a given maximum fault length we fix the block at position N .

Figure 2 .

 2 Figure 2. One-dimensional seismic moment M0,1D and event duration T obtained from simulations. The color of the markers show the average front speed vc . The origin of the four different scaling exponents {2(1 -β), 3 2 , 2, 3} is discussed in detail in the text. (a) In the limit of small τ , there is a separation in two distinct scalings for fast and slow events. (b) For large τ the model predicts super-shear rupture, which has a different scaling exponent than regular sub-shear earthquakes. (c) For intermediate τ , the central part of the diagram is populated. (d) Results from the entire range of τ and ᾱ show that moment duration can exhibit a continuum of slip modes in between the slow and fast end-members.

Figure 3 .Figure 4 .

 34 Figure 3. (a) Average propagation speed vc as a function of seismic moment for τ ∈ [10 -7 , 10 -3 ] and ᾱ ∈ [10 -3 , 10]. Yellow markers show fast fronts while blue show slow fronts. Grey lines show predictions for ᾱ = 10 and τ ∈ [10 -5 , 10 -3 ] from equation 14. The prediction for τ = 0 follows vc ∝ M -β 2(1-β) 0,1D

.

  A transient rupture speed with a decaying exponent β would result in a two-Gao et. al[START_REF] Gao | Scaling relationships of source pa-rameters for slow slip events[END_REF] observed that slow events follow the approximate relation vc ∝ M -0.5±0.05 0 , which indicates that β ≈ 0.6 ± 0.025.Using equation 26 yields a moment duration scaling relation for slow rupture following M0 ∝ T {1.1,1.3} , which is fully consistent with their observed linear relationship between seismic moment and duration.

  slow and fast rupture. Our model contains only two dimensionless parameters, which highlights that the observed scaling relations do not necessitate complex underlying mechanisms. The same friction law with different values for the coefficients and a varying prestress can explain the entire range of scaling relations, and the slow scaling regime arises simply because slow rupture speeds are transient. We have previously shown that fast rupture is governed by inertia, while slow rupture is non-inertial

	(Thøgersen et al., 2019), which has consequences for whether the slow and fast scaling	
	relations can be attributed to different underlying physical mechanisms. While the	
	derivation of the scaling relations presented in this letter does not require specifica-	
	tion of the underlying physical mechanism causing transient rupture speeds, transient	
	rupture speeds are only observed in the non-inertial regime. This suggests that the	
	different scalings observed in the model originate because fast rupture is inertial while	
	slow rupture is not.	
	To compare our results to observations on faults, it is instructive to discuss	
	relations that would be obtained for rupture on a 2D plane. If we can assume radial	
	symmetry, we can use the same expression for ū as in 1D, but M0,2D = ū L2 , which	
	changes the scaling by a term L. This changes the scaling relations to	
	M0,sub-shear,2D ∝ T 3	(24)
	M0,super-shear,2D ∝ T 4	
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