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ORIGINAL RESEARCH • COMPUTER APPLICATIONS

Since 2012, the use of radiomics has expanded (1) in on-
cology with the objective to characterize tumor hetero-

geneity from medical images. Radiomics extracts features 
from medical images that quantify tumor shape, intensity 
histogram, and texture of the lesions more precisely and 
more accurately than visual assessment by a radiologist to 
build models that involve features to assist patient treat-
ment. In particular, texture analysis from CT images has 
led to promising results to distinguish between tumor le-
sions with different histopathologic characteristics and to 
predict treatment response or patient survival (2). How-
ever, several studies highlighted the sensitivity of radiomic 
features to CT acquisition and reconstruction parameters 
by using phantoms (3–8) or patient data (9–12). Indeed, 
feature values are affected by section thickness, pixel size, 
reconstruction kernel, tube voltage, tube current, and 
contrast agent enhancement. They also differ between dif-
ferent scanners with the same settings (8). Moreover, the 
effect of imaging protocols varies according to the texture 
pattern and the radiomic feature (4).

One of the most widely cited studies (13) in radiomics, 
which included 1019 patients, used different CT imaging 
protocols involving different CT scanners, pixel size, and 
section thickness with or without intravenous contrast en-
hancement, and without accounting for this variability in 
the data analysis. To reduce that variability, it was proposed 
to resample images with a fixed voxel size, to filter the im-
ages (5), or to change the definition of features (6,11). 
These approaches require a modification of the CT images 
or are not applicable to all radiomic features.

The same issue is encountered in PET imaging, in 
which radiomic features are sensitive to the acquisition 
protocol and reconstruction algorithm (14). A compen-
sation method was initially described in genomics (15), 
where the so-called batch effect is the source of variations 
in measurements caused by the handling of samples by dif-
ferent laboratories, different technicians, and on different 
days. The batch effect is conceptually similar to variations 
induced by the scanner or the protocol effects in radiomics. 
The compensation method identifies a batch-specific 
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Background: Radiomics extracts features from medical images more precisely and more accurately than visual assessment. However, 
radiomics features are affected by CT scanner parameters such as reconstruction kernel or section thickness, thus obscuring under-
lying biologically important texture features.

Purpose: To investigate whether a compensation method could correct for the variations of radiomic feature values caused by using 
different CT protocols.

Materials and Methods: Phantom data involving 10 texture patterns and 74 patients in cohorts 1 (19 men; 42 patients; mean age, 
60.4 years; September–October 2013) and 2 (16 men; 32 patients; mean age, 62.1 years; January–September 2007) scanned by 
using different CT protocols were retrospectively included. For any radiomic feature, the compensation approach identified a pro-
tocol-specific transformation to express all data in a common space that were devoid of protocol effects. The differences in statistical 
distributions between protocols were assessed by using Friedman tests before and after compensation. Principal component analyses 
were performed on the phantom data to evaluate the ability to distinguish between texture patterns after compensation.

Results: In the phantom data, the statistical distributions of features were different between protocols for all radiomic features 
and texture patterns (P , .05). After compensation, the protocol effect was no longer detectable (P . .05). Principal component 
analysis demonstrated that each texture pattern was no longer displayed as different clusters corresponding to different imaging pro-
tocols, unlike what was observed before compensation. The correction for scanner effect was confirmed in patient data with 100% 
(10 of 10 features for cohort 1) and 98% (87 of 89 features for cohort 2) of P values less than .05 before compensation, compared 
with 30% (three of 10) and 15% (13 of 89) after compensation.

Conclusion: Image compensation successfully realigned feature distributions computed from different CT imaging protocols and 
should facilitate multicenter radiomic studies.
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of features was derived from cohort 1 (42 patients with lung 
cancer; mean age, 60.4 years; age range, 31–81 years; Table 1) 
between September and October 2013 (9), including 19 men.  
All patients underwent a CT scan with the same machine and 
protocol (Table E4 [online]), and CT images were recon-
structed by using three algorithms: filtered back projection and 
Sinogram Affirmed Iterative Reconstruction (Siemens Health-
care, Forchheim, Germany) with a noise reduction strength of 
level 3 (hereafter, referred to as S3) and 5 (hereafter, referred to 
as S5). For each patient, the dominant tumor lesion was seg-
mented manually three times: twice by a radiologist and once 
by a technologist. For each of the three volumes of interest 
per patient and each reconstruction, 15 radiomic features were 
calculated. Five geometric features (volume, diameter, surface, 
sphericity, and compactness) were excluded from the analysis 
(F.O.) because they mostly depend on the segmentation.

A second set of features was obtained from cohort 2 (32 pa-
tients; mean age, 62.1 years; age range, 29–82 years; Table 1) 
between January and September 2007 (16 men) with a lung can-
cer who underwent two CT scans (Table E4 [online]) within 15 
minutes (10). This dataset was originally collected in a clinical 
trial (NCT00579852) to evaluate the reproducibility of tumor 
volume and diameter measurements and is part of the Refer-
ence Image Database to Evaluate Therapy Response project (19). 
The CT images were reconstructed by using six protocols that 
combined two reconstruction algorithms (lung and standard) 
and three section thicknesses (1.25 mm, 2.5 mm, and 5 mm) 
(10). For one lesion per patient (29 primary and three metastatic 
lesions), a tumor volume of interest was obtained from a con-
sensus among the manual segmentations by three radiologists. 
After resampling the volume-of-interest voxels to 0.5 3 0.5 3 
0.5 mm3 by using a trilinear interpolation, 89 radiomic features 
were calculated for the six imaging protocols (two reconstruc-
tions 3 three section thicknesses) and for each of the 64 scans 
(32 patients with two scans each).

Compensation Method
To correct for differences in features caused by the various im-
aging protocols, we used the ComBat function (https://github.
com/Jfortin1/ComBatHarmonization) compensation method 
(15). This method has been used for cortical thickness mea-
surements from MR images (20) and for radiomic features 
from different PET protocols (16). It is a data-driven method 

Summary
Nonbiological differences related to CT scanner type can be removed 
from radiomic feature values, allowing radiomics features to be com-
bined in multicenter or multivendor studies.

Key points
 n Radiomic feature values obtained by using different CT imaging 

protocols or scanners can be corrected for the protocol or scanner 
effect by using the proposed compensation method.

 n The use of realigned features will enable multicentric studies to 
pool data from different sites to build reliable radiomic models 
based on large databases.

 n The proposed compensation method is easily available, fast, and 
requires neither phantom acquisition nor feature recalculation.

transformation to express all data in a common space devoid 
of batch effects. It has been shown (16) to be effective in PET 
to realign the radiomic feature distributions between three dif-
ferent protocols for healthy liver tissue and breast lesions, with-
out altering the biologic information. The purpose of our study 
was therefore to determine whether this compensation method 
could also correct for the CT protocol effect by using phantom 
and patient data.

Materials and Methods
All patient data were anonymized and are publicly available in 
the supplemental data of Kim et al (9) and Lu et al (10). All 
authors had control of the data and information submitted for 
publication.

Phantom Experiments
The phantom data used in our study have been produced by 
Mackin et al (4) and are publicly available in the associated sup-
plemental data (4). The Credence Cartridge Radiomics phantom 
consists of 10 layers with different materials corresponding to 
different texture patterns. This phantom was scanned by using 17 
different imaging protocols from four medical institutes involv-
ing various reconstruction kernels, scan types, section thickness, 
pixel spacing, spiral pitch factor, and effective milliamperage. Ad-
ditional information on phantom and acquisition characteristics 
are provided in Tables E1 and E2 (online). For each layer, 16 non-
overlapping volumes of interest with an average cubic volume of 
8 cm3 (range, 7.6–9 cm3; corresponding to 2708–14 332 voxels 
depending on the imaging protocols) are also made available in 
Dicom-RTstruct format. For each volume of interest and each im-
aging protocol, we (F.O. and C.N., with 7 years and 20 years of 
research experience in medical imaging, respectively) computed 
40 radiomic features by using the LIFEx freeware (17) (Inserm, 
Orsay, France, www.lifexsoft.org; Table E3 [online]) with a fixed 
bin size (18) set to 10 HU between -1000 HU and 3000 HU 
without any spatial resampling. We performed the radiomic 
analysis for 16 of 17 imaging protocols because of a reading issue 
with acquisition Credence Cartridge Radiomics 1-GE2.

Patients
Publicly available radiomic features from two patient databases 
(cohort 1 and cohort 2) were used in our study. The first set 

Table 1: Patient Characteristics

Parameter Patient Cohort 1 Patient Cohort 2
Sex
 Men 19 (45) 16 (50)
 Women 23 (55) 16 (50)
Mean age (y)* 60.4 (31–81) 62.1 (29–82)
No. of primary lung lesions 8 (19) 29 (91)
No. of metastatic lesions 34 (81) 3 (9)

Note.—Unless otherwise indicated, data are the number of patients 
and data in parentheses are percentages.
* Data in parentheses are range.
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and 10 texture patterns were less than .05 before compensation 
(Tables 2, E6 [online]). Only one P value for skewness was greater 
than .05 for pattern 7 (dense cork; P = .46). After compensation, 
all P values of Friedman tests were greater than .05, which indi-
cated that the protocol effect was no longer detectable.

These results were visually confirmed by using the projec-
tion of the data in the space spanned by the first two principal 
components of principal component analysis. Figure 1 shows an 
overlap between textural patterns before ComBat because of the 
large variability of radiomic feature values computed from 16 
different CT protocols. For each textural pattern (each color), 
several clusters corresponding to different CT protocols could 
be identified. After ComBat, textural patterns could be clearly 
distinguished and were no longer composed of different clus-
ters, demonstrating that the compensation method properly 
corrected for the scanner effect while retaining the specific char-
acteristics of each texture pattern. The variance explained by 
the first two components was higher after ComBat (65.6% vs 
53.2%), with approximately the same features contributing to 
the first two principal components before and after compensa-
tion (data not shown).

On the basis of three CT acquisitions (GE1, P2, and S2; Table 
E2 [online]), Figure 2 shows that when data were pooled with-
out realignment, the sensitivity for distinguishing cork from dense 
cork was 67% (32 of 48 volumes of interest) with a specificity of 
98% (47 of 48 volumes of interest) by using the cutoff maximiz-
ing the Youden index. After ComBat, both sensitivity and speci-
ficity were 100% (48 of 48 volumes of interest). For unbalanced 
groups, Figure E1 (online) shows that the compensation method 
also yielded a perfect distinction between these two patterns.

Patient Data
For patient cohorts 1 and 2, 100% (10 of 10) and 98% (87 
of 89), respectively, of Friedman tests had P values less than 

that identifies the protocol effect assuming that the value of 
each feature, y, measured in volume of interest, j, with imaging 
protocol, i, can be written as
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where a is the average value for feature yij, gi is an additive pro-
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model parameters a, gi, and 
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in which �̂, �  i�  and �
i�  are estimators of a, gi, and i� .

We used the nonparametric form of the model in which no 
assumptions are made regarding the laws followed by the param-
eters. In this setting, ComBat determines a transformation for 
each feature separately. For each texture pattern of phantom data 
and of each patient dataset, we used the ComBat function in R 
(version 3.4.2; R Foundation for Statistical Computing, Vienna, 
Austria) to identify the transformation parameters.

Statistical Analysis
Statistical analysis was performed by using software (R; R foun-
dation for Statistical Computing). To determine whether the 
protocol setting (independent variable i in Equation [1]) af-
fected the distributions of radiomic feature values (dependent 
variables yij in Equation [1]), we (F.O. and F.F., with 30 years 
of experience) performed two-sided Friedman tests before and 
after ComBat compensation for each feature as summarized in 
Table E5 (online). The null hypothesis is that there is no dif-
ference between the distributions. Benjamini-Hochberg proce-
dure was used to control the false discovery rate (21). P values 
less than .05 indicated statistical significance. Because the goal 
of the compensation is to realign the distributions in terms of 
mean and standard deviation, a P value of the Friedman test 
greater than .05 indicated that the realignment was successful.

For the phantom data, we also performed a principal com-
ponent analysis of the 2560 samples (16 volume of interest 3 
10 texture patterns 3 16 imaging protocols) described by 40 
variables (radiomic features). Principal component analysis was 
performed before and after ComBat to view the effect of the 
compensation method on the distinction between patterns. 
We also studied whether two textural patterns could be distin-
guished when pooling data from the three imaging protocols 
before and after compensation and for balanced and unbal-
anced groups.

Results
Patient characteristics are shown in Table 1.

Phantom Experiments
In the phantom data, 399 of 400 P values of the Friedman tests 
performed for all features on the basis of 16 imaging protocols 

Table 2: Significant Friedman Tests without and with 
Compensation in the Phantom and Clinical Cohorts 

Parameter
Without  
Realignment

With  
Realignment

Phantom
 Pattern 1, 20% filled ABS 40/40 (100) 0/40 (0)
 Pattern 2, 30% filled ABS 40/40 (100) 0/40 (0)
 Pattern 3, 40% filled ABS 40/40 (100) 0/40 (0)
 Pattern 4, 50% filled ABS 40/40 (100) 0/40 (0)
 Pattern 5, acrylic 40/40 (100) 0/40 (0)
 Pattern 6, cork 40/40 (100) 0/40 (0)
 Pattern 7, dense cork 39/40 (98) 0/40 (0)
 Pattern 8, plaster resin 40/40 (100) 0/40 (0)
 Pattern 9, rubber particles 40/40 (100) 0/40 (0)
 Pattern 10, wood 40/40 (100) 0/40 (0)
Patient cohort 1 10/10 (100) 3/10 (30)
Patient cohort 2 87/89 (98) 13/89 (15)

Note.—Data are numerator/denominator; data in parentheses 
are percentages. For the phantoms, there were 40 tests for each 
pattern. There were 10 tests for patient cohort 1 and 89 tests for 
patient cohort 2. ABS = acrylonitrile butadiene styrene.
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tributions when Friedman tests remained statistically signifi-
cant after ComBat showed that the residual difference between 
protocols was always small and that the protocol effect was 
reduced (Fig E2 [online]), demonstrating the effectiveness of 

.05 between imaging protocols before ComBat (Tables 2, E7, 
E8 [online]). After ComBat, 30% (three of 10) of P values for 
cohort 1 and 15% (13 of 89) of P values for cohort 2 were less 
than .05. Visual inspection of the radiomic feature value dis-

Figure 1: Phantom data: principal component scores for 2560 samples corresponding to 16 volume of interest 3 10 texture patterns (repre-
sented by 10 different colors in the figure) 3 16 imaging protocols described by 40 radiomic features on the first two principal components be-
fore, A, and after, B, ComBat (https://github.com/Jfortin1/ComBatHarmonization). After compensation, each texture pattern (ie, each color) was 
no longer composed of several separate and different clusters. Instead, the 10 texture patterns are nonoverlapping, demonstrating that the effect of 
the CT scanner protocol has been removed.

Figure 2: Example of ComBat application in phantom experiments. Two texture patterns (cork and dense cork) were 
scanned by using three different imaging protocols with 16 volumes of interest in each case (GE1, P2, S2; Table E2 [online]). 
When pooling all radiomic feature values, the optimal cutoff could not perfectly distinguish the patterns; a perfect distinction 
was observed after compensation of scanner effects. Se = sensitivity, Sp = specificity.



Orlhac et al

Radiology: Volume 291: Number 1—April 2019  n  radiology.rsna.org 57

the plot shows a shift in distribution with greater homogeneity 
values for reconstruction algorithm S5 than for S3 and filtered 
back projection. This was expected because reconstruction S5 
involved higher noise reduction. After compensation, the dis-

the compensation. ComBat corrected the protocol effect with 
a realignment of feature values among the three protocols for 
cohort 1 and among the six protocols for cohort 2 (homogene-
ity feature in Fig E3 [online]). For example, before ComBat, 

Figure 3:  Probability density function of homogeneity before (without realignment) and after (with realignment) ComBat in 
patient data by using two CT reconstruction algorithms, two reconstruction kernels, and two voxel thicknesses. P values are for 
Friedman tests. FBP = filtered back projection. CT images reprinted, under a CC BY license, from references 9 and 10.
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and scanners, and the actual effect on diagnostic performance 
on clinical data needs to be demonstrated. Independent multi-
center validation of radiomic models is also essential for them to 
become mainstream (1,25,26).

In conclusion, ComBat makes it possible to pool radiomic 
features from different CT protocols. This method appears 
promising to address the center effect in multicenter radiomic 
studies and to possibly raise the statistical power of those studies. 
ComBat is data driven, which means that the transformations 
identified by ComBat to set all data in a common space should 
be estimated for each study involving data from different cen-
ters and protocols. Our analysis was on the basis of less than 50 
patients for each acquisition protocol, which demonstrated the 
efficiency of the method even for small patient cohorts. By using 
simulations in which we gradually removed patient data (results 
not shown), we found satisfactory results with as few as 20 pa-
tients per imaging protocol. The minimum number of patients 
required per imaging protocol to successfully apply ComBat re-
mains to be comprehensively investigated.
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