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Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves
in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such
instabilities is a problem of both academic and industrial interest. However, this has proven challenging in most cases
due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully
apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional (1D) depth-integrated falling liquid
film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and
we exploit locality of the control problem to define a dense reward function. This allows to both speed up learning
considerably, and to easily control an arbitrary large number of jets and overcome the curse of dimensionality on the
control output size that would take place using a naive approach. This illustrates the importance of the architecture of
the agent for successful DRL control, and we believe this will be an important element in the effective application of
DRL to large two-dimensional (2D) or three-dimensional (3D) systems featuring translational, axisymmetric or other
invariance.

I. INTRODUCTION

Falling liquid films are a common phenomenon both in in-
dustry and nature1–4. Such flows are highly complex due to
their nonlinearity, and the presence of an interface between the
liquid and gas phases. In addition, there are many instabilities
taking place in such flows as highlighted by the previous ref-
erences. These are both a challenge and an attraction for en-
gineers and scientists. Progressing towards effective strategies
for the control of instabilities in falling liquid films, is there-
fore a relevant and interesting problem. Some work has been
performed in the case of falling liquid flows5–7, but the design
of general, robust control methods that can be adapted to spe-
cific applications in a flexible way without user expertise is
still a relevant problem. Finding such general control laws is
made complex due to the combination of strong non-linearity,
high dimensionality, and time-dependence of those systems.

However, in recent years, methods based on data-driven ap-
proaches inspired by recent results from the Machine Learn-
ing community have proven increasingly successful. Those
include several classes of methods, such as Genetic Program-
ming (GP)8,9, and Deep Reinforcement Learning (DRL)10,11.
These methods are now being applied to Fluid Mechanics,
with a series of recent successes that include, for example,
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controlling complex wake dynamics in two-dimensional (2D)
simulations12,13, controlling chaotic model Partial Differen-
tial Equations (PDE) systems14,15 , and a number of drag and
vortex shedding control strategies16–18. However, one must
be able to scale up those methods, both in terms of number
of simulations and number of control outputs, in order to en-
vision control of realistic situations. While the first scaling
problem has recently been tackled and proven to work well13,
demonstrating the ability of such methods to handle well a
large number of outputs without hitting the curse of dimen-
sionality remains a critical open problem.

In the present work, we consider the 1D falling liquid film
problem and its optimal control through a DRL approach us-
ing small localized actuators. This problem is well suited
for exploring optimal control of systems with many actuat-
ors, as it is both strongly nonlinear, featuring the development
of large unstable interfacial waves, as well as inexpensive and
quick to solve. Therefore, it is an excellent model problem
to explore the potential of DRL applied to systems with many
control signals, as it allows fast prototyping, training, and as-
sessment of different methodologies. Our contribution in this
article is double: first, we show that this system can be very
efficiently controlled using DRL. Second, we discuss different
variations around how DRL can be applied in practice to such
a problem with a potentially large control space dimension-
ality. There, we show that different approaches are possible
to take advantage of the invariance by translation of the equa-
tions describing the system, and that the choice of the method
used has a large impact on the quality of the control strategy
obtained as well as on the speed of learning. In addition, we
observe that the locality (both spatial and temporal) of the sys-
tem allows to define a dense reward function, which provides
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a fine-grained training signal and there also allows both better
and faster training.

The organization of this manuscript is as follows. First,
we present the methodology used for both the 1D falling li-
quid film simulation, and the DRL methodology including the
different strategies to effectively implement multiple-output
control. Then, we present the results obtained controlling
the system, and we compare the efficiency of these different
strategies. Finally, we discuss the applicability of our findings
to different control problems, both within Fluid Mechanics
and at large.

II. METHODOLOGY

A. Falling liquid film simulation

In this work, we consider a liquid film that flows down an
inclined plane, as illustrated in Fig. 1. The x coordinate is
chosen along the streamwise direction, i.e. following the in-
clined plane. The formulation of the problem and the nu-
merical scheme implemented to solve it are similar to that
in19. More specifically, the liquid chosen is an incompress-
ible, Newtonian fluid with constant properties. Those are its
surface tension σ , viscosity µ , and density ρ . As a model for
the falling film, we use the dimensionless, depth-integrated
system20:

∂h
∂ t
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= 0, (1)
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where h is the non-dimensional local film thickness, q the non-
dimensional local flow rate, δ = (ρH11

c g4/σ)1/3/45ν2, with
Hc the film thickness without waves, g = 9.81 m/s2 the ac-
celeration of gravity, and ν = µ/ρ . In practise, we will use
δ = 0.1 in the following, similar to19. This formulation re-
sorts on a semiparabolic velocity profile and satisfies the no-
slip boundary condition at the wall, as well as the zero stress
boundary condition at the gas-liquid interface. The boundary
conditions at the inlet and outlet are:

h = 1, q = 1 at x = 0, (3)

∂h
∂x

= 0,
∂q
∂x

= 0 at x = L, (4)

where L = 300 is the length of the domain. This value of
L is long enough for the development of different types of
waves to take place in the case without control. The initial
condition in time is obtained by simulating a uniform liquid
film of thickness and mass flow rate unity (h = 1 and q = 1)
until the waves are fully developed.

Similarly to19, the equations (1) and (2) are discretized us-
ing the finite difference method. The transient terms are in-
tegrated using the third order Runge-Kutta method (RK-3)21.
Convective terms are discretized using the Total Variation Di-
minishing (TVD) scheme22. The grid size is ∆x = 0.1 and the
time step is ∆t = 0.001. In addition, we use a similar tech-
nique to19 and add noise on the h variable at the inlet of the
domain (x = 0) to trigger the appearance of waves. This is
done by replacing (3) with:

h(t) = 1+ r(t) at x = 0, (5)

where r(t) is random, uniformly distributed in [−5×10−4;5×
10−4]. In their work,19 have studied the influence of the white
noise input and found that its amplitude and distribution does
not have a significant effect on the overall behavior of the
waves due to the amplifier nature of the flow at specific fre-
quencies.

In addition, we introduce forcing terms in the equations at
several user-tunable positions. In the following, we will refer
to these individual forcings as ‘jets’. The strength of the jets is
set by the DRL algorithm (see next paragraph) when applying
control on the system. For simplicity, the forcing is performed
on the mass flow rate q, by adding the following parabolic
profile suction/blowing forcing δqi at each time step in the
numerical solver:

δqi(x, t) =

{
Ai(t) · (x− li)(ri− x) if li < x < ri,

0 otherwise,
(6)

where i (integer between 1 and N, the total number of jets)
is the index of the jet currently considered, which is located
between x-positions li < x < ri, and Ai(t) is the strength of the
corresponding jet at time t. As visible in (6), this corresponds
to using a small jet following a parabolic profile, going to zero
on the right and left edges of each of the forcing areas, with
the centers being located at positions ci = (li + ri)/2 and the
jets having half-widths wi = (ri− li)/2. In the following, the
maximum strength of the jets, as well as their widths and loc-
ations, will be used as physical meta-parameters of the flow
configuration. Note that both injection of mass (positive for-
cing corresponding to an increase of the local mass flow rate,
i.e. blowing) and removal of mass (negative forcing, corres-
ponding to a reduction in the local mass flow rate, i.e. suction)
are possible.

Those numerics are implemented in highly tuned C++ code
for optimizing the speed of execution, and made available
to the high-level Python DRL library (see next paragraph)
through the use of C++/Boost Python bindings. All the im-
plementation is made available as Open Source (see the Ap-
pendix A). Using our implementation, a simulation covering
non-dimensional times t = 0 to t = 200 typically takes less
than 30 seconds on a modern CPU using a single core. The
problem is small enough that a large part of it can reside purely
in CPU cache, which also greatly improves performance. Typ-
ical converged simulation results, with the inlet perturbation
but without jet control, are illustrated in Fig. 2.
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Figure 1. Schematic representation of the flow. h(x, t) is the local transient film thickness, q(x, t) is the local transient flow rate.

Figure 2. Illustration of a converged falling liquid film simulation performed with zero control but with inlet disturbances. Three areas are
clearly visible: first, a region where the flow disturbances induced by the inlet boundary condition perturbations grow exponentially. Second,
a region where the waves are pseudo periodic and get unstable. Third, a region where fully-developed pseudo-chaotic behavior of the waves
is observed. This pseudo-chaotic domain is defined as the region where large amplitude solitary waves are observed, and there is no longer a
pseudo-periodic pattern.

In order to provide the input (or state observation) and re-
ward to the DRL agent, we use small regions in the neigh-
borhood of each jet. The state is obtained by reading from
the simulation both h and q and considering them as two dif-
ferent input channels. In all the following, unless stated other-
wise, both h and q are sampled in an area Aobs,i = [ri−Lobs;ri],
where Lobs is the size of the observation area. Similarly, the
reward is computed either locally on the right of each jet based
on an area Areward,i = [li; li +Lreward ], or globally on the union

of these areas
N⋃

i=1
Areward,i. Typical values are Lobs = 25 and

Lreward = 10 in the following.

The formula for the reward is:

R(Areward , t) = 1− χ√
Lreward

· ‖h−1‖2 (7)

where Areward is the domain where we compute our reward,

it can either be Areward,i or
N⋃

i=1
Areward,i depending on what

method we use (see next section), Lreward is the total length of
the domain, ‖ ·‖2 is the L2-norm, and χ is a parameter chosen
so that the reward calculated in the pseudo-periodic region of
Fig. 2, without any control, is close to 0. Empirically, we use
χ = 5.7. Applying such reward renormalization is a common
technique in DRL. The reward can therefore be expressed as
a integral over the domain:



Locality, translational invariance, and falling liquid film control 4

R(Areward , t) = 1−χ ·
(

1
Lreward

·
∫

Areward

(h(x, t)−1)2 dx
) 1

2

(8)
while in our discretized simulation, the calculated reward be-
comes:

R(Areward , t) = 1−χ ·

√√√√ ∑
x∈Areward

(h(x, t)−1)2

card(Areward)
, (9)

where card(A) is the number of elements in the finite discrete
set A.

Using this reward, the network gets an incitation towards
killing waves (or, more mathematically, the reward functions
is increased when the wave fluctuations are reduced by the
control), and a perfect reward is obtained when no waves at
all are present (h = 1 uniformly on the whole reward domain),
while any fluctuations in h get penalized.

Lobs and Lreward are to be chosen carefully. The reward be-
ing a single value, it is essential for it to encapsulate relevant
information about how our action impacted the environment.
We can suspect that a too large reward space makes the re-
ward less relevant about the effect of our actuation, while a
too small reward space may have difficulties capturing the ef-
fect of the control behind of the jet.

In addition to this definition of the state and actions, a renor-
malization is applied before the data are fed to the agent. The
aim of this renormalization is to make sure that the resting
value of our data is 0 instead of 1, and that it does not exceed
a certain threshold in absolute value (typically, the maximum
output to the Artificial Neural Network (ANN) should be ap-
proximately between 1 and 10), which is a necessary condi-
tion for the DRL control to perform well. This renormaliza-
tion is performed by defining the state s effectively given to
the ANN as:

s = hnorm(Aobs, t)∪qnorm(Aobs, t), (10)

where

hnorm(x, t) = clip(γh · [h(x, t)−1],−Smax,Smax), (11)

and

qnorm(x, t) = clip(γq · [q(x, t)−1],−Smax,Smax), (12)

where γh ≈ 1.0 and γq ≈ 1.0 are normalization parameters,
and Smax ≈ 5.0 is the maximum value we are ready to feed
our ANN. The clip function is a saturation function defined
as clip(x,α,β ) = max(min(x,β ),α) Similarly the action ef-
fectively applied on the simulation is:

Ai(t) =
M ·bi

w2
i

(13)

where bi is the action effectively produced by the ANN, which
is in the range [-1, 1], and M is a hyperparameter defining the
maximum strength of the jets, typically M = 5. wi is the half-
width of the jets, as previously defined.

A typical illustration of the positioning of jets, as well as
the associated state and reward areas, is presented in Fig. 3.
In Fig. 3, as in similar figures in the following of the paper,
we present snapshots of the state of the system (q, h) together
with snapshots of the outputs bi, i = 1..N, provided by the
ANN. Those outputs are between 1 and -1, and displayed shif-
ted by an offset of +1 relatively to the vertical axis for clarity.
Observe that the control effectively applied is obtained by ap-
plying scaling proportional to M, as indicated in Eqn. (13).

In all the following, trainings are always started from a
well-converged state of the system, with fully developed
waves being present. This corresponds to an initial config-
uration of the system similar to what is visible in Fig. 2. The
maximum jet intensity is large enough that bad choices of the
instantaneous strength of the jets can create numerical blowup
of the simulation. In this case, the simulation is terminated, a
negative reward of -500 is provided to the ANN to ‘punish’
it, i.e. from a mathematical point of view reduce the probab-
ility of following a trajectory in the phase space that leads to
numerical breakup, and the simulation is resetted to the initial
converged state before training is resumed. Of course, such
blowup is stricly a consequence of the numerics used, and a
real-world experiment would not need to worry about such
problems.

B. DRL algorithm and strategies for multiple controls

Machine Learning has become very attractive in the recent
years following several high-impact results of deep ANNs
across a variety of fields. Results include, for example, attain-
ing super-human performance at image labeling23, winning
against human professionals at the game of Go24, or achieving
control of complex robots25. Those successes have demon-
strated the ability of ANNs to solve a wide range of strongly
nonlinear, high dimensionality problems that were resisting
investigation using traditional methods. Following these de-
velopments, ANNs are now being applied to other fields of
science including Fluid Dynamics. Recent developments in
this domain include, to name but a few, analyzing laboratory
data26,27, formulation of reduced order models28, active flow
control12, the control of stochastic systems from only partial
observations15, shape optimization29, and closure models for
LES and RANS simulations30.

More specifically, several of these applications rely on the
use of Deep Reinforcement Learning (DRL). This approach
consists in finding, through trial and error, the solution to a
complex problem for which no theoretical or algorithmic solu-
tion is known otherwise. DRL takes advantage of the uni-
versal approximator31 property of ANNs to optimize interac-
tion with the system it should control through three channels:
an observation of the state of the system, an action taken to
control the system, and a reward function giving feedback on
its current performance. This framework is adapted to cases
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Figure 3. Illustration of the observation space, reward space, and jet position during training, here with 5 jets. The forcing by the agent is
illustrated by plotting directly the output of the Artificial Neural Network (ANN), which is between -1 and 1 and used to compute the control
following Eqn. (13). For clarity of the figure, the ANN output bi is shifted by an offset of +1 relatively to the vertical axis used for h and q.

Method states network reward

M1: concatenated jets
as a single environment

concatenated
and flattened MLP one global reward

M2: convolutional
network concatenated CNN - equivalent to a

MLP on each row of input one global reward

M3: each jet as a
separate environment kept separate MLP, shared

between jets N rewards

Table I. Comparison of the 3 different methods for the design of the DRL agent and its interaction with the thin liquid film simulation.
MLP = Multi Layer Perceptron, an ANN where every layer is fully connected.
CNN = Convolutional Neural Network.

where only partial, noisy observations of a stochastic sys-
tem are available. Therefore, choosing a good reward func-
tion is critical as this is what guides the ANN towards solv-
ing a specific problem. In the following, we will use a spe-
cific DRL algorithm known as the Proximal Policy Optim-
ization (PPO32). This algorithm belongs to a wider class of
algorithms called the Policy Gradient Methods33, and is of-
ten regarded as the state-of-the-art algorithm to be used for
control problems where a continuous action space is present.

As the PPO algorithm has been described in details by its
initial authors32, and has been discussed also in the Fluid
Mechanics literature at several occasions12,34, we refer the
reader curious of more details about the inner working of this
algorithm to these references for further information, and in
the following we only provide a high level overview of the
algorithm.

The general idea behind the Policy Gradient method on
which PPO is based consists in parametrizing the policy func-
tion πθ (b|s) with an ANN having the set of weights θ . There-
fore, given in input a state observation s, the ANN used to
parametrize the policy π produces a set of moments that de-
scribe a distribution (possibly multidimensional) from which
the individual actions b are sampled. Therefore, the policy
function describes the probability, provided a state observa-
tion s, that the next action to be taken is b. Following this
definition, one can find an expression for the estimation of
the gradient of the actualized reward function relatively to the
set of weights θ used in the ANN, following Monte Carlo

sampling of phase space trajectories under control by the
policy πθ . In the case of the PPO algorithm, several addi-
tional technical improvements are used. First, a critic network
is in charge of estimating the actualized reward function. This
is especially useful when stochastic, noisy reward functions
are present. Second, a limit is set on the maximum update al-
lowed to the policy at each training step. This allows to avoid
overfitting the policy to randomly occurring ‘lucky’ events.
Several high-quality implementations of the PPO algorithm
are available open source from public software repositories,
and in the following we will use one of these to provide us
will a well-tested implementation (see Appendix A for further
details).

Similarly to13, we will in the following use the word ‘ac-
tion’ to describe the value provided by the ANN based on a
state input, while ‘control’ describes the value effectively used
in the simulation. This distinction is especially important as
the choice of the duration of an action, which may extend over
several control time steps, is critical for obtaining good learn-
ing (see Figs. 2 and 6 of13). In the following, we use linear
interpolation to determine the value of the control at each time
step in-between of action updates. Since the frequency of ac-
tion update is set to be about 10 time higher than the typical
frequency of the evolution of the system, this linear interpola-
tion does not limit in practise the effective control quality.

In the present work, the system to control is characterized
by the high dimensionality of its output. More specifically, it
is natural to use several jets (up to 20 jets in our simulations,
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Figure 4. Illustration of the 3 different methods for control of a system with translational invariance and locality. From top to bottom: M1,
M2, and M3. M1 is the naive implementation of the DRL framework. M2 takes advantage of translation invariance of the system to re-use the
network coefficients for the control of an arbitrary number of jets. M3 both exploits the translation invariance, and the locality of the system
by using a dense reward signal. Details are available in Table I.
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but a larger domain could feature even more jets). Therefore,
using the PPO algorithm effectively becomes challenging. In-
deed, the naive approach which consists in using a single net-
work with several outputs does not scale well to an increas-
ing number of jets, as the combined combinatorial size of the
output domain for N jets grows as a power of N, and there-
fore the curse of dimensionality is a threat to finding effective
control strategies. However, one can observe that the system
to control features a translation invariance along the x-axis.
Therefore, one should be able to take advantage of this prop-
erty to optimize learning, in the same way that Convolutional
Neural Networks (CNNs) take advantage of translational in-
variance of 2D images across the x- and y-directions to share
convolutional kernels across the whole image and therefore
reduce the number of weights needed and improve learning
performance35,36.

Following this observation, we design three different meth-
ods for performing control of the system:

• First, a ‘naive’ method in which the input regions from
all jets are concatenated and flattened before being
provided to the network, and the dimensionality of the
output is equal to the number of jets. In this case, the
reward is evaluated over the whole combined reward re-
gion. This method will be referred to as the Method 1
(‘M1’) in the following.

• Second, we apply control following a method that is
a direct analogy of the CNN used in image analysis.
In this case, the inputs from the regions around dif-
ferent jets are concatenated without flattening, and fed
into a purely convolutional network. This allows to
apply the exact same weights, and therefore the same
policy, on all inputs to generate the individual jet val-
ues. There also, only one global reward is available,
similar to M1. Due to purely technical implementations
difficulties and the exact architecture of the DRL frame-
work, this is however not implemented as a CNN in
practise, but as a formally equivalent cloned network.
This method will be referred to as the Method 2 (‘M2’).

• Third, we apply control by splitting the simulation into
several DRL environments, i.e we consider each triplet
[jet observation domain, jet value, jet reward domain] as
a separate environment. A unique agent is sampling tra-
jectories from these environments as if they were clones
of the same environment, taking advantage of the trans-
lational invariance of the system. Similarly to M2, the
same policy is applied on all the jets. However, in con-
trast to both M1 and M2, this method effectively ‘dens-
ifies’ the reward: instead of performing learning based
on 1 single global reward, many individual rewards are
obtained (one for each jet), providing more granularity
in the learning process. This will be referred to as the
method 3 (‘M3’).

Those 3 different methods for controlling several jets are
summarized in table I, and presented in Fig. 4. Note that
in all cases the architecture of the network is kept equivalent

(except for the output layer in case M1 vs. M2 and M3), and
only the translational invariance and reward densification dif-
fer between those methods.

As visible in Table I and Fig. 4, the methods M1, M2, and
M3 reflect increasingly the structure of the underlying system
to control, and therefore we expect in terms of learning speed
and performance that M1 < M2 < M3, where the order relation
describes ‘how good’ and ‘how fast’ the policies and trainings
are. This hypothesis is confirmed experimentally in the next
section.

III. RESULTS

A. Physical metaparameters and successful learning

Using the methodology presented in the previous sections,
together with a consistent set of metaparameters, satisfactory
learning is obtained. We find that tuning the metaparameters
of the PPO algorithms is not crucial to obtain learning, and in
all the following we will use the default PPO metapameters re-
commended by the package used (this include for example the
decay constant γ used for calculating the actualized reward,
the batch size, the learning rates, and several other parameters
specific of PPO such as the likelihood ratio clipping, and the
entropy regularization). In addition, a simple network com-
posed of three hidden layers containing, going deeper in the
network, 128, 64, and 64 neurons (corresponding to an equal
number of convolutional kernels of individual size 1 × 1 in
the case using a CNN) is used. This is in good agreement
with other studies, that have generally observed that the PPO
algorithm is quite robust to the exact value of its metaparamet-
ers. By contrast, the ‘physical’ metaparameters of the simu-
lation setup are important. In the following, the parameters
used (unless stated otherwise) correspond to a duration of ac-
tion ∆taction = 0.05, i.e. 50 steps of the numerical solver are
performed between each action update, which corresponds to
a typical propagation of the waves by a distance of the order
of ∆x = 0.2. This is typically 10 percents of the half-width of
a jet, wi = 2, which itself is typically around 10 percent of the
wavelength of big fully developed waves λ = 20. The dura-
tion of an episode, which dictates the number of actions per-
formed between learnings, is set to ∆tepisode = 20. This allows
to sample trajectories in the phase space that are long enough
that the effect of policy updates can be observed. Finally, the
reference maximum strength of a jet is set to be M = 5. While
the exact numerical relation between these quantities is not
critical, their relative orders of magnitudes must be respec-
ted to be able to control the system. For example, using too
wide jets (larger than the typical size of the waves) obviously
does not allow to perform control. Similarly, too small jets are
not enough to significantly alter the propagating waves. The
choice of ∆t is also critical to allow the discovery of a valid
policy through trial and error, similarly to what has been dis-
cussed in for example13 and is illustrated later in this section.

In this section, we only present results obtained with the
training method M3, which is the best performing one (see
discussion in section III.B). Successful learning, correspond-
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ing to the default parameters, is illustrated in Fig. 5. There,
the method M3 is used to train 10 jets to perform active con-
trol of the incoming waves. As visible in Fig. 5, the ANN can
effectively kill waves on the control region.

As visible on Fig. 5, the placement of the jets in the phys-
ical domain is there such that, upon control of the system, the
waves never get the possibility to fully develop into a pseudo-
chaotic regime. This means that, upon successful control, the
problem becomes even simpler for future actuation as only
small waves are present, which are less nonlinear than large
pseudo-chaotic waves. To test the ability of the system to
learn and control also large, pseudo-chaotic waves, we run
trainings with a strong perturbation jet added at x = 20. The
perturbation jet is sampled from a uniform distribution on the
range [-5; 5]. Typical results are visible in Fig. 6. One can
see that, in this case, satisfactory control can also be obtained
(Fig. 6, top). However, this holds only if the jets are made
strong enough (no satisfactory control is obtained for Fig. 6
bottom), while with the configuration of Fig. 5 even weak jets
were enough to exert effective control (see next paragraph).

The effect of more metaparameter experimentations are
presented in Fig. 7. There, we present learning curves based
on evaluation from the reward function Eqn. (7), even in the
case when another reward function is used during training. As
visible in Fig. 7, the exact size of the observation domain for
each jet is not critical for the learning. This is consistent with
previous reports that DRL is usually good at filtering out un-
necessary information. Similarly, in the default configuration,
the maximum strength of the jets is not too critical. This has
already been discussed, and corresponds to the fact that upon
discovery of a successful strategy by the ANN, waves can
be killed before they fully develop - therefore, requiring only
weak jets for successful control. However, as was illustrated
in Fig. 6, this is not the case if the incoming waves are strong
enough. By contrast, the choice of the reward domain, reward
function, and action update frequency are much more import-
ant to obtain successful and efficient training, as illustrated by
the second plot of Fig. 7. This is, there also, consistent with
previous reports, such as12,13, and can be easily understood in
each of the cases presented. Indeed, using a too large reward
domain means that, until the waves are successfully killed on a
large region, a lot of the reward signal is uncorrelated with the
individual action of each jet - as it incorporates many waves
from far downstream each individual jet. Similarly, using the
standard deviation of the water height std(h), instead of the
deviation to the reference water ∑

x∈Areward

[h(x, t)− 1]2 in Eqn.

(7), means that the agent may try to reduce the waves fluctu-
ations around a different mean water level as forcing locally
changes the mean value of the water height. Therefore, this
confuses the agent during learning. Finally, the most drastic
effect on learning is observed when the action period is re-
duced to be equal to the numerical timestep. Similarly to12,13,
this means that only white noise forcing is applied in general
to the system, which fails at finding any consistent strategy.

B. Comparison of the three training methods M1, M2, and
M3

Learning curves for a varying number of jets (1, 5, 10, and
20 jets) and the three different methods are presented in Fig.
8. In addition, since several actions are obtained for each nu-
merical advancement of the simulation in the case M3, the
data in this later case are presented again in Fig. 9, but show-
ing on the horizontal axis both the number of actions and the
number of numerical advancements. It is visible there also
that the DRL agent is able to apply effective control on the
system. The evolution of the reward during training indicates
that several phases take place. As should be expected, control
with a random policy (as takes place at the beginning of each
training) degrades the reward compared with the case without
control (the reward without control is around 0, and in the first
phase of training a reward as low as -0.5 can be observed, cor-
responding to larger waves being obtained when bad control
is applied). However, as training takes place, the reward starts
to increase at least in the cases when training is successful.
Finally, a plateau in performance is reached upon successful
training (or failure of training). The value of the reward, that
is close to 1 in several cases, indicates that the system is con-
trollable, and that this control is close to perfect in the sense
that it manages to kill close to all fluctuations in h (see Eqn.
(7)), i.e. all waves are canceled.

However, it is clear that there are large variations between
the efficiency of the different methods. While all methods per-
form similarly in the case with one single jet, which is really
a consistency test for the 3 methods as they are all equivalent
in this particular case, differences appear when the number of
jets starts to be increased. More specifically, one can observe
that as the number of jets increases, methods M1 and M2 see
a reduction of their efficiency regarding both the speed of con-
vergence, and the quality of the control strategy asymptotic-
ally found. It appears that the method M1 is performing worst,
while method M2 is doing slightly better though also degrad-
ing with increasing number of jets. By contrast, method M3
sees close to no reduction in performance when increasing the
number of jets (at least normalizing by the number of simu-
lation advances as shown in Fig. 9, which is proportional to
the CPU cost, instead of the number of actions taken). Gener-
ally, this confirms experimentally that here we clearly observe
that M1 < M2 < M3, where the ordering relation describes
effectiveness of the methods.

The difference in efficiency between these 3 methods can
easily be understood, as hinted in the previous section, by con-
sidering both the invariance of the system by translation and
how this compares to the architecture of the DRL agent, as
well as the amount of fine-grained reward signal received.

Firstly, the methods 1 does not reflect whatsoever the invari-
ance by translation of the physical system. While this has no
consequences in the case when only 1 jet is used, this drastic-
ally reduces the ability of the agent to learn when more jets are
present. Indeed, this means that the network has to ‘learn from
scratch’ by trial and error the policy applied to each jet, and
there is no sharing of the weights of policies found at different
locations. Therefore, the method 1 is subject to the curse of
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Figure 5. Evolution of the simulation during the training phase. Here we are using the method M3 with 10 jets, coupled to one single
simulation, and default physical metaparameters (see discussion in the text). We can see that an efficient policy has been found already for a
non-dimensional time of around t = 400. This typically takes less than three minutes on a recent CPU, using a single core. This model was
trained on an Intel(R) Core(TM) i7-8565U.
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Figure 6. Illustration that control can be successfully applied even when pseudo-chaotic, fully developped waves are used as an input to the
control region, as long as the physical metaparameters used are relevant. Top: render of a policy trained over 150 episodes, acting while a
stochastic perturbation jet is present at x = 20, creating a pseudo-chaotic region. There we are using the method M3 with 10 jets, and the
standard jet strength. We can see that large incoming waves are effectively controlled. Bottom: render of a policy trained during 740 episodes,
using the same method and with the same perturbation jet at x = 20. We use twice as many jets as in the previous trainings (top), but each jet
is 10 times less powerful (reduction of M by a factor of 10). We observe that the policy fails to fully dissipate the large waves (some level of
control is still achieved, though), as the control strength is not sufficient to compensate for the wave growth.

dimensionality. If, for the sake of a thought experiment, one
considers that the action space for each jet is a discrete set of
p values in the admissible range, then the method 1 may need
typically up to C× pN trials to sample effectively the policy
in the case where N jets are used, where C is a constant. By
contrast, methods 2 and 3 use the exact same set of weights
to link the state and jet control at each position, either it is
by using a fully convolutional network or a shared agent, and
therefore they escape this curse of dimensionality.

Secondly, both methods 1 and 2 fail to take into account
that the system presents some locality that allows, if exploited
correctly, to ‘densify’ the reward. By contrast, the method M3
takes into account this locality, and is therefore able to extract
N reward signals instead of 1, therefore collecting much more
information driving the gradient descent. What is meant here
is that, while the output flow conditions obtained after the jet
number j do influence what happens at the area around the
jet number j+ 1, the actuation has first and foremost a short
term effect on the flow around the position where it is applied.
Therefore, it does make sense to consider the neighborhood of
each jet independently, and use it in an individual DRL control
loop. The approach chosen in M3, which consists in having
an agent learn from the observation and reward of each jet,
takes therefore full advantage of both the invariance and loc-

ality properties of the system. As visible in Fig. 9 this means
that, while more actions are needed to learn a valid policy as
the number of jets N is increased using the method M3, since
at the same time the number of actions executed by numerical
advancement of the simulation is N, the learning takes place
in constant number of numerical advancements, i.e. constant
CPU time when the simulation is the leading computational
cost (which is usually the case in Fluid Mechanics, see the
discussion in13). By contrast, the methods M1 and M2 are
at a double disadvantage: first, they receive less volume of
reward, which is the signal allowing to perform training, i.e.
less information is fed into the DRL algorithm. Second, the
reward in the cases M1 and M2 covers a very large area, which
encompasses several jets, and therefore the feedback inform-
ation gets less representative of the actual state of the system.
Indeed, if one jet performs a ‘good’ action and another a ‘bad’
one at the same time, as a result the reward will be average,
and the DRL algorithm has no way to know that it actually
performed well on one jet, and poorly on the other.

However, one may argue that the densification of the re-
ward used in method M3 may also be a potential problem for
the optimality of the solution found. Indeed, it means that all
rewards are obtained on a local, rather than a global, basis.
In our case, this is not a problem, as the optimal strategy at a
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Figure 7. Analysis of the effect of both physical and DRL metaparameters on the strategies found, using the method M3. The left panel
focuses on the effect of physical metaparameters such as the size of the observation domain of the maximum jet strength, while the right panel
focuses on the effect of metaparameters of the DRL setup such as action update frequency and definition of the reward domain. The baseline
configuration corresponds to 4 evenly-spaced jets, wi = 2.5, Lobs = 10, Lreward = 10, and the agent being trained with method M3. The first
jet is located at x = 150, and the spacing between the jets is 10. The reward on vertical axis is computed with the same function on the same
reward domain for all the trainings. There is no perturbation jet in the base case. The ‘simulation collapse’ label corresponds to points where
bad choice of jet strength by the ANN leads to numerical instability of the simulation, in which case the simulation is resetted. Each thick
learning curve is the average of 3 trainings (individually shown as thin colored curves). On the left, we investigate the effect of the observation
domain size and jet strength on the learning quality. We observe that the size of the observation domain has little effect on the learning, as the
ANN is able to select the relevant information. Similarly, in the case with no perturbation jet, the waves are small enough that the strength of
the jets can be reduced and control is still obtained. By contrast, if a perturbation jet is used, the waves are too big to be controlled with the
weakest jets. On the right, we investigate the effect of the reward parameters and the number of solver steps per action. We observed that using
a reward domain that is too large, i.e. includes a large region that is too far away from the jets to be initially controlled, disturbs the learning
and that more time is needed in this case to find a good policy. Similarly, a reward function based on using a standard deviation works less
well, as the ANN can try to change the mean level of the flow. Finally, using a duration for actions that is far smaller than the natural period of
the system (1 numerical timestep per action) completely stops the learning, similarly to what had been observed in13.

local level is also the optimal strategy at a global one. How-
ever, this may be a problem for method M3, if it is used ex-
actly as deployed here, in a more complex system where the
local and global optimization processes are in conflict with
each other. One could, however, easily mitigate such an issue,
by defining each local reward as a weighted average of the
true local reward, and the global reward taken over the whole
system. Such approach will therefore require expert know-
ledge from the user, in order to define relevant reward spaces
and help guide the algorithm. While this means that further
work will be needed to apply this approach to more sophist-
icated situations, the results presented so far suggest that the
DRL methodology is robust to the exact domain chosen, as
long as it encompasses the regions where important physics
are happening.

IV. CONCLUSION

We present the first successful control of the falling liquid
film flow through a 1D simulation, using DRL. In addition
to proving that the system is controllable, we show that the
DRL methodology can be used in such a way that it handles
an arbitrary number of jets. Therefore, one can effectively es-
cape the curse of dimensionality on the control output size.

This relies on satisfactorily exploiting invariance and locality
properties of the underlying system. Failing to exploit one,
or several, of these properties leads to reduced quality of the
learning and of the final policy. While this is the first time, to
our knowledge, that this methodology is proposed for the op-
timal control of physical systems, it is deeply inspired by the
success of CNNs in image analysis. Indeed, CNNs prove effi-
cient in such tasks by similarly taking advantage of translation
invariance of image semantic content.

This work, possibly combined together with the results pre-
viously obtained in13, opens the way to applying DRL to
more realistic, complex physical systems. Indeed, such sys-
tems may require many control outputs to be manipulated,
which is a difficulty in itself due to the curse of dimension-
ality. In addition, using DRL may be a promising avenue in
situations where the combination of several competing mech-
anisms such as friction drag, wake drag, or the influence of
adverse pressure gradients, are competing and defy traditional
optimization methods37. However, those same systems usu-
ally present many properties of locality (either strong or weak)
and invariance, therefore the kind of techniques presented here
can be envisioned as a solution to this dimensionality prob-
lem. We expect that such trainings, that will resort on the
use of both several independent simulations in parallel similar
to13, and environment splitting and / or convolutional policy
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Figure 8. Comparison of the efficiency of the learning (both speed and quality of the final policy) for the methods M1, M2, M3 (varying color)
and an increasing number of jets from left to right, top to bottom (respectively 1, 5, 10 and 20 jets). The ’simulation collapse’ label corresponds
to points where bad choice of jet strength by the ANN leads to numerical instability of the simulation, in which case the simulation is resetted.
Each thick learning curve is the average of 3 trainings (individually shown as thin colored curves). As visible here, the method M3 is best,
with increasing advantage over both M2 (second best) and M1 (worst) as the number of jets increases.

as presented in the present work, may be able to scale to sev-
eral thousands of CPUs during training and become a tool for
the study of realistic flow configurations.
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APPENDIX A: OPEN SOURCE CODE RELEASE

The source code of this project, together with a
docker container that enforces full reproducibility of our
results, is released as open-source on GitHub [NOTE:
the repository is empty for now, the code will be re-
leased upon publication in the peer-reviewed literature]:
https://github.com/vbelus/falling-liquid-film-drl. The PPO
agent is based on the open-source implementation provided
by stable-baselines38, which builds on top of the Tensorflow
framework39. We are using the RL toolkit OpenAI Gym to
build custom environments and interact with the agent40.
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