
HAL Id: hal-02401463
https://hal.science/hal-02401463v2

Submitted on 7 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A supervised neural network for drag prediction of
arbitrary 2D shapes in laminar flows at low Reynolds

number
Jonathan Viquerat, Elie Hachem

To cite this version:
Jonathan Viquerat, Elie Hachem. A supervised neural network for drag prediction of arbitrary 2D
shapes in laminar flows at low Reynolds number. Computers and Fluids, In press. �hal-02401463v2�

https://hal.science/hal-02401463v2
https://hal.archives-ouvertes.fr

A SUPERVISED NEURAL NETWORK FOR DRAG PREDICTION
OF ARBITRARY 2D SHAPES IN LAMINAR FLOWS AT LOW

REYNOLDS NUMBER

A PREPRINT

Jonathan Viquerat∗
MINES Paristech , PSL - Research University

CEMEF
jonathan.viquerat@mines-paristech.fr

Elie Hachem
MINES Paristech , PSL - Research University

CEMEF
elie.hachem@mines-paristech.fr

July 3, 2020

ABSTRACT

Despite the significant breakthrough of neural networks in the last few years, their spreading
in the field of computational fluid dynamics is very recent, and many applications remain to
explore. In this paper, we explore the drag prediction capabilities of convolutional neural
networks for laminar, low-Reynolds number flows past arbitrary 2D shapes. A set of random
shapes exhibiting a rich variety of geometrical features is built using Bézier curves. The effi-
cient labelling of the shapes is provided using an immersed method to solve a unified Eulerian
formulation of the Navier-Stokes equation. The network is then trained and optimized on the
obtained dataset, and its predictive efficiency assessed on several real-life shapes, including
NACA airfoils.

Keywords machine learning · neural networks · convolutional networks · computational fluid dynamics ·
immersed method

1 Introduction

The recent successes of machine learning (ML), and more specifically neural networks (NN), have drawn in-
creasing attention from the scientific community on the capabilities of such methods, and their possible appli-
cations to diverse research fields. In the computational fluid dynamics (CFD) field, the topic triggered a real
enthusiasm from the year 2015, with a highly-increasing amount of related papers since (see figure 1). Despite
this recent hype, much remains to be done before the possibilities and limits of such methods are well contoured.

In the recent years, neural networks have been used in very different ways in order to assist or improve CFD
computations. Very often, a NN is used to replace one step of the resolution process, either to attain better
performance or to extricate from a limited model and gain in generality. Examples for these applications are
the replacement of the pressure projection step in Eulerian methods [1], or the prediction of closure terms in
RANS [2] [3] or LES [4] computations. Direct solving of Navier-Stokes equations can also be performed with
NN using physics informed deep learning, where two networks are used concurrently [5] [6]. The first one is
trained to predict the partial differential equation (PDE) solution, while the second one is used to incorporate
constraints from the original PDE.

In other cases, a flow profile or a figure of merit (such as drag or lift) can be directly sought from a supervised
network. Indeed, using a trained neural network as a surrogate model can be of particular interest in the context

∗Corresponding author

of optimization problems, or real-time decision processes. In [7], the authors focus on the prediction of lift
for 2D airfoil profiles in different flow conditions and at different incidence angles. A key point of the latter
contribution is the exploration of an original method of inputting flow conditions along with airfoil profile using
an ”artificial image”, where free-space pixels around the airfoil are coloured depending on the value of the Mach
number. In [8], convolutional neural networks (CNN) are trained to make visual predictions of the steady state
flow around primitive shapes and real-life shapes, such as cars, using a signed distance map as input. In [9],
the authors explore the capabilities of a NN to map design parameters of geometrically primitive bluff bodies to
flow parameters, using a stochastic gradient descent method with momentum. One aspect of the current work
is to extend the ideas of [9] to arbitrary 2D shapes.

In this paper, we explore the predictive capabilities of a specific neural networks architecture at low Reynolds
regime around 2D randomly generated shapes. In the first section, a brief overview of the general functioning
of supervised NN is presented. Then, the dataset generation is addressed, along with the efficient resolution of
the Navier-Stokes equations using an embedded mesh method. In the fourth section, a baseline convolutional
network is introduced and optimized. Finally, the predictive capabilities of the network are explored on realistic
configurations, such as geometrical shapes or airfoils. The base code used in this paper is available at https:
//github.com/jviquerat/cnn_drag_prediction.

2000 2010 2015 2020

200

400

600

800

N
u
m
b
er

of
p
u
b
lication

s/y
ear

Year

Figure 1: Number of publications matching keywords ”machine learning”, ”neural networks” and ”com-
putational fluid dynamics” in Google Scholar, between 2000 and 2018.

2 Neural networks

Fundamentally, a neural network aims at approximating a function f : V → W that represents a complex
and possibly implicit relation between two spaces of finite dimensions. In supervised learning, the network is
exposed to a large set of couples (x ∈ V, y ∈ W) which are known to fulfill the relation y = f(x). For each
couple, the network takes x as an input, and outputs a prediction y∗. The error between y∗ and y is computed,
and fed back to the network, which internal parameters are adjusted accordingly via an optimization algorithm.

Classically, the tasks performed by neural networks are of two main kinds: (i) classification (e.g. , analyzing
handwritten text) or (ii) regression (e.g. , predicting the lift of an airfoil from its shape). The goals of this paper
fall under the second category. In the remaining of this section, we provide a brief description of the functioning
of neural networks under supervised learning. Along the way, references to more thorough developments are
also given.

2

https://github.com/jviquerat/cnn_drag_prediction
https://github.com/jviquerat/cnn_drag_prediction

2.1 Artificial neurons and fully connected networks

The basic unit of NN is the neuron, to which an input vector x, associated to a set of weights w, is provided.
The neuron then computes the weighted sum w · x + b, where b is called the bias, and applies the activation
function σ to this sum. This is the output of the neuron, hereafter noted z. In the neuron, the weights and the
bias represent the degrees of freedom (i.e. the parameters that can be adjusted to approximate the function f),
while the activation function is a hyperparameter, i.e. it is part of the choices made during the network design.

In their simplest form, neural networks consist in several layers of neurons connected together, as shown in
the basic example of figure 2. This network is said to be fully connected (FC), in the sense that each neuron
of a layer is connected to all the neurons of the following layer. Hence, this network contains 3 × 4 weights
and 4 biases for the hidden layer, and 4 weights and 1 bias for the output layer, for a total of 21 degrees of
freedom. Along with the choice of the activation functions, the number and size of layers are also part of the
hyperparameters. It should be noted that in such networks, (i) the neurons of the input layer simply map the
identity, and (ii) for regression problems, a linear activation function is used for the neurons of the output layer.

x1

x2

x3

y1

Figure 2: Simple example of neural network with an input vector x ∈ R3, a hidden layer composed of 4
neurons, and an output layer composed of a single neuron. As a convention, input variables are drawn using a
neuron representation. However, it must be kept in mind that the input layer is composed of neurons that simply
map the identity.

2.2 Convolutional networks

When working with images as input (which will be the case in the following study), it is customary to exploit
convolutional layers instead of FC ones. Each layer of a convolutional neural network (CNN) is composed of a
set of convolution kernels that are used to extract spatial features from their input, as shown in figure 3a. During
a forward pass, each kernel is convolved with its input to create an activation map, showing the response of the
kernel at every spatial position (see figure 3b). The learnable weights of the network are the kernel parameters,
such that, during the training, the network learns to extract spatial features that are meaningful to the current
prediction problem.

Convolutional layers are often followed by pooling layers, which role is to reduce the spatial size of the problem,
which (i) helps to decrease the number of degrees of freedom in the network, and (ii) spreads the initial data
throughout the successive convolutional layers. Today, max-pooling is used in a majority of cases, although
other options are available, such as average-pooling, or L2-norm-pooling. A representation of a max-pooling
layer is shown in figure 4.

CNNs present several advantages:

• Shared weights: The sparse connection between the neurons of successive convolutional layers, and
the use of the same weights for a given kernel over the whole input image greatly reduce the number
of parameters to train in the network;

• Efficient spatial feature extraction: The use of convolutional kernels allows an efficient detection of
spatial features at each level of the convolutional network. As successive layers of convolution and
pooling are applied, more and more complex spatial features are extracted;

3

(a) A convolutional layer holding three 3 × 3 kernels,
thus producing three activation maps

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

w3,1

w3,2

w3,3

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

w3,1

w3,2

w3,3

(b) Convolution of a kernel with the input image

Figure 3: Representation of a convolutional layer structure. Left: structure of a CNN layer holding multiple
convolutional kernels applied to the same input, each producing a specific activation map. Right: detail of a
convolutional kernel applied to an input image and producing an activation map.

Figure 4: Representation of a max-pooling layer structure. The output of the 2× 2 max-pooling operation is
the max value over its receptive field. Unlike convolutional layers, max-pooling layers usually use a stride equal
to their size, meaning that there is no overlapping when the pooling operation is slided over the input image.

4

• Translational invariance: A particular strength of convolutional layers is that they are able to detect
specific features (textures, edges, shapes) with the same efficiency in different locations of an input
picture. This property is called translational equivariance, and implies that the position at which a
feature is detected modifies the feature map obtained from the considered kernel. The conjunction of
convolutional layers with pooling layers helps achieve translational invariance, in the sense that the
position at which a feature was previously detected will matter less and less as the spatial dimension is
reduced by pooling operations.

Although it is not systematic (as for fully convolutional networks [10]), CNNs can be terminated with several
fully connected layers, followed by an output layer, which size is determined by that of the sought quantity of
interest. These considerations are discussed in details in a large variety of books and articles. For the sake of
brevity, we refer the reader to [11] and the references therein for complementary informations.

2.3 Technicalities

This section briefly addresses several key points of neural networks that will be used in the remaining of the
paper. Again, this barely represents an overview of these questions, and the reader is once again referred to [11]
for a thorough discussion of each of them.

2.3.1 Data pre-processing

The pre-processing of data fed to neural networks is crucial, in the sense that it may significantly influence
its ability to learn. In the following, inputs are composed of images of p × p pixels with one channel (black
and white image), the pixel values ranging from 0 to 255. During the pre-processing step, these images are
downscaled to n× n pixels (with n ≤ p), and the pixel values are rescaled between 0 and 1. The reason behind
this normalization is that feeding large (and inhomogeneous) values to a network can prevent the gradient
descent of the back-propagation method to converge [12].

Most often, the input dataset is split in three subsets: (i) a training set, on which the learning will be performed,
(ii) a validation set, which is used to monitor the network accuracy periodically during training, and (iii) a test
set, on which the final performance of the network is assessed. The validation and test sets must not overlap
with the training set, nor between them.

Although it does not fully apply to the current problem, a remark must be made about the possibility to use data
augmentation. In cases where a small transformation of an input image (homothetic transformation, rotation,
translation) should not modify its associated label (as for most classification tasks, for example), the available
dataset can be made artificially larger by adding transformed input images to it, associated to their original label.
In our case, as any transformation of an input shape would modify its resulting drag and lift (except up-down
flip of the shape that would only change the sign of the lift), this method will not be exploited here.

2.3.2 Activation functions

Activation functions are used to obtain a non-linear mapping between the input and the output spaces. They are
commonly chosen layer-wise. For classification cases, it is common to use sigmoids or hyperbolic tangents in
the hidden layers, as they will stretch the input space around a central point, thus helping to separate elements
from different classes. For regression cases, the rectified linear units activation function (also called ReLU) has
proven to be a robust choice.

2.3.3 Loss function and backpropagation

The learning process in neural networks consists in adjusting all the biases and weights of the network in order
to reduce the value of a well-chosen loss function. For regression cases, it is common to choose the mean
squared error. With the loss function at hand, the optimization of the weights and biases is performed with a
stochastic gradient descent (SGD). This algorithm is based on the chain rule, and is at the core of the learning
process, since it allows to compute the contribution of each degree of freedom of the network to the loss value.

5

In
p
u
t

3
×

3
c
o
n
v
,
1
6

3
×

3
c
o
n
v
,
1
6

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
1
6

3
×

3
c
o
n
v
,
1
6

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
3
2

3
×

3
c
o
n
v
,
3
2

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
3
2

3
×

3
c
o
n
v
,
3
2

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
3
2

3
×

3
c
o
n
v
,
3
2

2
×

2
p
o
o
l

fc
1
6

fc
1
6

O
u
tp

u
t

Figure 5: Baseline drag prediction CNN. This network is based on a pattern made of two convolutional layers
(in light blue) followed by a max-pooling layer (in orange). The pattern is repeated five times, the image size
being divided by two each time. The last max-pooling layer is followed by two fully-connected layers (in dark
blue). It is terminated with a fully-connected layer of size 1 that outputs the predicted drag through a linear
activation function.

2.3.4 Network size, overfitting and regularization

During the training step, the network is exposed multiple times to the same input data. A full iteration over
all the input samples is called an epoch, and it is not rare for advanced networks to be trained for hundreds or
thousands of epochs. Inside each epoch, the network is exposed to random batches of input data, a step of SGD
being performed after each batch.

The size of a neural network (number of layers and number of neurons in each layer) is a central question when
designing a network. For a given task, a too small network will not be able to grasp the complexity of the
implicit function to map. At the opposite, a network with too many degrees of freedom will end up overfitting,
i.e. it will fit so closely to the training set that it will be unable to generalize to new data.

Several methods are available to limit overfitting. The first one consists in gathering more data, although this
is often either impossible or expensive. A second option is to reduce the size of the network, in order to better
balance the number of free parameters with the size of available input data. However, this may also lead to a
loss in the generalization capabilities. The last option consists in using regularization, which can be done in
two ways:

1. A penalisation term proportional to the squared weights (l2 regularization) or their absolute value (l1
regularization) can be applied to the loss function. This will globally constrain the weights to be
smaller, which will favor the emergence of simpler features over complex (and specific) ones;

2. A dropout layer can also be applied between two hidden layers: this consists in randomly setting to
zero a fraction of the information passing from one layer to the next. The goal is to introduce some
random noise in the information travelling through the network in order to prevent fortuitous patterns
to be learned.

Overfitting can also be tempered by using early stopping [13], which most often consists in monitoring the
loss for the validation set during training, and to stop training when this loss stops improving. In practice, an
additional parameter can be set that delays early stopping of a given amount of epochs, to avoid premature
stopping of the learning.

2.3.5 Neural network implementation

The amount of ready-to-use neural networks libraries has exploded in the recent years, most of them exploiting
C++ or Python. For supervised learning, they usually include a wide range of choices regarding layer types,
activation functions, losses, optimizers and so on. In this paper, we chose to use Keras [12] (with Tensorflow
backend) for its high level of abstraction and the ease of use provided by the Python language.

In the remaining of this paper, we consider the general convolutional network architecture presented in figure 5,
which was implemented using the basic Keras layers. In this network, a convolution/pooling pattern is repeated
several times, with a variable number of filters for each layer (see figure 5). Here, the number of convolution
layers in the base pattern is set to 2, with 8 filters in the initial layer. The network is terminated with 2 dense
layers of size 16. The last layer is used to output the predicted drag and uses a linear activation function, while
all the other layers of the network use ReLU activations. In this paper, network training is performed on a Tesla
V100 GPU card, without pre-training (the network is systematically trained from scratch).

6

3 Dataset generation

This section describes the generation of the dataset used in the remaining of the paper. First, we describe the
steps to generate arbitrary shapes by means of connected Bezier curves. Then, the solving of the Navier-Stokes
equations with an immersed method is presented. Finally, details about the dataset are given.

3.1 Random shape generation

The first step of the random shape generation consists in drawing ns random points in [0, 1]
2, that are then

translated so their center of mass is in (0, 0). The points are then sorted by ascending trigonometric angle (see
figure 6a). The angles between consecutive random points are then computed, and an average is computed
around each point (see figure 6b):

θ∗i = αθi−1,i + (1− α)θi,i+1,

with α ∈ [0, 1]. Averaging angles in such way will help smooth the final obtained shape, and in the remaining of
this paper, α = 0.5. In the next step, a third order Bézier curve is drawn between each point, using the averaged
angles θ∗i . Cubic Bézier curves are defined by four points: the first and last points, pi and pi+1, are part of the
curve, while the second and third ones, p∗i and p∗∗i , are control points that define the tangent of the curve at pi
and pi+1. In our case, the tangents at pi and pi+1 are determined respectively by θ∗i and θ∗i+1 (see figure 6c). In
a final step, all the Bezier curves are sampled, and a closed loop is exported to be used as an immersed mesh in
a Navier-Stokes numerical simulation (figure 6d).

The sharpness of the curve features is handled with a positive parameter r that controls the distances [pip
∗
i] and

[pi+1p
∗∗
i]. For r = 0, p∗i and p∗∗i respectively coincide with pi and pi+1, and the curve presents sharp angles

at the control points. Intermediate values of r produce smooth curves, with maximal smoothness for r = 0.5.
When increasing further toward r = 1, sharp features start to appear near the crossing of the initial and final
curve tagents. Finally, for r > 1, tangled cases start to appear. A variety of shapes obtained with different
values of r can be found in figure 7. In the following, we restrict r to the interval [0, 1] to avoid tangled shapes.

3.2 Navier-Stokes equations

The flow motion of incompressible Newtonian fluids is described by the Navier-Stokes (NS) equations:

{
ρ (∂tv + v · ∇v)−∇ · (2ηε(v)− pI) = f,

∇ · v = 0,
(1)

where t ∈ [0, T] is the time, v(x, t) the velocity, p(x, t) the pressure, ρ the fluid density, η the dynamic viscosity,
ε the strain rate tensor and I the identity tensor. Classically, the solving of NS equations around solid obstacles
relies on body-fitted methods, where the mesh boundary follows the geometry of the obstacle. These methods
require the generation of a full mesh (domain and obstacle) for each computation, which can be both time- and
memory-consuming (see figure 8a). To overcome this issue, immersed methods based on a unified Eulerian
formulation were introduced that propose to immerge a boundary mesh of the obstacle in a background mesh
(see figure 8b). The outline of this method is sketched in the next section.

3.3 Interface description

The formulation presented in this section is based on the introduction of an extra stress in the momentum
equation of (6). This extra stress is related to the appropriate deformation tensor in the solid domain and acts as
a Lagrange multiplier to enforce that the deformation be zero in the solid.

In the fluid-structure interaction field, monolithic approaches impose the use of an appropriate constitutive
equation describing both the fluid and the solid domain. This offers a great flexibility to deal with different
shapes in similar configurations without having to systematically re-mesh the whole domain. To do so, one
starts by computing the signed distance function (level set) of the given geometry to each node of the background
mesh:

7

x

y

p1

p2

p3

p4

θ

(a) Draw ns random points, translate them around (0, 0)
and sort them by ascending trigonometric angle

x

y

p1

p2

p3

p4

θ12

θ23

p1

p2

p3

p4

(b) Compute angles between random points, and com-
pute an average angle around each point θ∗i

x

y

p1

p2

p3

p4

p∗2

p∗∗2

θ∗2
p1

p2

p3

p4

(c) Compute control points coordinates from averaged
angles and generate cubic Bézier curve

x

y

p1

p2

p3

p4

p1

p2

p3

p4

(d) Sample all Bézier lines and export for mesh immer-
sion

Figure 6: Random shape generation with cubic Bézier curves.

r0 0.2 0.4 0.6 0.8 1

Figure 7: Random shape examples depending on their r value, ranging from 0 to 1. The random points are
shown in blue, and their number ns ranges from 3 to 5, although it is possible to use more. For r = 0, one
sees the sharp features of the curve on the Bézier points. For intermediate values, smooth curves are obtained.
Finally, for values close to 1, sharp features start to appear around the control points (not shown here).

8

(a) Body-fitted case (b) Immersed case

Figure 8: The same shape meshed either in the body-fitted case (left) or with an immersed method (right).
In the immersed case, a regular remeshing is applied to better capture the velocity gradients.

α(x) = ±d (x,Γim) ,∀x ∈ Ω. (2)

Using this function, the fluid-solid interface Γim is easily identified as the zero iso-value of function α:

Γim = {x ∈ Ω, α(x) = 0} . (3)

In this paper, the following sign convention is used: α ≥ 0 inside the solid domain defined by the interface Γim,
and α ≤ 0 outside this domain. Further details about the algorithm used to compute the distance are available
in [14]. It is also possible to use functions smoother than d (x,Γim) away from Γim (see for example [15]).

As explained above, the signed distance function is used to localize the interface of the immersed structure, but
it is also used to initialize the desirable properties on both sides of the latter. Indeed, for the elements crossed
by the level-set functions, fluid-solid mixtures are used to determine the element effective properties. To do so,
a Heaviside function H(α) is defined as follows:

H(α) =

{
1 if α > 0,

0 if α < 0.
(4)

The Heaviside function can be smoothed to obtain a better continuity at the interface [16] using the following
expression:

Hε(α) =

1 if α > ε,
1

2

(
1 +

α

ε
+

1

π
sin
(πα
ε

))
if |α| ≤ ε,

0 if α < −ε,

(5)

where ε is a small parameter such that ε = O(him), known as the interface thickness, and him is the mesh size
in the normal direction to the interface.

3.4 Modified governing equations

Now that each system is expressed in an eulerian framework, we solve one global NS set of equations using the
geometrical representation given by H(α) as follows:

{
ρ∗(∂tv + v · ∇v)−∇ · (2ηε(v) + τ − pI) = f,

∇ · v = 0,
(6)

9

(a) Computational domain (b) Network input

Figure 9: Computational domain and network input for a dataset element.. The shape is shown in its
computational domain (left), the blue frame indicating the actual subset of the image provided to the network.
The subset size is chosen to be slightly larger than the maximal possible extent of the shape (which is known
from the construction process), to avoid the shape touching the border of the frame. A zoom of this subset is
shown (right).

where we have introduced the following mixed quantities:

τ = H(α)τ s,

ρ∗ = H(α)ρs + (1−H(α))ρf,

the subscripts f and s referring respectively to the fluid and to the solid. In the latter equalities, τ s acts as a
Lagrange multiplier that yields ε(v) = 0 in the solid [17] [18].

Eventually, the modified equations (6) are cast into a stabilized finite element formulation, and solved using a
variational multi-scale (VMS) solver (the reader is invited to refer to [17] for more details).

3.5 Dataset

The dataset (DS) is composed of 12,000 shape images of size 128 × 128, along with their steady-state drag
value at Re = 10 (see figure 9). To ensure a large diversity of shapes, ns is evenly distributed in [3, 5], and r in
[0, 1]. In the following, the DS is systematically divided into three sets: 9600 shapes for the training set, 1200
shapes for the validation set, and 1200 shapes for the test set. During the dataset generation, a minimal distance
between two nodes was prescribed, so that no shape can be smaller than size 0.1. No data augmentation was
used, although up-down flip could have been used here, as stated in section 2.3.1. Statistics about the radius and
drag repartitions over these subsets are shown in figure 10. Radii values are comparably distributed over the
different subsets, and this quasi-uniform distribution results in comparable Gaussian-like distribution of drags
over the subsets.

All the labels were computed using CimLib [17], following the methods exposed in sections 3.2, 3.3 and 3.4.
The CFD solver used is equipped with a remeshing technique able to track both (i) the fluid/solid interfaces,
and (ii) the areas of high velocity gradients. This method, exploited in conjunction with mesh immersion,
ensures accurate results for the creation of the dataset (see figure 11). Given the situation (multiple cheap 2D
simulations), each CFD run was processed on a single core, with 64 shapes running at the same time on Intel
Xeon 2.6 GHz cores. The average computation time was 4.8 minutes, and the whole dataset was generated in
less than 24 hours. The physical computational time was chosen large enough so that the stationary flow was
established, and that the computed drag and lift coefficients were stabilized (see figure 11).

4 Results

4.1 Baseline network performance

Here, we assess the performance of the baseline network introduced in section 2.3.5 on the drag prediction task.
As said earlier, the input images are of size 128× 128, and the total number of learnable parameters is 66,497.
In the remaining of the paper, the learning rate is set to 1× 10−3 with a decay factor of 5× 10−3, and early

10

0 0.2 0.4 0.6 0.8 1
0

0.025

0.05

Radius

D
en

si
ty

Training

Test

Validation

(a) Radius density function

−5 −4 −3 −2 −1 0
0

0.05

0.1

0.15

Drag

D
en

si
ty

Training

Test

Validation

(b) Drag density function

Figure 10: Normalized density functions for the repartition of radius and drag values in the different data
subsets. The radius is drawn from a uniform probability density function on [0, 1]. This results in a Gaussian-
like drag distribution over the different subsets. In both cases, the distributions over the test and validation
subsets are comparable.

0 20 40 60 80 100

−6

−4

−2

0

2

Timesteps

C
x
,C

y

Cx

Cy

(a) Evolution of the drag and lift coefficients during a
CFD computation

(b) Final velocity field with mesh representation (the re-
maining of the domain is cropped)

Figure 11: Results of a CFD computation. Left: The physical time is chosen large enough so the drag and lift
coefficient values are stabilized. Right: The remeshing technique increases the resolution (i) at the fluid/solid
interfaces and (ii) in the areas presenting a high velocity gradient, thus ensuring accurate results with a limited
computational charge.

11

0 50 100 150 200

10−3

10−2

10−1

100

Epochs

L
o
ss

(M
S
E
)

Training

Validation

(a) Training and validation loss

−4 −3 −2 −1
0

0.02

0.04

0.06

0.08

Avg. rel. error = 0.72%
Max. rel. error = 5.67%

Cx

∆
C

x

(b) Baseline relative error on drag prediction

(c) Six worst performing shapes

Figure 12: Results for the baseline network. Top left: the training and validation loss as a function of epochs.
The early stopping technique helps avoiding overfitting of the network. Top right: the average and maximal
relative drag prediction errors over the test subset remain low, showing the good generalization capabilities of
the network. Bottom: the worst performing shapes are among those with smallest areas, as the input image
definition is the same for all shapes.

stopping is used to determine the end of the training. The network parameters are initialized randomly, without
pre-training, and a batch size of 64 is used by default. The training is processed on a Tesla V100 GPU card, on
which one epoch requires approximately 5 seconds, for a total training time of 662 seconds. We use the Adam
optimizer, with mean-squared error as loss. The training and validation loss curves are shown in figure 12a.

The predictive performance of the network is then computed by measuring the relative drag prediction error on
the test subset. To do so, a forward network pass is made for each shape of the subset to obtain the predicted
drag, which is compared to the exact drag. The relative prediction error is then computed. A plot of the error
levels on the test set is shown in figure 12b. The low average relative error indicates a good overall accuracy,
except for some shapes presenting a low drag (roughly, Cx ≤ 1), for which levels as high as 5% can be reached.
As could be expected, the worst performing shapes are that with the smallest areas (see figure 12c), as the input
image resolution is the same for all shapes.

4.2 Batch size

The choice of the batch size in supervised learning is known to have a major impact on the performances of
the resulting network [11]. It has multiple outcomes, such as (i) the accuracy of the gradient estimate, (ii) the
time required for training or (iii) the necessity of an adequate learning rate. In figure, 13, we plot the average

12

1 2 4 8 16 32 64 128 512 2048
10−3

10−2

10−1

100

Batch size

∆
C

x

Max

Avg

(a) Average and maximal relative error obtained for drag
prediction using different batch sizes.

−4 −3 −2 −1
0

0.02

0.04

0.06

0.08

Avg. rel. error = 0.61%
Max. rel. error = 4.2%

Cx

∆
C

x

(b) Relative error on drag prediction for a batch size
equal to 256.

Figure 13: Analysis of the influence of batch size on the average and maximal relative error. A slight
minimum is obtained using a batch size of 256, for both maximum and average drag relative errors.

In
p
u
t

3
×

3
c
o
n
v
,
m

3
×

3
c
o
n
v
,
m

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
m

3
×

3
c
o
n
v
,
m

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
2
m

3
×

3
c
o
n
v
,
2
m

2
×

2
p
o
o
l

fc
n

O
u
tp

u
t

p times q times

Figure 14: Network pattern for optimization. The goal is to optimize separately the convolutional part (m
and p parameters) and the fully connected part (n and q parameters).

and maximal relative prediction errors as a function of the batch size using the baseline network of section 4.1.
As in the previous cases, early stopping was used to prevent overfitting. As can be seen, a slight minimum is
obtained for both average and maximal relative errors when using a batch size of 256. The relative error over the
test subset is also shown in figure 13: as can be seen, the high prediction errors obtained for the smaller-sized
shapes in figure 12b have now dropped down to a level similar to that of other shapes of larger sizes, with a
maximal error level as low as 4.2%. In the following, the batch size is set equal to 256.

4.3 Network optimization

In this section, we optimize the network architecture further by modifying both convolutional and fully-
connected parts. To do so, we consider the generic architecture shown in figure 14. This architecture is a
generalization of the baseline one, which was obtained by trial and error. The goal is to explore variants of this
baseline network version, by varying separately the depth and complexity of (i) the convolutional part (m and p
parameters), and (ii) the fully-connected part (n and q parameters).

The convolutional and fully connected parts of the network are optimized separately: first, the convolutional
part is considered, by varyingm in [1, 64] and p in [0, 4], while keeping the fully-connected block of the baseline
network. For each case, the maximal and average relative errors of the network on the test subset are computed,
and shown in figures 16a and 16b. Increasing the amount of filters per layerm is clearly beneficial for any value
of p. The effect of increasing network depth p is not as clear, although the best configurations are obtained for
p = 3 or p = 4. As optimal performance for average and maximum relative errors are not obtained for the same
(p,m) couples, small network sizes are favoured. For that reason, we choose (popt,mopt) = (3, 32).

13

1
2

4
8

16
32

64 0

2

4
0.04

0.1

0.3

0.5

m p

(a) Maximal drag relative error over test subset as a
function of p and m

1
2

4
8

16
32

64 0

2

4
0.005

0.01

0.03

0.05

m p

(b) Average drag relative error over test subset as a func-
tion of p and m

Figure 15: Optimization of the convolutional block of the network. Both plots represent the drag relative
error as a function of p and m (see figure 14). Left: maximal relative error. Right: average relative error.

1
2

4
8

16
32

64 0

2

4
0.035

0.1

0.3

0.8

n q

(a) Maximal drag relative error over test subset as a
function of q and n

1
2

4
8

16
32

64 0

2

4
0.005
0.01

0.05
0.1

0.6

n q

(b) Average drag relative error over test subset as a func-
tion of q and n

Figure 16: Optimization of the fully connected block of the network. Both plots represent the drag relative
error as a function of q and n (see figure 14). Left: maximal relative error. Right: average relative error.

In CNNs, the task attributed to fully-connected layers is to learn non-linear combinations of the high-level
features extracted by the convolutional blocks. Modern classification networks such as VGG [19] or ResNet
[20] usually include zero to a few dense layers between the convolutional blocks and the output layer. Here, n
varies in [1, 64], while q varies in [0, 4]: results are shown in figure 16. Interestingly, very decent performance is
obtained when the output of the last convolutional layer is flattened and directly fed to the output layer (i.e. for
q = 0). Another noticeable point is that using several fully connected layers with very few neurons per layer
(i.e. q ≥ 2 and n ≤ 2) leads to almost no learning. As for the optimization of the convolutional block, minimal
errors are obtained on different configurations for maximum and average errors. We follow the same line as
before by choosing the configuration leading to the smallest network, and therefore we set (qopt, nopt) = (1, 64).
Eventually, the best network obtained, shown in figure 17, holds 296,865 learnable parameters. Each training
epoch requires approximately 6 seconds, leading to a total training time of of 1535 seconds.

4.4 Drag prediction on realistic shapes

We now evaluate the predictive capabilities of the best network on a selected set of shapes, including geometrical
shapes (cylinder, square) and NACA airfoils. The results are summed up in table 1. The shapes dimensions are
adapted to fit the mean dimensions of the dataset shapes, i.e. they fit in the [−1, 1]

2 square, with their center

14

In
p
u
t

3
×

3
c
o
n
v
,
1
6

3
×

3
c
o
n
v
,
1
6

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
1
6

3
×

3
c
o
n
v
,
1
6

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
3
2

3
×

3
c
o
n
v
,
3
2

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
3
2

3
×

3
c
o
n
v
,
3
2

2
×

2
p
o
o
l

3
×

3
c
o
n
v
,
3
2

3
×

3
c
o
n
v
,
3
2

2
×

2
p
o
o
l

fc
6
4

O
u
tp

u
t

Figure 17: Optimized drag prediction CNN. This architecture was obtained by optimizing the baseline net-
work through a hyper-parameter search.

of mass centered in (0,0). Relative error levels remain low on such shapes, with a maximal value of 3.06% for
the horizontal bar. As could be expected, the prediction on a shape of the dataset yields a very accurate result,
with a relative error below 0.2%. Finally, the error levels for NACA airfoils remain low, with a maximum level
of 1.27%. This experiment also underlines the interest of the random shape dataset for the drag prediction on
non-random, real-life shapes.

4.5 Conclusion

In this paper, an optimized convolutional neural network was introduced for the drag prediction of arbitrary 2D
shapes in laminar flow at Re = 10. This network was trained on a custom dataset composed of 12,000 ran-
dom shapes built with Bézier curves, and which drag was computed numerically by solving the Navier-Stokes
equations using an immersed mesh method. The large variety of geometrical shapes in the dataset allowed the
network to make accurate drag predictions on realistic shapes such as NACA airfoils, with a maximal relative
error in the 1-2% range.

These results underline the potential of this approach, and shall be pursued at higher Reynolds. In the case of
turbulent flows, the prediction of a time-averaged quantity of interest can be considered (see [9]). Still, in many
industrial-level CFD computations, a RANS turbulence model is considered that leads to converged, stationary
drag and lift values even at high Reynolds numbers. The extension of the current work to three-dimensional
shapes can also be considered, using 3D CNNs. Also, exploiting advanced network architectures, such as
ResNets or densely connected convolutional networks, may lead to even better results.

15

Table 1: Exact and predicted drags for several handpicked shapes. The shapes largest dimensions were
adapted to fit the mean dimensions of the dataset shapes. The different geometrical parameters given in the
array are the following: w stands for width, h stands for height, r stands for radius and c stands for chord. It is
important to notice that in the following table, the scale of the NACA airfoils is not that of the other shapes.

Shape Description Prediction (rel.
error) Exact drag

Vertical bar, h = 1,
w = 0.2

1.585 (0.69%) 1.596

Horizontal bar, h = 0.2,
w = 1

0.978 (3.06%) 0.949

Cross, w = 1, h = 0.2 1.571 (1.16%) 1.553

Cylinder, r = 0.5 1.586 (0.19%) 1.589

Square, h = w = 1 1.763 (0.056%) 1.764

Random shape from DS 1.894 (0.16%) 1.897

NACA 0018, c = 1 1.192 (0.51%) 1.186

NACA 4412, c = 1 1.111 (0.89%) 1.121

NACA 4424, c = 1 1.279 (1.27%) 1.263

NACA 6412, c = 1 1.119 (1.15%) 1.132

References

[1] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating Eulerian Fluid
Simulation With Convolutional Networks. arXiv, 2016.

[2] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence modelling using
deep neural networks with embedded invariance. Journal of Fluid Mechanics, 807:155–166, 2016.

[3] Brendan D. Tracey, Karthikeyan Duraisamy, and Juan J Alonso. A Machine Learning Strategy to Assist
Turbulence Model Development. In 53rd AIAA Aerospace Sciences Meeting, pages 1–23, 2015.

[4] Andrea D. Beck, David G. Flad, and Claus-Dieter Munz. Deep Neural Networks for Data-Driven Turbu-
lence Models. arXiv, 2018.

[5] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics Informed Deep Learning (Part I):
Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv, pages 1–22, 2017.

[6] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden Fluid Mechanics: A Navier-Stokes
Informed Deep Learning Framework for Assimilating Flow Visualization Data. arXiv, 2018.

16

[7] Yao Zhang, Woong-Je Sung, and Dimitri Mavris. Application of Convolutional Neural Network to Predict
Airfoil Lift Coefficient. arXiv, pages 1–9, 2017.

[8] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional Neural Networks for Steady Flow Approxi-
mation. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining - KDD ’16, pages 481–490, 2016.

[9] Tharindu P. Miyanawala and Rajeev K. Jaiman. An Efficient Deep Learning Technique for the Navier-
Stokes Equations: Application to Unsteady Wake Flow Dynamics. arXiv, pages 1–46, 2017.

[10] Michal Sofka, Fausto Milletari, Jimmy Jia, and Alex Rothberg. Fully convolutional regression network
for accurate detection of measurement points. Lecture Notes in Computer Science, 10553 LNCS:258–266,
2017.

[11] Aaron Courville Ian Goodfellow, Yoshua Bengio. The Deep Learning Book. MIT Press, 2017.
[12] François Chollet. Deep Learning with Python. Manning, 2018.
[13] Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural nets: Backpropagation, conjugate

gradient, and early stopping. Advances in Neural Information Processing Systems, 2001.
[14] J. Bruchon, H. Digonnet, and T. Coupez. Using a signed distance function for the simulation of metal

forming processes: Formulation of the contact condition and mesh adaptation. International Journal for
Numerical Methods in Engineering, 78(8):980–1008, 2009.

[15] R. Codina and O. Soto. A numerical model to track two-fluid interfaces based on a stabilized finite element
method and the level set technique. International Journal for Numerical Methods in Fluids, 40:293–301,
2002.

[16] S.P. van der Pijl, A. Segal, C. Vuik, and P. Wesseling. A mass-conserving level-set method for modelling
of multi-phase flows. International Journal for Numerical Methods in Fluids, 47:339–361, 2005.

[17] E. Hachem, S. Feghali, R. Codina, and T. Coupez. Immersed stress method for fluid structure interaction
using anisotropic mesh adaptation. International Journal for Numerical Methods in Engineering, 94:805–
825, 2013.

[18] G. Jannoun, E. Hachem, J. Veysset, and T. Coupez. Anisotropic meshing with time-stepping control for
unsteady convection-dominated problems. Applied Mathematical Modelling, 39:1899–1916, 2001.

[19] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. pages 1–14, 2014.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2016-December:770–778, 2016.

17

	Introduction
	Neural networks
	Artificial neurons and fully connected networks
	Convolutional networks
	Technicalities
	Data pre-processing
	Activation functions
	Loss function and backpropagation
	Network size, overfitting and regularization
	Neural network implementation

	Dataset generation
	Random shape generation
	Navier-Stokes equations
	Interface description
	Modified governing equations
	Dataset

	Results
	Baseline network performance
	Batch size
	Network optimization
	Drag prediction on realistic shapes
	Conclusion

