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ABSTRACT 27	
Hyperaccumulator plants present the ideal model system for studying the physiological regulation 28	
of the essential (and potentially toxic) transition elements nickel and zinc. This study used 29	
synchrotron X-ray Fluorescence Microscopy (XFM) elemental imaging and spatially resolved X-30	
ray Absorption Spectroscopy (XAS) to elucidate elemental localization and chemical speciation of 31	
nickel and zinc in the hyperaccumulators Noccaea tymphaea and Bornmuellera emarginata. It turns 32	
out that in the leaves of N. tymphaea nickel and zinc have contrasting localization, and whereas 33	
nickel is present in vacuoles of epidermal cells, zinc occurs mainly in the mesophyll cells. In the 34	
seeds Ni and Zn are similarly localized and strongly enriched in the cotyledons in N. tymphaea. Ni 35	
is strongly enriched in the tip of the radicle of B. emarginata. Noccaea tymphaea has an Fe-rich 36	
provascular strand network in the cotyledons of the seed. The chemical speciation of Ni in the intact 37	
seeds of N. tymphaea is unequivocally associated with carboxylic acids, whereas Zn is present as 38	
the phytate species. The spatially resolved spectroscopy did not reveal any spatial variation in 39	
chemical speciation of Ni and Zn within the N. tymphaea seed. The dissimilar ecophysiological 40	
behaviour of Ni and Zn in N. tymphaea and B. emarginata raises questions about the evolution of 41	
hyperaccumulation in these species. 42	
 43	
Key words: capsule, cotyledons; hyperaccumulator; seed; translocation. 44	
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1. INTRODUCTION 46	
 47	
Hyperaccumulators are unusual plants that accumulate particular metals or metalloids in their living 48	
tissues to levels that may be hundreds to thousands of times greater than is normal for most 49	
plants1,2. Hyperaccumulator plants have the unique ability to take up and detoxify exceptional 50	
concentrations of metals without any signs of toxicity. Plants have been found to hyperaccumulate a 51	
wide range of elements, including nickel (Ni), manganese (Mn), cadmium (Cd), copper (Cu), cobalt 52	
(Co), selenium (Se), arsenic (As), thallium (Tl) and Zn2,3. This contrasts with 'normal plants' that 53	
have a tightly controlled regulation of essential transition elements (Cu, Fe, Ni, Mn, Zn) to avoid 54	
either deficiency or toxicity. Hyperaccumulator plants represent the most extreme example of 55	
adaptation to a surplus of metal transition elements in their environment, and are therefore ideal 56	
model systems for understanding the physiological regulation of essential and potentially toxic, 57	
non-essential transition elements4,5,6. In many Ni hyperaccumulator species, Ni occurs in mixtures 58	
of citrate and malate complexes that vary in different parts of the plants7,8,9. Hyperaccumulation 59	
results from adaptations of the metal regulation mechanisms shared by all higher plants10. Hence, 60	
insights into the mechanisms of hyperaccumulation may be applied to improve the uptake and 61	
accumulation of deficient elements, such as iron (Fe) and zinc (Zn), in economically important food 62	
crops. These insights may also be applied to limit uptake of potentially phytotoxic elements, such as 63	
nickel (Ni) in food crops. The extreme metal accumulation capability of hyperaccumulator plants 64	
spawned the concept of phytoextraction for remediating contaminated soils, which has attracted 65	
much research effort11. Hyperaccumulator plants also have potential for use in phytotechnologies 66	
such as biofortication, phytoremediation and phytomining, the latter utilizes hyperaccumulators as 67	
‘metal crops’ to sequester Ni or other metals in harvestable biomass that can then be used to 68	
produce fine Ni chemicals12,13. 69	
 70	
Nickel is the most recent element shown to be essential for higher plants14,15, due to its key role for 71	
the activity of urease, an enzyme widely distributed in higher plants16, and playing a crucial role in 72	
nitrogen remobilization from senescing leaves and during seed germination. However, excess Ni 73	
induces oxidative and genotoxic stresses that are deleterious to plant growth17. Therefore, every 74	
plant species needs to regulate Ni homeostasis according to its needs. Apart from its function in 75	
urease activation, other physiological functions of Ni are poorly understood in higher plants6,18. 76	
Although Ni is an essential micronutrient, its physiological requirement is extremely low. It is 77	
shown that 0.1 mg Ni kg-1 is sufficient for seed germination and plant growth15,19. Hence, Ni 78	
deficiency in naturally-grown plants rarely occurs, and the only known case is for pecan20. The 79	
molecular mechanisms involved in the regulation of Ni homeostasis are not well known even in 80	
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model species such as Arabidopsis thaliana. Nickel can be transported from the soil and inside 81	
plants by several families of metal transporters (e.g. ZIP/IRT, IREG, YSL21,22,23). Since plants 82	
normally only require minute amounts of Ni, no Ni specific transporter has so far been identified to 83	
account for enhanced Ni uptake from soil. In non-accumulator species, this function is most likely 84	
performed by one of the ZIP family Zn/Fe/Mn uptake transporters e.g. the Zn-deficiency induced 85	
expression of AtZIP4 can be repressed by supplying Ni2+. Preliminary results suggest that one of 86	
these transporters has developed more affinity for Ni2+ in Ni hyperaccumulators than in non-87	
accumulators21,23. The transporter TgMTP1 of the CDF family was originally suspected to mediate 88	
Ni storage in the vacuole of the Ni hyperaccumulator Noccaea goesingense24. More recent studies 89	
suggested that transporters of the IREG/Ferroportin family, localized on the vacuolar membrane, 90	
are involved in the storage of Ni in non-accumulators and hyperaccumulators21,25. Studies on Zn 91	
and Cd hyperaccumulation in Brassicaceae species (e.g. Arabidopsis halleri and N. caerulescens) 92	
revealed that Zn and Cd hyperaccumulation traits are correlated with high and constitutive 93	
expression of genes involved in metal transport, in the biosynthesis of metal chelators and in 94	
cellular defences to oxidative stresses26,27,28. These changes in gene expression are often the 95	
combined effect of gene duplication and altered promoter activity29,30.  96	
 97	
The genus Noccaea has at least 23 species that hyperaccumulate Ni, a further 10 that 98	
hyperaccumulate Zn, three that hyperaccumulate Cd and one that hyperaccumulates Pb31,32,33,34,35. 99	
Noccaea caerulescens (J.Presl & C.Presl) F.K.Mey. (Thlaspi caerulescens J.Presl & C.Presl) is 100	
unique in consisting of different ecotypes with distinct metal tolerance and hyperaccumulation 101	
abilities36. While calamine, ultramafic and non-metallicolous populations can hyperaccumulate Zn 102	
and Ni, or Cd, when supplied36, they differ in their ability to tolerate these metals, often depending 103	
on the metal concentrations at their site of origin37,38. Zinc is taken up by ZIP-like plasma 104	
membrane located Zn-transporters. Rather than storing excess Zn in vacuoles of root cells, which 105	
most non-accumulator species do, the Zn2+ is loaded into the xylem, by HMA4, as in Arabidopsis 106	
halleri (L.) O'Kane & Al-Shehbaz29, thus translocated to the leaves, where it is stored in mesophyll 107	
and epidermal vacuoles. Ultramafic populations are known39and converted into genetically 108	
homogeneous lines by recurrent inbreeding for characterization of Zn, Ni and Cd accumulation and 109	
tolerance properties. The variation in metal tolerance and hyperaccumulation is heritable and 110	
independent of each other40,41,42. The calamine and non-metallicolous populations have been 111	
investigated in more detail than the ultramafic populations. So far most of the analysis of ultramafic 112	
N. caerulescens involved the accession from Monte Prinzera, in the Italian Apennine mountain 113	
range36. This accession has been subject to several proteomics studies, trying to correlate local 114	
adaptation to specific protein expression44 and was included in transcriptome studies as well45. Ni, 115	
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and also Zn, xylem loading in N. caerulescens is facilitated by high histidine levels43 although the 116	
genes involved have not yet been identified.  117	
Noccaea tymphaea (Hausskn.) F.K.Mey. (synonyms: Thlaspi tymphaeum Hausskn. and Thlaspi 118	
goesingense Halácsy) is distributed in Albania, Bosnia and Herzegovina, Greece, Macedonia. It 119	
occurs on montane ultramafic soils, where it can accumulate high foliar Ni (up to 11 800 µg g-1) and 120	
relatively low foliar Zn (up to 179 µg g-1)31. Bornmuellera emarginata (Boiss.) Rešetnik 121	
(synonyms: Leptoplax emarginata (Boiss.) O. E. Schulz, Peltaria emarginata (Boiss.) Hausskn.)46 122	
is endemic to ultramafic soils in Greece, with a discontinuous distribution from Pindus mountains, 123	
Mt. Smolikas, and the island of Euboea. Some specimens were also sampled in Syria and are kept at 124	
Paris Herbarium (P) showing a disjunct distribution pattern across the Eastern Mediterranean. It is a 125	
strong Ni hyperaccumulator that can accumulate up to 34 400 µg g-1 foliar Ni47. 126	
 127	
Currently little is known on storage and acquisition of Ni in seeds and during germination. In 128	
Noccaea praecox (Wulfen) F.K.Mey. (synonym: Thlaspi praecox Wulfen.) Cd was mobilised to the 129	
shoots during germination, but not to the roots48. Scanning electron microscopy with energy 130	
dispersive spectroscopy (SEM-EDS) was undertaken on the seeds of Noccaea pindica (Hausskn.) 131	
Holub (synonym of Thlaspi pindicum Hausskn.) and the results showed that Ni accumulated in the 132	
micropylar area opposite the radicle and in the epidermis of cotyledons49. Little information is 133	
available about the elemental distribution in other hyperaccumulating genera of the Brassicaceae, 134	
and no study yet has focussed on B. emarginata except the SEM-EDS observation of herbarium 135	
specimen air-dried leaves which showed accumulation of Ni in the epidermis cells except in the 136	
vicinity of stomata50. Knowledge about the ecophysiology of Ni and Zn in reproductive organs of 137	
hyperaccumulator plants is especially scare. In order to provide a more general view about the 138	
ecophysiology of hyperaccumulation, including the reproduction organs and first phases of life of 139	
these plants, this study aimed to elucidate the distribution and chemical speciation of Ni and Zn in 140	
the seeds and siliques of N. tymphaea and B. emarginata originating from their native habitats in 141	
Greece. X-ray Fluorescence Microscopy (XFM) has substantial explanatory power for advancing 142	
the understanding of the ecophysiology of hyperaccumulation9. In order to determine the 143	
distribution and spatially-resolved chemical speciation of Ni and Zn in both species, we make use of 144	
the singular ability of the Maia detector system51,52 to perform ultra-rapid X-ray elemental mapping 145	
and spatially resolved X-ray Absorption Spectroscopy (XAS) on live/fresh samples. 146	
 147	
2. MATERIALS AND METHODS 148	
 149	
2.1 Collection of plant tissues and soils 150	
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Whole, live plants of N. tymphaea were collected in Greece (at the Katara Pass, 39°48'00.5"N 151	
21°10'60.0"E, altitude 1690 m. a.s.l.) growing in natural ultramafic soils. Intact seeds capsules were 152	
collected from B. emarginata in their native habitat Greece (near Trigona, 39°47'29"N, 21°25'32"E, 153	
altitude 830 m. a.s.l.). The soils of the collection locality are described in detail eslwhere53. The 154	
plants were potted in natural soil from the habitat and brought alive to the P06 beamline (PETRA 155	
III Synchrotron, DESY Campus, Hamburg Germany) for the experiments described below. 156	
 157	
2.2 Chemical bulk analysis of tissue samples 158	
Plant tissue samples for bulk chemical analysis were first dried on silica gel and then dried at 70°C 159	
for five days in a drying oven. They were subsequently ground and digested using 4 mL HNO3 160	
(70%) in a microwave oven (Milestone Start D) for a 45-minute programme and diluted to 30 mL 161	
with ultrapure water (Millipore 18.2 MΩ·cm at 25°C). Finally, they were analysed with ICP-AES 162	
(Thermo iCAP 7400) for Cd, Ni, Co, Cr, Cu, Zn, Mn, Fe, Mg, Ca, Na, K, S, P. 163	
 164	
2.3 Preparation of tissue samples for X-ray fluorescence microscopy 165	
The seeds and seed capsules could be investigated in their native state without any sample 166	
preparation. The intact seeds were mounted between two sheets of Ultralene thin film (4 µm) 167	
stretched over a Perspex frame magnetically attached to the x-y motion stage at atmospheric 168	
temperature (~20°C). However, in order to reveal the internal distribution of Ni, Zn and other 169	
elements inside roots, stems and leaves, cross-sections were prepared. The samples were hand cut 170	
with a stainless-steel razor blade (‘dry knife’), mounted between two sheets of 4 µm Ultralene thin 171	
film in a tight sandwich to limit evaporation, and analysed within 15 minutes after excision. X-ray 172	
micro-fluorescence was performed at high speed to keep the scan time to a minimum. Since the 173	
penetration depth of the X-rays is greater than the thickness of a cell layer, the information obtained 174	
from thick sections is a combined distribution originating from more or less superimposed cell 175	
layers. The semi-thick sections (~200 µm) correspond to 3–4 cell layers. As such the obtained data 176	
do not reveal subcellular distribution, but nevertheless show the tissue-level distribution (e.g. 177	
epidermal cells, mesophyll, vascular bundles, etc.).   178	
 179	
2.4 X-ray fluorescence microscopy  180	
The X-ray fluorescence microscopy (XFM) experiments were undertaken at beamline P06 at 181	
PETRA III at DESY (Deutsches Elektronen-Synchrotron). The undulator beam was 182	
monochromatised using either a Si(111) channel-cut crystal or a double-crystal monochromator, 183	
depending on beamline mode for each part of the experiment. A Kirkpatrick-Baez mirror pair was 184	
used to focus the incident beam. The X-ray flux of the focussed beam was in the order of 1010 185	
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photons/s 54. X-ray fluorescence was detected using the Maia detector system in backscatter 186	
geometry52,55. The large solid-angle (1.2 steradian) of the Maia detector is particularly suited to 187	
biological samples such as these as it allows detection of a good proportion of the fluoresced signal, 188	
allowing a reduction of the radiation dose and thus reducing potential damage to a specimen51. 189	
 190	
The 2D µXRF measurements carried out in the microprobe of P06 at DESY were performed with a 191	
beam size of 720 × 780 nm at an incident energy of 11 keV. The single-slice tomography 192	
measurements of the N. tymphaea seed were carried out with a beamsize of 400 × 450 nm at a 193	
photon energy of 15 keV using the same beamline endstation and general setup. Scanning 194	
parameters were a step size of 2 µm, a dwell time of 1 ms and an angular range of 452 projections 195	
covering 360° in 2 subscans. As the seed was naturally dehydrated a cryo-stream was not employed. 196	
For the XRF 2D and tomography scans, the pixel size chosen was larger than the focused beam size 197	
as a result of necessary compromises due to time constraints. 198	
 199	
2.5 Synchrotron X-ray Absorption Spectroscopy (XAS)  200	
Ni and Zn K-edge XAS spectra of the plant tissue samples and standards were recorded in 201	
fluorescence mode with the Maia detector. The X-ray beam energy was calibrated using either a Ni 202	
or Zn metal foil recorded in transmission, where the first peak of the first derivative was assumed to 203	
be 8333 or 9659 eV, respectively. The seeds (~1.5 × 0.3 mm) were scanned at 1.6 µm pixels with a 204	
20 ms per pixel dwell time. In addition to these µXRF elemental images on these seeds, spatially 205	
resolved XANES spectra were collected as image ‘stacks’ of µXRF maps, each with 15 µm pixels 206	
and a 12 ms per pixel dwell time, at 170 increasing energies, spanning the energy range 8183–9082 207	
eV over the Ni K-edge at 8.333 keV, and spanning the energy range 9486-9858 eV over the Zn K-208	
edge at 9659 eV. 209	
 210	
Several Ni2+ and Zn2+ standards were prepared by adding organic ligands in calculated molar excess 211	
(1:5) to Ni2+ and Zn2+ to ensure the formation of organo-metallic complexes. The selection of the 212	
ligands was based on previous reports of Ni and Zn complexation in hyperaccumulator plants7,9,57,58. 213	
Aqueous standards were prepared from Ni(NO3)2 or Zn(NO3)2 salts respectively in ultrapure water 214	
(Millipore) with the following ligands: malate, citrate, oxalate, phytate, and histidine. 215	
Supplementary references from previous experiments were also used to increase the number of 216	
reference spectra, such as Ni in aqueous solution (Ni-aqueous), Ni-citrate with a metal:ligand ratio 217	
equal to 1 (Ni-citrate) and Zn sulfate. The solutions were diluted to 10 mM [Ni or Zn2+] before 218	
analysis. The pH of the standards was checked, and adjusted to 6. The aqueous standards were then 219	
applied to filter paper (Whatmann), allowed to dry and enveloped in Kapton tape before scanning. 220	
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2.6 Data processing and analysis 223	
The XRF event stream was analysed using the Dynamic Analysis method59,60 as implemented in 224	
GeoPIXE61,62. GeoPIXE provides quantitative first-order self-absorption corrected maps of 225	
projected areal elemental density – maps of elemental content. Conversion of X-ray counts to 226	
concentration was performed through analysis of Ni and Co XRF reference foil scans (Micromatter, 227	
Canada). The samples were each considered of a uniform thickness and either hydrated or dry, with 228	
respective thicknesses and compositions of 1000 µm and C7.3O33H59N0.7S0.15 for the (hydrated) 229	
whole leaf and leaf, stem and root cross-sections, and 1500 µm and C31O15H51N2S0.8 for the (dry) 230	
whole seeds and capsules. Assuming a uniform thickness for the seeds introduces further 231	
approximations to the measurements of seeds and seed capsules, however, as these have a generally 232	
flattened oblate cross-section, the approximation was considered appropriate. 233	
 234	
Reconstruction of the single-slice tomographic data was performed using a maximum-likelihood 235	
expectation-maximization (MLEM) algorithm. 236	
 237	
PCA analysis was performed on the XANES stacks using the MANTiS package. The extracted 238	
XANES data were reduced using standard normalization procedures performed with Bruce Ravel 239	
and Matthew Newville programs ATHENA and ARTEMIS63,64. Spectra were background 240	
subtracted and normalized. The XANES signals obtained were fitted as linear combinations of the 241	
standard spectra collected on solutions to evidence the main organic ligands involved in metal 242	
complexation. The number of standards was constrained to be at a maximum of three. The sum of 243	
components was released and not forced to be equal to 1. The selection of the linear combination 244	
was made on the basis of the indicators of fitting quality (chi2, r-factor and reduced chi2), and the 245	
number of components was finally set to 2 as a third component did not improve the fitting quality. 246	
 247	
3. RESULTS 248	
 249	
3.1 Localization of Ni and Zn in N. tymphaea root, stem and leaf cross-sections 250	
Elemental maps of the root cross-sections (Fig. 1) show that Ni is concentrated mainly in the 251	
epidermis, in phloem bundles and pericycle. Zinc is mainly enriched in the phloem bundles. In the 252	
stem cross-section (Fig. 2) Ni is enriched in the collenchyma and the phloem bundles, as well as in 253	
the xylem. 254	
 255	
In the whole leaves of N. tymphaea, Ni is mainly localised in the leaf blade, with increasing 256	
concentrations towards the margins. The whole leaf elemental map of Ni (Fig. 3 and Suppl. Fig 1) 257	
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provides intriguing insight in the distribution of Ni at the tissue-level. The circular features are 258	
suggestive of major enrichment in the apoplast surrounding large epidermal cells. In contrast, Zn is 259	
distributed primarily surrounding the secondary vasculature across the leaf blade. Calcium is clearly 260	
depleted in the veins, but high in the interveinal regions. The distribution of Co (not shown) mirrors 261	
that of Ni, with enrichment in the leaf margins, and towards the leaf apex. Potassium is enriched 262	
throughout the leaf blade, but highest near the petiole. 263	
 264	
In the leaf cross-section of N. tymphaea Ni and Zn have contrasting localizations (Fig 4 and Suppl. 265	
Fig 2). Whereas Ni is present in vacuoles of epidermal cells, Zn occurs mainly in the mesophyll 266	
cells, especially on either side of the central vascular bundles (Fig. 4). Calcium is depleted in the 267	
vascular bundles, but strongly enriched in the mesophyll and also in the epidermal region. 268	
Potassium is enriched in the epidermal cells and in the phloem bundles of the primary vein and also 269	
in secondary veinlets.  270	
 271	
3.2 Localization of Ni and Zn in seed capsules of N. tymphaea and B. emarginata 272	
The intact N. tymphaea siliques contain 8–10 seeds attached to the central ovary (Fig. 5). Nickel is 273	
strongly enriched in vascular bundles of the ovary connected via the hilum onto the seeds. Nickel 274	
occurs also at the base of the style (micropyle). Zinc is highest in the micropylar region, in the 275	
vascular bundles, and in the seeds in radicles. Nickel and Zn appear to be similarly highly enriched 276	
in the cotyledons (Fig. 7). Calcium is highest in the margins of the seed capsules and in the style, 277	
whereas K is highest in the central vascular bundles of the ovary. These patterns are similar in 278	
another N. tymphaea silique (Supp. Fig. 3), but Ni and Zn differ in that Zn is particularly 279	
accumulated in the radicles of the seeds, whereas Ni is more broadly enriched in the seeds. The 280	
distribution of Co (not shown) again mirrors that of Ni with enrichment mainly in the vascular 281	
bundles of the ovary, and in connecting tissues to the seeds. 282	
 283	
The intact silique of B. emarginata contains just a single seed (Fig. 6 and Suppl. Figs. 4 and 5). 284	
Nickel is strongly enriched on the outer margins of the capsules, as well as in the micropylar region 285	
and style. Nickel appears enriched in the whole of the seeds, as well as in the hilum. As B. 286	
emarginata is not a Zn hyperaccumulator, the Zn content is low and its distribution is 287	
unremarkable. Calcium is strongly enriched in a peripheral region around the seed margin, likely 288	
the wings. Finally, K is especially high in the hilum and vascular bundles leading into the seed 289	
capsule and seed.  290	
 291	

292	
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3.3 Localization of Ni and Zn in the seeds of N. tymphaea and B. emarginata 293	
The distribution of Ni and Zn is similar and strongly enriched in the cotyledons in N. tymphaea as 294	
shown in the 2D maps (Fig. 7 and Suppl. Fig. 6). In contrast, in B. emarginata they are strongly 295	
enriched in the tip of the radicle (Fig. 8). The enrichment of Fe in the provascular strands of the 296	
cotyledons and in the hypocotyl) is clearly visible in the network, and Fe is highest in hotspots in 297	
the hilum of the micropylar area. 298	
 299	
The tomographic reconstructions of the N. tymphaea seeds confirm the observations from the 2D 300	
maps and show that Ni is localised in the vacuoles (the round solid outlines of vacuoles are clearly 301	
visible) of the cotyledon epidermal cells, and similarly in the epidermal cells of the hypocotyl (Fig. 302	
9). The virtual slice is looking tangentially showing the two cotyledons on either side (i.e. from the 303	
narrow plane) and the hypocotyl on the top right (Suppl Figs. 7, 8 and 9). Nickel is also enriched in 304	
the testa (seed coat). Nickel is depleted in the vascular bundles in the cotyledons. In contrast, Zn is 305	
enriched more or less evenly throughout the cotyledons, albeit slightly higher in the hypocotyl. It 306	
cannot be ascertained whether Zn is present on the vacuoles. The distribution of Fe in the 307	
provascular strands (note ‘hollow’ features) of the hypocotyl and cotyledons is clearly visible. 308	
 309	
3.4 Spatially-resolved chemical speciation of Ni and Zn in the seeds of N. tymphaea 310	
The chemical speciation of Ni in the intact seeds of N. tymphaea is unequivocally associated with 311	
carboxylic acids (Fig. 10). The spectra extracted from the different regions of the seed (regions 312	
determined on the basis of PCA) were strictly identical to each other. Qualitative comparison with 313	
reference spectra suggested the predominance of Ni-malate species, confirmed by the linear 314	
combination results (Ni evidenced being at 80% complexed with malate). A smaller contribution of 315	
Ni-histidine complex can be discerned with the fitting. In the case of Zn (Fig. 11), Zn-phytate 316	
species were dominating Zn XANES spectra. In both Ni and Zn, spatially resolved spectroscopy did 317	
not reveal any spatial variation in chemical speciation within the seed. 318	
 319	
4. DISCUSSION 320	
 321	
Until recently detection systems for synchrotron XFM were not sufficiently fast to analyse fresh 322	
and hydrated plant tissue because the long dwell times caused excessive radiation damage66. The   323	
unparalleled ability of the Maia X-ray detection system to undertake very fast measurements (per-324	
pixel dwell times as low as 1 ms and total scan times of less than 20 minutes for leaf cross-sections) 325	
makes it possible to analyse live plants and fresh plant materials65. There are limitations to this 326	
approach, however, including the fact that the elemental maps give information from different 327	
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depths combined into one plane (in the case of whole plant leaves). The only approach that avoids 328	
most or all sample preparation artefacts are cryotechniques which preserve both the distribution, the 329	
chemical form and the concentration of all elements in situ66. However, such techniques are not 330	
always available or not operable due to technical constraints, for example a cryo-stream can only 331	
cool samples smaller than 2 mm in diameter, and only one synchrotron facility (the BioNano 332	
Probe67) has a fully enclosed cryogenic chamber for large samples. In order to map elemental 333	
distribution within tissues, cross-sectioning is necessary, either physical or virtual by using 334	
tomographic methods. Sectioning of fresh plant material using a ‘dry knife’ method (as done in this 335	
study) avoids the loss of water-soluble ions (Ni2+, Zn2+), but may result in smearing of cell sap over 336	
the sample surface. Such artefacts were, however, not observed in this study and the elemental maps 337	
show intact inflated vacuoles (interpreted from the K maps). Seeds and seed capsules are unique 338	
among plant organs/tissues in that they are inherently dehydrated, and therefore, can be analyses “as 339	
is” in microanalytical experiments. 340	
 341	
Previous studies on the distribution of Ni and Zn in hyperaccumulator plants have shown that in 342	
Hybanthus floribundus subsp. adpressus (Violaceae) seeds the highest Ni concentrations were in 343	
the cotyledons, followed by the embryonic axis. In Pimelea leptospermoides (Thymelaeaceae) 344	
seeds Ni was preferentially localised in the embryonic axis, and in N. caerulescens, Zn was highest 345	
in cotyledons68. Nickel was also concentrated in the epidermis of the cotyledons in N. caerulescens 346	
seeds69, whereas in N. pindica seeds Ni was concentrated in the micropylar area and in the 347	
epidermis of cotyledons50. In Stackhousia tryonii (Celastraceae) seeds the highest Ni concentrations 348	
were in the pericarp70. In Pycnandra acuminata (Sapotaceae) seeds the highest Ni concentration 349	
were in the endosperm and mesocarp71. Similarly, in Biscutella laevigata (Brassicaceae) seeds, the 350	
highest concentration of Zn was in the endosperm72. Finally, in Berkheya coddii (Asteraceae) Ni 351	
was localised in the lower epidermis, margins of cotyledons, and the pericarp in the micropylar 352	
area73,74. The diversity in location of Ni and Zn seeds of various hyperaccumulator plants reflects 353	
the variety of phylogenetic origins and distinct physiologies of hyperaccumulator plants. In this 354	
study we observed Ni to be localised in the vacuoles of the cotyledon and hypocotyl epidermal cells 355	
in N. tymphaea seeds, which agrees with the findings for other Noccaea species previously studied. 356	
During germination the seedling relies primarily on its Fe stores before it develops a root to take up 357	
Fe from the soil75. Arabidopsis thaliana stores Fe in vacuoles of the root endodermis and around the 358	
pro-vasculature in the cotyledons76. The Fe-rich provascular strand network of the cotyledons 359	
occurs in N. tymphaea too.  360	
 361	
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The European Noccaea caerulescens is among the most intensively-studied hyperaccumulator taxa 362	
globally, and used as a model for the genetics, ecology and molecular biology of metal 363	
hyperaccumulation38,39,45,77. The other taxa in the genus, such as N. goesingense and N. praecox, but 364	
also the various taxa in the Alyssum genus, are much less studied79,80, 81, 82. N. tymphaea, and taxa 365	
from other genera (B. emarginata), have so far obtained little attention, mostly because they grow in 366	
a rather confined and remote area in the Balkan region of Europe. Most Noccaea species can 367	
hyperaccumulate Zn, whereas many taxa also hyperaccumulate Ni5,83,84, but since most species have 368	
only been sampled in the field and not been re-grown on Zn or Ni containing soil, this issue is far 369	
from resolved. We set out to determine whether the distribution and chemical speciation of Ni and 370	
Zn differed in N. tymphaea and B. emarginata, both sampled from ultramafic soil. Although we 371	
expected important differences, due to the differing physiological functions (potentially toxic for Ni 372	
and essential for Zn) of these elements, the results show that Ni and Zn behave remarkably similar 373	
in N. tymphaea and B. emarginata. The chemical speciation of Ni is univocally associated with low 374	
molecular weight carboxylic ligands (likely malate), as in most hyperaccumulator species studied to 375	
date7,9,58,85. Specifically, in N. caerulescens and B. emarginata X-ray absorption spectroscopy 376	
showed that citrate was found as the predominant ligand for Ni in stems, whereas in the leaves 377	
malate was predominant7. In contrast, Zn was associated with phytates in the seeds. In the 378	
ultramafic soils of which N. tymphaea and B. emarginata grow, Ni is present at 20–50-fold higher 379	
concentrations, which explains concentrations differences in the plant shoots. Under these 380	
conditions N. tymphaea is not a Zn hyperaccumulator (foliar Zn reaches up to 362 µg g-1). Based on 381	
the predominant Ni and Zn hyperaccumulation properties found in the current Noccaea spp., we 382	
hypothesize that the genus evolved from a Ni adapted and probably Ni hyperaccumulating ancestor. 383	
Some species managed to escape from ultramafic soil and develop as Zn hyperaccumulators on 384	
non-metallicolous soils, with a few, e.g. N. caerulescens later adapting to and (re-)colonizing 385	
calamine and ultramafic soils. Noccaea tymphaea may represent a taxon that never left the 386	
ultramafic conditions and remained adapted to Ni hyperaccumulation.  387	
 388	
This study has shown that XFM can successfully be applied to help answering questions about the 389	
mechanisms of trace element hyperaccumulation, providing elemental distribution and chemical 390	
speciation in fresh/live hyperaccumulator plant tissues. . The dissimilar ecophysiological behaviour 391	
of Ni and Zn in N. tymphaea and B. emarginata raises questions about the evolution of 392	
hyperaccumulation in these species. Given that Zn accumulation is constitutive in Noccaea spp. 393	
occurring in non-metalliferous populations, Ni hyperaccumulation may have evolved as an 394	
adaptation when plants colonised ultramafic soils. In comparison, B. emarginata is not a Zn 395	
hyperaccumulator, and only hyperaccumulates (Ni) on metalliferous soils.  396	
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FIGURE CAPTIONS 714	
 715	
Figure 1. Elemental µXRF maps of fresh Noccaea tymphaea root hand cut section. The maps 716	
measure 4.6 × 3.2 mm (460 × 316 pixels). The elemental image was acquired in 10-µm step size 717	
with 5 ms dwell per pixel, 11.0 keV, incident beam, showing K, Ca, Ni and Zn maps. Abbreviations 718	
annotated of anatomical features: C cortex, Xy xylem, Ph phloem.	719	
 720	
Figure 2. Elemental µXRF maps of fresh Noccaea tymphaea stem hand cut section. The maps 721	
measure 1.72 × 1.78 mm (430 × 444 pixels). The elemental image was acquired in 4-µm step size 722	
with 7 ms dwell per pixel, 11.0 keV, incident beam, showing K, Ca, Ni and Zn maps. Abbreviations 723	
annotated of anatomical features: C cortex, Xy xylem, Ph phloem. 724	
 725	
Figure 3. Elemental µXRF maps of fresh Noccaea tymphaea whole mature leaf. The maps measure 726	
12.55 × 9.28 mm (502 × 371 pixels). The elemental image was acquired in 25-µm step size with 10 727	
ms dwell per pixel, 11.0 keV, incident beam, showing K, Ca, Ni and Zn maps. 728	
 729	
Figure 4. Elemental µXRF maps of fresh Noccaea tymphaea leaf hand cut section. The maps 730	
measure 4.45 × 0.91 mm (890 × 181 pixels). The elemental image was acquired in 5-µm step size 731	
with 12m ms dwell per pixel, 11.0 keV, incident beam, showing K, Ca, Ni and Zn maps. 732	
Abbreviations annotated of anatomical features: UE epidermis, LE epidermis, PM palisade 733	
mesophyll, SM spongy mesophyll, Xy xylem, Ph phloem. 734	
 735	
Figure 5. Elemental µXRF maps of Noccaea tymphaea intact silique. The maps measure 4.91 × 736	
10.02 mm (327 × 668 pixels). The elemental image was acquired in 15-µm step size with 10 ms 737	
dwell per pixel, 11.0 keV, incident beam, showing K, Ca, Ni and Zn maps. 738	
 739	
Figure 6. Elemental µXRF maps of Bornmuellera emarginata intact silique. The maps measure 7.5 740	
× 6.52 mm (375 × 326 pixels). The elemental image was acquired in 20-µm step size with 20 ms 741	
dwell per pixel, 11.0 keV, incident beam, showing K, Ca, Ni and Zn maps. 742	
 743	
Figure 7. Elemental µXRF maps of Noccaea tymphaea intact whole seed. The maps measure 1.83 744	
× 1.15 mm (1143 × 717 pixels). The elemental image was acquired in 1-µm step size with 20 ms 745	
dwell per pixel, 11.0 keV, incident beam, showing K, Ca, Ni and Zn maps. 746	
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Figure 8. Elemental µXRF maps of Bornmuellera emarginata intact whole seed. The maps 747	
measure 4.52 × 3.73 mm (903 × 746 pixels). The elemental image was acquired in 5-µm step size 748	
with 20 ms dwell per pixel, 11.0 keV, incident beam, showing K, Ca, Ni and Zn maps. 749	
 750	
Figure 9. Single-slice tomography µXRF maps of Noccaea tymphaea intact whole seed. The 751	
elemental image was acquired in 2-µm step size with 1 ms dwell per pixel, with 15.0 keV as the 752	
energy of the incident beam, showing Compton, Fe, Ni and Zn K maps. 753	
 754	
Figure 10. Nickel speciation within the Noccaea tymphaea seed. A Principal Component Analysis 755	
(PCA) was performed on the stack of fluorescence scans, deciphering 4 regions of interest (A and 756	
B) from which XANES spectra were extracted. 2 supplementary spectra were extracted from the 757	
whole seed (white dotted line on picture A) and from the tip of the hypocotyl (black dotted line on 758	
picture A). Panel C shows the corresponding XANES, compared to Ni-malate and Ni-histidine 759	
spectra. Panel D displays the linear combination fitting (red dotted line) for one spectrum. 760	
 761	
Figure 11. Zinc speciation within the Noccaea tymphaea seed. A PCA was performed on the stack 762	
of fluorescence scans, deciphering 4 regions of interest (A and B) from which XANES spectra were 763	
extracted. 2 supplementary spectra were extracted from the whole seed (white dotted line on picture 764	
A) and from the tip of the hypocotyl (black dotted line on picture A). Panel C presents the different 765	
spectra and compares them to Zn-phytate spectrum recorded in the same conditions on P06. 766	
Spectrum 3 displays a high background level, preventing a correct interpretation and was discarded. 767	
Panel D shows the linear combination fitting (red dotted line) and the fitting residual (green line) for 768	
one spectrum. 769	
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Table 1. Macro and trace element concentrations in roots, stems and flowers of Bornmuellera emarginata (values in µg g-1 dry weight) with ICP-AES. 

<LQ is lower than the limit for quantification.  

 
Species Part Al Ca K Mg Mn Na P S 

Bornmuellera emarginata 

Roots <LQ 7900 11 325 1818 32 5570 1068 3559 
Roots 875 6349 10 070 3335 73 5416 1871 6492 
Stems <LQ 14 430 23 535 3576 51 3037 2806 10 735 
Stems 1336 4583 13 350 4565 212 3669 1632 4531 
Flower <LQ 21 010 15 350 6154 95 <LQ 2372 13870 

          
Species Part Fe Mn Zn Co Cr Cu Ni Zn 

Bornmuellera emarginata 

Roots 62 32 193 2.1 1.1 18 539 200 
Roots 1743 73 177 8 43 35 289 166 
Stems 43 51 251 4.9 1.0 20 1030 259 
Stems 2936 212 <LQ 16 66 21 499 90 
Flower <LQ 95 311 43 <LQ 47 3641 306 
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Table 2. Macro and trace element concentrations in leaves, fruits, and seeds of the actual Noccaea tymphaea and Bornmuellera emarginata samples 

used for XFM elemental mapping (values in µg g-1 dry weight) with ICP-AES. <LQ is lower than the limit for quantification. 

 
 

Species Organ P S Mg K Ca Fe Mn Zn Ni 

Noccaea tymphaea Leaves 616 2284 3496 4059 9549 218 26 362 12 410 

Bornmuellera emarginata Fruits 1639 8564 2996 7742 6317 38 7.8 96 10 345 

Noccaea tymphaea Seeds 3834 5738 1628 6087 3701 <LQ 50 112 2504 

Bornmuellera emarginata Seeds 2926 15 159 1775 7800 4419 24 12 69 6242 

 
 

 

 

 


