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Routing and Resource Assignment Problems in Future 5G Radio Access Networks

Given a mobile network composed of a set of devices, a set of antennas (Base Stations) and a discrete set of radio resources, we define a domain as a subset of devices/antennas that communicate via radio transmission links in order to exchange data for a specific service. In this context, we are interested in the Domain Creation (DC) problem. It consists in finding an allocation of radio resources to the transmission links of the network so that different domains, each one related to a specific service (gaming, video streaming, content sharing, etc.), can be implemented simultaneously. Every domain has specific requirements in terms of quality of the transmission links (SINR) and hardware resources dedicated to carrying out the corresponding service. We give an integer linear programming formulation for the problem and propose two classes of valid inequalities to strengthen its linear relaxation. The resulting formulation is used within a branch-and-cut algorithm for the problem. We further propose an efficient heuristic obtained from solving the routing and resource assignment sub-problems separately. We assess the efficiency of our approaches through some experiments on instances of varying size and realistic input data from Orange mobile network.

INTRODUCTION

In future 5G networks, mobile User Equipment (UEs) will be able to host functions that give them new abilities such as sharing connectivity, capacity and CPU resources with other UEs, regardless of the ongoing traditional communications. The 5G wireless technology, along with the evolution of mobile users behavior and needs, will make the current scheme of communication (UE to Base Station) no longer optimal in terms of radio resource utilization. The Device-to-Device (D2D) communication mode is one of the new approaches presented as a promising alternative to traditional communication in cellular networks. A D2D communication is defined as a direct communication between two mobile or fix user devices, without traversing the Base Station (BS) [START_REF] Asadi | A Survey on Device-to-Device Communication in Cellular Networks[END_REF]. This technology allows to reuse radio resources and to decrease end-to-end latency of local communications. Then, D2D would allow a set of UEs geographically close to each other to establish direct D2D communications, or span multiple links (multi-hop D2D communications), to access a given service (e.g. video streaming or gaming) while ensuring the required service quality. A domain is defined as the set of UEs and BSs that are used to establish mobile communications (D2D or cellular) related to a specific service. The communication is either direct or uses multiple links (D2D or via the BS). Two UEs can then communicate through cellular links, using the BS or D2D links, and both technologies can coexist within the same mobile network. In any case, radio resources should be allocated to every active link involved in a communication, and the SINR (Signal-to-Interference-plus-Noise Ratio) level required by the service should be ensured.

In this context, we consider a mobile network composed of a set of devices (UEs), a set of antennas (BS) and a set of services eligible to D2D communications, with their associated traffic matrices. These traffic matrices are in the form of data volume to be exchanged between pairs of devices. The involved devices can communicate through one or several links, either using D2D or cellular communication (via the BS). A non-negative weight, corresponding to the SINR, is associated with each link. It is a measure of the quality of the communication that could be established using this link. Every service requires a minimal quality threshold in terms of SINR and available resources (hardware capacity for the devices, radio resources for the links) to be successfully established. The Domain Creation (DC) problem consists in finding a minimum cost allocation of the radio resources to the network links so that (i) every pair (link, resource) belongs to a unique domain, that is, it is used for a single service; (ii) the SINR of each pair (link, resource) assigned to a domain is above the quality threshold required by the corresponding service; (iii) every demand is routed from its origin to its destination within a domain and; (iv) all the required types of hardware capacities (CPU, RAM, battery) in the devices are satisfied.

State-of-the-art

The problem of assigning radio resources to transmission links is studied in [START_REF] Aardal | A branch-andcut algorithm for the frequency assignment problem[END_REF] and [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF] under the denomination of Frequency Assignment Problem (FAP). In [START_REF] Aardal | A branch-andcut algorithm for the frequency assignment problem[END_REF], the authors give an ILP formulation for the problem and propose a branch-and-cut algorithm to solve it. The work in [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF] presents several variants of FAP and discusses existing and original optimization (including exact and heuristic) approaches to solve them. The routing and resource allocation aspects are combined in the so-called Routing and Wavelength Assignment (RWA) problem (see [START_REF] Jaumard | ILP Formulations for the Routing and Wavelength Assignment Problem: Symmetric Systems[END_REF] and [START_REF] Ozdaglar | Routing and Wavelength Assignment in Optical Networks[END_REF] for instance) which arises in Optical Networks. The DC problem differs from the above cited problems in that traffic demands are unsplittable (each demand has to be sent along a unique path using D2D or cellular links), several types of capacities on the devices are considered, and radio resources re-use is submitted to distance constraints so as to avoid radio interference. [START_REF] Zulhasnine | Efficient resource allocation for device-to-device communication underlaying LTE network[END_REF] has focused more specifically on the optimization of mobile network resources using D2D technology. As the related optimization problem is relatively difficult to be solved in competitive time, a greedy heuristic has been proposed as an alternative to solve such a problem. This heuristic is divided into two phases, each one responsible for the allocation of uplinks (from UEs to BSs) and downlinks (from BSs to UEs) in order to improve the total throughput and to significantly reduce the interference between classic and D2D communications.

Our

In this work, we formally define the Domain Creation Problem and we propose a node-arc (compact) ILP formulation to model it. We present some strategies to enhance the linear relaxation of the formulation along with two classes of valid inequalities. Our results are embedded within a branch-and-cut algorithm to solve the problem. We further propose a two-phase heuristic, obtained by decomposing the problem into a routing and a radio resource allocation subproblems. To solve the routing subproblem, we propose two methods : first, a LP-based heuristic from the linear relaxation of the compact formulation, second, a non-compact formulation obtained by generating a subset of relevant paths. Then, the allocation subproblem is transformed into a vertex coloring problem that is solved heuristically by an improved greedy algorithm. This greedy algorithm is compared to a dual bound given by the exact solution of the associated Max-Clique Problem. Numerical experiments are made on instances generated thanks to realistic parameters of Orange mobile networks.

Our paper is organized as follows. We introduce the DC problem in Section 2 and give an ILP formulation along with two classes of valid inequalities. An overview of our branch-and-cut algorithm is given in Section 3 with a brief description of the separation routines used to generate the cuts and some numerical results for small instances. The outline of our two-phase heuristic is detailed in Section 4. Finally, we give some concluding remarks in Section 5 and discuss future works on extensions of the problem.

THE DOMAIN CREATION PROBLEM 2.1 Problem definition

The network is represented by a directed graph G = (V ∪ U , A), where V is the set of nodes associated with devices, U the set of Base Station nodes, and A the set of arcs. We denote by δ + (u) (resp. δ -(u)) the subset of arcs going from (resp. to) node u. Every node u ∈ V has an associated weight vector c u = {c u 1 , . . . , c u b }, where c u i ⩾ 0 is the capacity available at node u for the physical resource i ∈ C d . Every arc e ∈ A has a weight denoted SI N R e that expresses a measure on the quality of the transmission link represented by e. For every pair of arcs e, f ∈ A we denote by d(e, f ) the distance between e and f . This value corresponds to the minimum distance between the opposite ends of the given pair of links, that is, the origin of one and the destination of the other. Namely, two arcs e and f are said to be close if d(e, f ) ⩽ D, where D is a minimum acceptable distance. Let R = {1, . . . , r } be the set of available radio resources. An arc e of A is said to be active if a radio resource r ∈ R is assigned to it. A resource r ∈ R can be assigned to two different arcs e, f ∈ A only if d(e, f ) > D. Indeed, due to interference constraints, two communications cannot be established on e and f simultaneously using the same resource r ∈ R if e is close to f . We denote by K the set of traffic demands to be routed and S the set of service types. Every demand k ∈ K is defined by an origin node o k ∈ V , a destination node d k ∈ V and a requested service s k . Moreover, every k ∈ K has an associated cost µ e s k to use arc e ∈ A and a traffic vector a s k = (a The Domain Creation (DC) Problem consists in finding a minimum cost allocation of the radio resources in R to the active arcs of G so as to provide a feasible routing path for each demand. In particular, a routing p k = {(o k , u), . . . , (v, d k )} for a demand k is said to be feasible if

• all the arcs of p k have a SINR value above the quality threshold β k required by the demand k and, • all the nodes in p k have enough capacity to satisfy the resource requirements of k. An instance of the problem, with fives devices and one BS, is illustrated in Figure 1. For sake of clarity, each pair of arcs between two nodes is represented by an edge. The edges representing D2D links are shown in solid lines while edges representing device to BS links are in dashed lines. Two different services, namely gaming and video streaming, and three demands per service are to be delivered:{(u 1 ,u 3 ), (u 2 ,u 5 ), (u 4 , u 2 )} and {(u 4 , u 3 ), (u 3 , u 1 ), (u 5 , u 2 )}, assuming that twelve radio resources {r 1 , . . . , r 12 }, are available. A feasible solution is represented in Figure 2. The figure on the left side represents the Gaming domain, where all three demands are satisfied through D2D links. The figure on the right side is the Video streaming domain, where just one demand uses the BS. Note that, using the legacy approach, all demands must pass through the BS, using one uplink (from UE origin to BS) and one downlink (from the BS to UE destination) for each demand. Since all active links share at least one arc extremity (BS), the solution would require all the available resources (a different one for each active link) to avoid interference. Thus, using D2D communications allow here to save 50% of radio resources compared to a "fully cellular" solution. 

ILP formulation

In this section, we propose a compact ILP formulation for the DC problem followed by some valid inequalities to be used in a branch-and-cut algorithm.

Notations and formulation.

The three types of binary variables are:

• x k
er , e ∈ A, k ∈ K, r ∈ R that takes the value 1 if the arc e is used by the demand k and with the resource r , 0 otherwise.

• y k i , i ∈ V ∪ U , k ∈ K, that
takes the value 1 if the node i is used by the demand k, 0 otherwise. • z r , r ∈ R that takes the value 1 if the resource r ∈ R is assigned with at least one arc, 0 otherwise.

Then, the DC problem can be formulated as:

min k ∈K e ∈A r ∈R µ s k e x k er + r ∈R ψz r (1) s.t. 
e ∈δ -(u) r ∈R

x k er -

e ∈δ + (u) r ∈R x k er =        1, if u = d k , -1, if u = o k , 0, otherwise, ∀k ∈ K, ∀u ∈ U ∪ V , (2) 
x k er β k ≤ SI N R e ∀ k ∈ K, ∀ e ∈ A, ∀ r ∈ R, (3) 
k ∈K \T (i)

y k i a s k m ≤ c i m ∀ i ∈ V , ∀ m ∈ C d , (4) 2x k er -y k i -y k j ≤ 0 ∀k ∈ K, ∀r ∈ R∀(i, j) = e ∈ A, (5) 
x k er + x k ′ f r ≤ z r ∀r ∈ R, ∀k, k ′ ∈ K, ∀e ∈ A, ∀f ∈ D(e), (6) 
x k er ∈ {0, 1} ∀k ∈ K, ∀e ∈ A, ∀r ∈ R, (7) 
y k i ∈ {0, 1} ∀k ∈ K, ∀i ∈ V , (8) 
z r ∈ {0, 1} ∀r ∈ R. (9) 
This formulation has a polynomial number of variables and constraints. The objective (1) is to minimize the total costs composed of non-negative routing and radio resource utilization costs. The first set of inequalities (2) are the flow conservation constraints. They ensure that each demand is routed along a unique path between its origin node and its destination node. Note that such a routing path can either span arcs corresponding to D2D links or use a node of U corresponding to some BS. Inequalities (3) guarantee that a demand for a given service is routed along edges whose SINR satisfies the quality threshold required by this service. (4) express the capacity constraints in every node for the different types of hardware resources, with T (i) being the set of demands k ∈ K that have i ∈ V as origin or destination. These capacity constraints are needed only on intermediate nodes, that is, the nodes that are not the origin nor the destination of a given demand k ∈ K. Inequalities (5) are linking constraints and inequalities [START_REF] Jaumard | ILP Formulations for the Routing and Wavelength Assignment Problem: Symmetric Systems[END_REF] guarantee that the same radio resource is not assigned to different edges unless they are distant enough, where D(e) is a set of arcs that are close to a given arc e ∈ A. Note that, as the objective is to minimize the resources, in any optimal solution one radio resource at most will be allocated to the same arc for a given demand. Finally, (7)-( 9) are the integrity constraints.

The ILP formulation (1)-( 9) can be strengthened by replacing inequalities (3) by:

x k er ⩽ ⌊ SI N R e β k ⌋, ∀k ∈ K, e ∈ A, r ∈ R. (10) 
2.2.2 Symmetry. Due to the inherent symmetry of this problem, there is possibly a large number of feasible solutions. The breaking symmetry constraints [START_REF] Ozdaglar | Routing and Wavelength Assignment in Optical Networks[END_REF] are inspired by classical inequalities in combinatorial optimization (see [START_REF] Margot | Symmetry in Integer Linear Programming[END_REF]), and can help in reducing the number of symmetric solutions in the formulation.

z r ⩾ z r +1 , ∀1 ⩽ r ⩽ |R| -1, (11) 
(11) allow to assign the radio resources in an ordered way, forbidding to use a resource r + 1 if r is available. Note that a vector (x, y, z) ∈ {(x, y, z) ∈ {0, 1} (m×|R |+n)×|K |+ |R | : (x, y, z) satisfies ( 2)-( 11)} is clearly a feasible solution to the DC problem.

Valid inequalities.

We introduce now two more classes of inequalities valid for the DC problem.

(i) Clique-based inequalities: Given an instance of DC problem, we define the conflict graph associated with a node u ∈ V as follows. For each capacity type

m ∈ C d , let H m u = (V m u , E m u )
be the undirected graph obtained from the set of demands K as follows. A node v k in V m u is associated with every demand k ∈ K and there exists an edge

v k v l ∈ E m u between two nodes v k , v l of V m u if a s k m + a s l m > c u m .
In other words, an edge in H m u exists if two demands cannot be packed together in the node u due to the lack of capacity for the resource type m. Consequently, a clique in the graph H m u corresponds to a set of demands that cannot use simultaneously the node u. Hence, we denote by C H the set of cliques in the graph H m u .

Proposition 2.1. Let u be a node of V and m ∈ C d be a physical resource type. Then the following inequalities

k ∈ C y k u ⩽ 1, ∀C ∈ C H (12) 
are valid for the DC problem.

Proof. Let C be a clique in H m u . It is clear that if two demands k 1 , k 2 from clique C use the resource m of node u, the capacity constraint (4) for the resource m will be violated. In other words, each edge v k i v k j of the clique C represents an infeasible packing of the demands k i , k j in the node u. □

(ii) Strengthened neighborhood inequalities: The second family of valid inequalities strengthen constraints [START_REF] Jaumard | ILP Formulations for the Routing and Wavelength Assignment Problem: Symmetric Systems[END_REF]. They are obtained by considering the interference graph N = (V N , E N ) defined as follows. Every node u ∈ V N corresponds to an arc in A and two nodes u e , u f of V N (associated respectively with the arcs e and f from A) are interconnected by an edge if e and f are close enough from each other (ie if d(e, f ) ⩽ D). Consequently, a clique in the graph N corresponds to a subset of arcs in A that are pairwise close, and cannot receive the same radio resource due to interference constraints. Likewise in the conflict graph defined before, we denote by C N the set of cliques in the graph N .

Proposition 2.2. The following inequalities

k ∈K e ∈ C x k er ⩽ z r , ∀r ∈ R, C ⊆ C N ( 13 
)
are valid for the DC problem.

Proof. Let C be a clique in N and u e , u f two nodes of V N that belong to clique C. Clearly, if e and f are allocated the same resource r ∈ R in a solution, then it cannot be feasible for the DC problem.

□

Note similar inequalities are used in [START_REF] Aardal | A branch-andcut algorithm for the frequency assignment problem[END_REF] and [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF] for the Frequency Assignment Problem.

BRANCH-AND-CUT ALGORITHM 3.1 Overview of the algorithm

We have developed a branch-and-cut algorithm for the DC problem based on the results presented in Section 2. The algorithm has been implemented in C++ using CPLEX 12.6 as a LP solver, with presolve heuristics and internal cuts being disabled. We have tested our approach

• first by solving formulation (1)-( 9) along with the strengthened SINR inequalities [START_REF] Nemhauser | A Strong Cutting Plane/Branchand-Bound Algorithm for Node Packing[END_REF] and symmetry breaking [START_REF] Ozdaglar | Routing and Wavelength Assignment in Optical Networks[END_REF] inequalities and • by further using the clique-based [START_REF]An algorithm for finding shortest routes from all source nodes to a given destination in general networks[END_REF] and strenghthened neighborhood (13) valid inequalities, in addition to the formulation (1)-( 9). We have used two heuristic procedures to generate dynamically inequalities ( 12) and [START_REF] Zulhasnine | Efficient resource allocation for device-to-device communication underlaying LTE network[END_REF]. Both separation routines rely on a greedy algorithm introduced in [START_REF] Nemhauser | A Strong Cutting Plane/Branchand-Bound Algorithm for Node Packing[END_REF] for the Independent Set problem, that finds a clique in the conflict graph (respectively the interference graph) with appropriate weights on the nodes. We then add the corresponding violated clique-based (respectively strenghthened neighborhood) inequalities, if any, to the current LP. Both classes of valid inequalities are separated throughout the branch-and-cut tree and several inequalities may be added at each iteration of the algorithm.

Computational results

We present below some early experiments obtained for a set of small instances containing 5 to 15 nodes and up to 7 demands. For these tests, each scenario contains only 1 antenna and 2 service domains. For each instance, realistic data was provided by Orange, including the network topologies and SINR values. Table 1 shows the impact of inequalities ( 10) and ( 11) on the initial model (formulation (1)-( 9)). In the first column, the name of each instance refers to the number of users (U#) and demands (D#). The next four columns show the computational time (in seconds) for the initial formulation, then when adding symmetry breaking constraints [START_REF] Ozdaglar | Routing and Wavelength Assignment in Optical Networks[END_REF], strenghthened SINR constraints [START_REF] Nemhauser | A Strong Cutting Plane/Branchand-Bound Algorithm for Node Packing[END_REF] and both constraints, respectively. We can notice that using constraints [START_REF] Ozdaglar | Routing and Wavelength Assignment in Optical Networks[END_REF] allows to obtain the best execution time for two out of five instances tested (U 5_D8 and U 10_D5) while the instances U 5_D6 and U 10_D7 have the lower runtime when applying constraints [START_REF] Nemhauser | A Strong Cutting Plane/Branchand-Bound Algorithm for Node Packing[END_REF] and [START_REF] Ozdaglar | Routing and Wavelength Assignment in Optical Networks[END_REF], combined. For instance U 15_D7, the optimal solution could not be found after 3 hours of execution. We have tested the impact of using our valid inequalities and compared the results to CPLEX branch-and-bound for the strengthened model (formulation (1)-( 2) + ( 4)-( 11)). Table 2 shows the results obtained on five instances (same as in Table 1) when (i) no additional cuts are used, (ii) using strenghthened neighborhood inequalities [START_REF] Zulhasnine | Efficient resource allocation for device-to-device communication underlaying LTE network[END_REF] in addition to formulation (1)-( 9), (iii) using clique-based inequalities [START_REF]An algorithm for finding shortest routes from all source nodes to a given destination in general networks[END_REF] in addition to strengthened model and (iv) both cuts are used in the branch-and-cut. We can observe that the gap at root node is substantially reduced when adding cuts (the gap value decreases from 59.65% to 23.58% for instance U 5_D8 when using strenghthened neighborhood cuts) and so for the size of the branch-and-cut tree (for instance U 10_D5, we range from 1327 nodes without cuts to 84 nodes when both cuts are used).

Overall, the strenghthened neighborhood cuts are more efficient in reinforcing the strengthened model.

TWO-PHASE HEURISTIC

Since solving the initial formulation has impractical runtime even for small instances, we propose a solving method based on a decomposition of DC problem into two subproblems: the routing subproblem and the resource allocation subproblem, that are to be solved separately. The objective of the first subproblem is to find an elementary path for each demand while minimizing the total link utilization costs. Then, the second subproblem provides a resource allocation to each active link obtained from the routing subproblem solution.

Routing subproblem

We propose two formulations for the routing subproblem: a compact formulation obtained by relaxing the resource assignment constraints ( 6) from ( 1)-( 9), and a path reformulation.

Compact formulation.

This formulation is the compact formulation obtained by relaxing the resource allocation constraints ( 6) from the formulation (1)-( 9). The returned solution is a set of elementary paths for each request, respecting the capacities of the nodes along the paths. Two kinds of binary variables remains in the formulation : x k e that takes value 1 if the link e ∈ A is used by the request k ∈ K and the variables y i k . The objective is to minimize the total cost of active links:

min k ∈K e ∈E µ s k e x k e ( 14 
)
Solving approach: The linear relaxation of this formulation is strengthened replacing (5) by:

x k e -y k i ≤ 0 ∀ k ∈ K, ∀ (i, j) = e ∈ E, (15) 
x k e -y k j ≤ 0

∀ k ∈ K, ∀ (i, j) = e ∈ E. (16) 
and adding the following inequalities:

y k i (a s k m -c i m ) ≤ 0 ∀ i ∈ V , ∀ m ∈ C d , ∀ k ∈ K\T (i). ( 17 
)
The linear relaxation of this strengthened subproblem is solved using CPLEX. Then, a heuristic procedure is used to get a feasible integer solution. This approach is summarized in Algorithm 1. First, the linear relaxation is solved to optimality. Then, variables having an integer optimal value are fixed by updating the right hand side of the constraints (step 5). Finally, this residual ILP formulation is solved to optimality using CPLEX, giving rise to an integer solution for the whole problem.

Step 11 is the rounding procedure on solution found by step 1. This heuristic is particularly efficient for this problem since most of the optimal variable values of the linear relaxation are integer.

Path formulation.

The second formulation is a path formulation. We assume that all feasible paths P k have been previously generated for each demand k. Thus, we define new binary variables x k p that take value 1 if the path p ∈ P k is used by the demand k ∈ K, 0 otherwise. The objective now is to minimize the sum of the active path weights:

min k ∈K p ∈P k µ s k p x k p (18)
where µ s k p is the cost of path p ∈ P k , defined as the sum of the weights on the arcs of p. Let α e p , respectively γ i p , be an indicator parameter with value 1 if the arc e, respectively the node i, is in the path p. The constraints of the path formulation are:

p ∈P k x k p = 1 ∀ k ∈ K, (19) 
α e p x k p β s k ≤ sinr e ∀ k ∈ K, e ∈ A, ∀ p ∈ P k , (20) 
k ∈K \T (i) p ∈P k γ i p x k p a s k m ≤ c i m ∀ i ∈ V , ∀ m ∈ C d , (21) 
x k p ∈ {0, 1} ∀ k ∈ K, ∀ p ∈ P k . (22) 
Constraints (19) assure that each demand uses one path. Constraints (20) are the SINR constraints, and (21) are the capacity constraints.

Solving approach: This formulation, restricted to a subset of paths, is solved to optimality using CPLEX. The subsets of paths are generated thanks to the algorithm proposed by Yen [START_REF]An algorithm for finding shortest routes from all source nodes to a given destination in general networks[END_REF]. This algorithm returns the K-shortest loopless paths for a graph with non-negative edge costs. It uses a shortest path algorithm as an intermediary to construct the whole solution. In our context, we use Dijkstra's algorithm [START_REF] Edsger | A note on two problems in connexion with graphs[END_REF], which has a good performance and a polynomial complexity. Using Yen's algorithm gives a guarantee to generate all the feasible paths due to the characteristics of our use case: for each demand, once a path uses the base station we are sure that all the feasible D2D paths have already been generated, then the path generation is stopped. This feature is due to greater weights on BS arcs. The difference between the weights of the BS links and the D2D ones plays an important role in the construction of the paths subsets: the greater this difference is, the longer it could be to obtain all the paths that use only D2D communication. Finally, to reduce the size of the formulation, a pre-processing on the SINR constraints is operated before solving both routing formulations: only the valid SINR links constraints are kept in the formulation.

Resource Allocation subproblem

The resource allocation subproblem consists in allocating the radio resources to each active link provided by the solution of the first subproblem.

4.2.1 Solving approach. Let G a (V a , E a ) be a graph where each vertex in the set V a represents an active link, that is, a link used by at least one path of the routing problem solution (steps 2-5 in Algorithm 2). An edge e ∈ E a is associated with a pair of vertices if the corresponding active links cannot share the same radio resource due to interference (steps 6-12). The objective is to assign a minimum number of colors (resources) to the vertices of the graph G a , in such a way there is no adjacent vertices with the same color (step 14). This falls into a classical Vertex Coloring Problem [START_REF] Malaguti | A survey on vertex coloring problems[END_REF]. The proposed heuristic has as input the initial graph Algorithm 2 Resource Allocation subproblem 1: Set V a and E a to empty sets 2: for each activated link e ∈ A do Set V a : V a ∪ auxV er t ex 5: end for 6: for each pair (u, v) ∈ V a do 7:

if dist (u, v) ≤ cr it er ia then 8:

Set Link aux Link .ex t r emity1 ←-u 9:

Set Link aux Link .ex t r emity2 ←-v 10:

Set E a : E a ∪ aux Link 11:

end if 12: end for 13: Set graph G a (V a , E a ) 14: Coloring (G a ) 15: Return Resource Assignment of the problem, the values of the routing solutions and a criteria value which represents the minimum distance for a pair of links to have the same resource. This value was fixed to D = 100 meters so as to be representative of realistic use cases. Hence, for dist() method, we calculate the distance between the opposite ends of the pair of links, that is, the origin of one with the destination of the other. The method returns zero for adjacent links. Finally, to find the coloring of the graph G a (that is, allocate the resources to each active link) we use the Colorinд() method which is the implementation of a classical greedy algorithm [START_REF] David W Matula | Graph coloring algorithms[END_REF] for Vertex Coloring Problem. It is well known that the performance of this greedy algorithm is sensitive to the order of choice of the next vertex to be colored. For this reason, we randomly generate a large number of orders and choose the one that returns the minimum amount of colors. A lower bound value for the optimal solution is given by solving the associated Max-clique problem. For this purpose use the method proposed by [START_REF] Depolli | Exact parallel maximum clique algorithm for general and protein graphs[END_REF], which is an exact approach using parallel programming.

Experiments and comparative results

The experiment conditions are the same as in section 3. We generated new instances, with 6 service domains available and the total amount of UEs is evenly divided between 7 core cells with one antenna installed on each one. 3. The first column of the Compact Formulation part is the percentage of active variables that are not integers in the optimal LP solution. We note that it is always less than 6%. The second column is the gap between the solution found by the relaxation and the final solution found by the LP-based heuristic. The average gap is 2.30% with standard deviation equals to 3.85%. Finally, the third column is the total run time in seconds (pre-processing, relaxed solution and LP-based heuristic). In the second part of table 3, the pre-processing and solver run times of the path formulation are presented. The average number of paths generated in pre-processing is equal to 5.26 for each demand (with standard deviation equals to 2.39). Most of the runtime of the compact formulation based approach was spent in solving the linear relaxation of the problem. Given the very low number of fractional variables in the relaxed solution, the last IP on the residual formulation is quickly solved. It is also worth noticing that the pre-processing in path formulation is the most important step, since it is responsible for most of the solving time for all instances. However, its performance is relatively better than for the compact formulation, being on average 1.30 times faster. It is important to mention that the gap between the two formulations was always less than 0.50%. 4 shows the results for the resource allocation subproblem, where the Preprocessing column represents the time needed to transform the solution from the previous subproblem into a classic graph and find its max-clique. We can observe that even though they are extremely large graphs, the time needed to find the final solution is relatively short. This is due to the characteristics of the topology constructed from the assumptions and hypotheses previously presented. Generated graphs have an average density equals to 64.05% -standard deviation equals to 1.98%. Another important result emphases is that in all cases, we have found the optimal solution, proven by the lower bound value previously calculated by the exact max-clique algorithm (last column).

CONCLUDING REMARKS

In this paper, we have studied the Domain Creation problem, that is a routing and resource assignment problem arising in future 5G networks. We have proposed two algorithms: exact and heuristic, to solve it. The exact approach is based on a node-arc ILP formulation enhanced by two families of valid inequalities that are used within a branch-and-cut framework. The preliminary results show a significant impact of the cuts in strenghthening the LP relaxation and reducing the computation time. We expect that adding further classes of cuts and performing an analysis to find out the specificities of difficult instances (regardless of their size) will allow to solve even larger instances. A natural question would be to consider a non-compact formulation, based on path variables and propose a column generation based algorithm to solve it. On an other hand, our experiments show that the heuristic approach performs well, even on large instances with up to 2100 devices and 1500 service requests on 7-cell networks. It would be interesting and most probably very powerful to use it as a primal heuristic to boost efficiency of an exact algorithm. On a practical note, a tough but interesting extension is to include users mobility or temporal aspect in radio resource assignment.
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 1 Figure 1: Example of a network with 6 nodes and 6 demands to be delivered for 2 different services

Figure 2 :

 2 Figure 2: Feasible solution: active links and associated radio resource for Gaming domain (left) and Video streaming domain (right)
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 31 Routing subproblem. The numerical tests of the routing subproblem are summarized in table

Table 1 :

 1 Runtime comparison (in seconds) with strengthening constraints

	Instances	Initial	Symmetry	SINR	Symmetry & SINR
	U5_D2	0,05	0,06	0,05	0,06
	U5_D6	187,18	11,55	77,18	10,71
	U5_D8	600,56	45,16	90,70	72,43
	U10_D5	1677,21	290,33	697,49	435,08
	U10_D7	8746.32	3569.18	4453.58	2967.45
	U15_D7	10800*	10800*	10800*	10800*

Table 2 :

 2 Solution quality comparison models with and without additional cuts

			Strengthened Formulation	Strengthened + Neighborhood cuts	Strengthened + Clique-based cuts	Strengthened + both cuts
	Instances	root gap (%)	runtime (s)	tree size	root gap (%)	runtime (s)	tree size	root gap (%)	runtime (s)	tree size	root gap (%)	runtime (s)	tree size
		U5_D2	0.00	0.05	1	0.00	0.06	1	0.00	0.06	1	0.00	0.05	1
		U5_D6	10.00	11.49	7	10.00	11.67	8	10.00	12.33	2	10.00	13.31	2
		U5_D8	59.65	154.65	470	23.58	130.69	291	33.71	389.01	1225	32.00	150	599
	U10_D5	57.89	677.21	1327	33.09	1370.90	190	48.23	1262.83	91	33.09	2265.83	84
	U10_D7	62.26	3236.61	1850	50.04	8654.21	2040	62.26	3251.99	1850	50.04	9648.12	2040
	U15_D7*	77.23	10800	58	72.37	10800	8	77.23	10800	70	72.37	10800	22
	Algorithm 1 LP-based Heuristic for the Routing subproblem						
	1: Solve LP (G, K)										
	2: Let FractionalDemands be the set of demands with associated optimal						
		fractional variables										
	3: for each demand k do									
	4:	if all associated variable have integer value then							
	5:	update the LP by decreasing used capacities on vertices tra-						
		versed by the associated paths									
	6:	else											
	7:	FractionalDemands : FractionalDemands ∪{k }							
	8:	end if										
	9: end for											
	10: Solve ILP (G,FractionalDemands)									
	11: Update solution										
	12: Return solution found									

Table 3 :

 3 Routing subproblem: numerical tests

		Compact formulation	Path Formulation
	Instances	Act Frac Var (%)	Gap (%)	Total Runtime (s)	Pre processing (s)	Solver (s)
	U700_D175	0.05	0.03	9.16	4.81	0.02
	U700_D350	1.92	1.1	13.92	9.5	0.02
	U700_D525	1.84	13	21.28	14.26	0.08
	U700_D700	0.87	0.04	26.72	19.22	0.13
	U1400_D350	5.22	0.02	46.83	27.48	0.8
	U1400_D700	3.37	3.6	77.7	55.68	0.26
	U1400_D1050	3.13	3.05	152.31	82.82	0.42
	U1400_D1400	1.79	0.49	143.78	110.81	0.60
	U2100_D525	5.56	0.02	143.28	81.28	0.23
	U2100_D1050	3.54	0.09	257.18	163.39	0.65
	U2100_D1575	2.15	3.86	242.84	230	0.8

Table 4 :

 4 Resource Allocation subproblem: numerical tests

	Instances	Pre-processing (s) Greedy (s) Gap (%)
	U700_D175	0.13	0.89	0
	U700_D350	0.53	1.81	0
	U700_D525	1.15	2.75	0
	U700_D700	2.12	3.89	0
	U1400_D350	0.54	1.74	0
	U1400_D700	2.34	3.76	0
	U1400_D1050	4.97	5.95	0
	U1400_D1400	7.06	6.97	0
	U2100_D525	1.32	2.07	0
	U2100_D1050	4.45	5.25	0
	U2100_D1575	11.21	9.51	0
	4.3.2 Resource allocation subproblem. Table	
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