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Abstract: A 13-week feeding trial was carried out with juvenile rainbow trout to test two diets:
a control diet without astaxanthin (AX) supplementation (CTRL diet), and a diet supplemented
with 100 mg/kg of synthetic AX (ASTA diet). During the last week of the feeding trial, fish were
exposed to episodic hyperoxia challenge for 8 consecutive hours per day. Episodic hyperoxia
induced physiological stress responses characterized by a significant increase in plasma cortisol and
hepatic glycogen and a decrease in plasma glucose levels. The decrease of plasma glucose and the
increase of hepatic glycogen content due to episodic hyperoxia were emphasized with the ASTA diet.
Hyperoxia led to an increase in thiobarbituric acid-reactive substances in the muscle, diminished
by dietary AX supplementation in both liver and muscle. Muscle and liver AX were increased
and decreased respectively after 7-day episodic hyperoxia, leading to an increase in flesh redness.
This augment of muscle AX could not be attributed to AX mobilization, since plasma AX was not
affected by hyperoxia. Moreover, hyperoxia decreased most of antioxidant enzyme activities in liver,
whereas dietary AX supplementation specifically increased glutathione reductase activity. A higher
mRNA level of hepatic glutathione reductase, thioredoxin reductase, and glutamate-cysteine ligase
in trout fed the ASTA diet suggests the role of AX in glutathione and thioredoxin recycling and in
de novo glutathione synthesis. Indeed, dietary AX supplementation improved the ratio between
reduced and oxidized glutathione (GSH/GSSG) in liver. In addition, the ASTA diet up-regulated
glucokinase and glucose-6-phosphate dehydrogenase mRNA level in the liver, signaling that dietary
AX supplementation may also stimulate the oxidative phase of the pentose phosphate pathway that
produces NADPH, which provides reducing power that counteracts oxidative stress. The present
results provide a broader understanding of the mechanisms by which dietary AX is involved in the
reduction of oxidative status.

Keywords: astaxanthin; episodic hyperoxia; liver; oxidative status; rainbow trout

1. Introduction

Farmed fish are continuously exposed to stressful conditions induced by physical, chemical,
and biological factors such as crowding, handling, changes in diets, and water quality, leading to
susceptibility to viral or bacterial infections. Challenging situations generate physiological alterations
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very much linked to oxidative stress, which is the result of an imbalance between the production of
reactive oxygen (ROS) and nitrogen species (RNS) by cell respiration and immune responses, and the
state of the antioxidant defenses [1]. In order to protect against oxidative stress, organisms have
developed antioxidant systems consisting of low-molecular-mass compounds including glutathione,
ascorbic and uric acid, tocopherols, and carotenoids, and high-molecular-mass proteins including
superoxide dismutases, catalases, Se-dependent glutathione peroxidases, glutathione reductase,
and glucose-6-phosphate dehydrogenase [2].

Carotenoids are natural pigments with immune-stimulant and antioxidant properties [3,4] and
are present in the integument of many vertebrate species, generating bright-colored traits [5] Among
carotenoids, astaxanthin (AX) is the most commonly used feed additive in order to achieve the
characteristic red-pink coloration in crustaceans and salmonids [6,7]. The red coloration of AX is due
to the extended chain of conjugated double-bonds at the center of its chemical structure. This chain,
including 13 double bonds, is also responsible for the potent antioxidant effect of AX, involved in
neutralizing singlet oxygen, scavenging superoxide anions, and hydroxyl radicals [8]. Moreover, it can
effectively scavenge lipid radicals and destroy peroxide chain reactions to protect polyunsaturated
fatty acids (PUFAs) and sensitive membranes [9].

Besides its role in pigmentation, a few studies have focused on the role of AX on fish health [10],
and to our knowledge not much work has been undertaken to assess the potential antioxidant function
of this xanthophyll. In rainbow trout, dietary AX enhanced plasma [11], liver, and kidney antioxidant
defense [12]. Similarly, in European seabass fry, dietary AX together with sodium taurocholate reduced
lipid peroxidation and increased total antioxidant status [13]. In juvenile olive flounder, plasma
superoxide dismutase (SOD) activity was lowered by dietary AX [14]. In the characin Hyphessobrycon
callistus, body SOD and glutathione peroxidase (GPX) activity were decreased by dietary carotenoids
(mix of AX and β-carotene) under normal feeding conditions and after an ammonia stress [15,16].
In the latter studies, significant negative correlations were found between body carotenoids (AX,
β-carotene) and antioxidant parameters such as SOD and GPX activity [15,16]. In common carp, on the
other hand, there was a positive correlation between dietary AX and tissue total antioxidant status
and SOD activity before and after ammonia stress [17]. Similarly to common carp, in wild brown
trout, intense carotenoid-based skin coloration was found to be closely linked to a high non-enzymatic
antioxidant capacity and high activity of hepatic SOD and catalase (CAT) [18].

Based on the hypothesis that dietary AX provides physiological benefits in terms of antioxidant
defense, the present study aims to evaluate the homeostatic and stress responses in the liver of this
species fed either a control diet (CTRL) or an astaxanthin-supplemented diet (ASTA), and exposed
to two environmental conditions, normoxia and episodic hyperoxia, as a stressor causing oxidative
stress. Daily oxygen fluctuations in aquaculture systems are quite common and have a more
pronounced effect than continuous hyperoxia [19], with compensation being achieved within 24 h [20].
Hence, an episodic hyperoxia regimen was tested in the present study for a period of one week.
In addition, as carotenoid-based traits may indicate an individual’s capacity to tackle oxidative stress [21],
we also assessed skin and flesh pigmentation as biomarkers of oxidative status in rainbow trout.

2. Material and Methods

2.1. Diets and Fish

Two iso-nitrogenous, iso-lipidic, and iso-caloric feeds were formulated, manufactured, and tested
at the INRA experimental fish farm in Donzacq (Landes, France) (Table 1). The experimental diets
differed in AX content as CTRL diet had no AX and the ASTA diet was supplemented with 100 mg of
chemically synthesized AX per kilogram of feed, a dietary level considered safe for salmonids according
to the European Food Safety Authority [22]. The synthetic AX used was Carophyll Pink® containing
10% AX (DSM Nutrition, Village-Neuf, France). All-female diploid rainbow trout (Oncorhynchus mykiss)
with an initial weight of 309 ± 10 g were used. Nine 800-L cylindrical fiberglass tanks were stocked
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with 30 fish each and supplied with flow-through spring water, at 17 ◦C. Each diet was hand-fed
twice a day to visual satiation. Prior to the feeding trial, fish were fed a commercial diet (T3P Omega
Skretting, Fontaine-les-Vervins, France). All experimental procedures complied with the European
Directive 010/63/EU for the protection of animals used for scientific purposes, and the French Decree
no. 2013-118 for animal experimentation.

Table 1. Formulation and composition of the experimental diets.

Diet CTRL ASTA

Norwegian herring meal a 23 23
Wheat gluten meal b 10 10

Soybean meal c 20 20
Rapeseed meal c 10 10

Fish oil a 19 19
Whole wheat meal c 11.8 11.8

Dibasic calcium phosphate 2 2
Soybean lecithin d 2 2
Vitamins premix e 1 1
Minerals premix f 1 1

Cellulose 0.2 0.1
Free astaxanthin g - 0.1

Proximate composition
Dry matter (DM, %) 97.4 97.3

Crude protein (% DM) 41.8 40.8
Total lipid (% DM) 23.7 22.9

Starch (% DM) 7.4 9.1
Ash (% DM) 9.6 9.2

Gross energy (kJ g−1 DM) 24.1 23.9
a Norse LT94, crude fish oil and Estrilvo from Sopropêche (Wimille, France). b Roquette (Lestrem, France).
c Sud-Ouest Aliment (Haut-Mauco, France). d Louis François (Croissy-Beaubourg, France). e Vitamin premix
(IU or g/kg premix): retinyl acetate, 500,000 IU; cholecalciferol, 250,000 IU; DL α-tocopheryl acetate, 5000 IU;
sodium menadione bisulfate, 1 g; thiamin-HCl, 0.1 g; riboflavin, 0.4 g; niacin, 1 g; d-calcium pantothenate, 2 g;
pyridoxine-HCl, 0.3 g; d-biotin, 20 mg; folic acid, 0.1 g; cyanocobalamin, 1 mg; l-ascorbyl-2-polyphosphate, 5 g;
myo-inositol, 30 g; choline, 100 g. All ingredients were diluted with α-cellulose. f Mineral mixture (g/kg premix):
CaHPO4·2H2O, 500; CaCO3, 215; MgO, 124; KCl,90; NaCl, 40; FeSO4·7H2O, 20; ZnSO4·7H2O, 4; MnSO4·H2O,
3; CuSO4·5H2O, 3; NaF, 1; KI, 0.04; Na2SeO3, 0.03; CoCl2·6H2O, 0.02. g Carophyll Pink 10% DSM. ASTA, diet
supplemented with 100 mg/kg of synthetic astaxanthin; CTRL, control diet without astaxanthin supplementation.

The experimental design is shown in Figure 1. This experiment was conducted for a total period
of 13 weeks. During the first 12 weeks of the growth trial, fish were fed on the CTRL or ASTA diet
and reared under normoxic conditions (8 mg/L). For the last week of the trial, fish continued with the
experimental diets and were exposed to an episodic hyperoxia challenge, termed 8H:16N. For episodic
hyperoxic conditions oxygen was increased from 8 to 13 mg/L (163%) and was established from 9:00 to
17:00 for 8 h (8H); afterwards, oxygen levels returned to normoxic conditions for 16 h (16N). A factorial
design (2 × 2) was performed to compare the effect of two distinct diets (CTRL and ASTA) and two
environmental conditions (normoxia and hyperoxia) on the studied variables. For growth performance
parameters such as weight gain, daily growth index, specific growth rate, and feed efficiency, only
dietary effect was assessed in normoxic conditions (N-CTRL versus N-ASTA), as the comparison
between two different periods of 12 weeks for the growth trial and only 1 week for the episodic
hyperoxia challenge was not considered appropriate. Similarly, the impact of episodic hyperoxia on
color variables and tissue AX content was assessed only for the ASTA group (N-ASTA versus H-ASTA),
as the comparison for non-colored fish was not considered appropriate.

At the end of the feeding trial and episodic hyperoxia challenge, ten fish per replicate tank were
individually weighed, measured, and sampled. Parameters of growth performance were assessed after
the feeding trial, only to check the status of fish prior to the start of the hyperoxia treatment. Before
sampling, fish were feed deprived for 1 day, anaesthetized with benzocaine, and killed with a blow to
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the head. For whole-body composition analysis, three fish per tank were randomly collected. The rest
of the fish were taken for plasma analyses (cortisol, glucose, triglycerides, and AX), skin and muscle
color measurements, and liver and viscera weights. Blood was collected from the caudal vein with
heparinized syringes. From the seven livers per tank, four were used for determination of AX and
thiobarbituric acid-reactive substance (TBARS) contents, whereas the remaining three were for gene
expression, glutathione, antioxidant enzyme, and glycogen analyses. Muscle samples were only taken
from four fish for AX and TBARS content. All tissues were immediately frozen in liquid nitrogen and
then stored at −80 ◦C until analyses.
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Figure 1. Experimental design. Rainbow trout were fed on a CTRL or ASTA diet during 12 weeks and
reared under normoxic conditions. For the last week of the trial, fish were fed the same experimental
diets and exposed to an episodic hyperoxia challenge for 8 h and 16 h under normoxia conditions,
termed 8H:16N. AX, astaxanthin.

2.2. Proximate Composition

Proximate compositions of diets and whole fish were determined according to the following
procedures: Dry matter (DM) after drying at 105 ◦C for 24 h, protein (Nx6.25) by the Kjeldahl
method after acid digestion, ash by incineration at 550 ◦C for 16 h, and gross energy in an
adiabatic bomb calorimeter. Total lipid was extracted and measured gravimetrically [23] using
dichloromethane instead of chloroform. Starch content was determined as glucose by a kit, using the
amyloglucosidase/hexokinase/glucose-6-phosphate dehydrogenase method (Invivo Labs, France).

2.3. Plasma Cortisol, Glucose, and Triglycerides, and Hepatic Glycogen Determination

Blood samples were collected via caudal vein puncture on anesthetized fish and centrifuged
at 3000× g for 15 min to isolate plasma that was stored at −80 ◦C. For plasma cortisol levels,
the immunoassay Access Immunoassays System, Cortisol (ref 33600,©2010 Beckman Coulter, Inc.,
Indianapolis, IN, USA) was used. The rabbit anti-cortisol antibody and cortisol–HRP conjugate
(Fitzgerald Industries International, Concord, MA, USA) were used at a final dilution of 1:25,000
and 1:4000 in coating buffer and EIA Buffer, respectively. Plasma glucose levels were analyzed using
an Accu-Chek Advantage glucose meter (Roche, Basel, Switzerland). Plasma triglycerides were
determined using the Beckman Coulter AU System Triglyceride procedure based on a series of coupled
enzymatic reactions. Hepatic glycogen was determined by a hydrolysis technique [24]. Briefly, each
sample was ground in 1 M HCl (VWR, Fontenay-sous-Bois, France). An aliquot was neutralized by
5 M KOH (VWR) and centrifuged 10 min at 10,000× g at 4 ◦C to measure free glucose content in
samples using Plasma glucose kit (Glucose RTU, BioMérieux, Marcy-l’Etoile, France) according to
the manufacturer’s instructions. Remaining ground tissue was boiled at 100 ◦C for 2.5 h and then
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analyzed for total glucose (free glucose + glucose obtained from glycogen hydrolysis) using the same
protocol as for the aliquot. Glycogen content was evaluated by subtracting free glucose levels.

2.4. Skin and Muscle Color Analysis

Skin color was measured on the left side of the fish and three zones were fixed along the lateral line.
For muscle color, a left side fillet was taken and also three zones were established along the central part.
From skin and muscle, triplicate measurements were taken at each zone using a tri-stimulus colorimeter
CR 400 Minolta. The color measurements taken were in accordance with the recommendations of
the International Commission on Illumination [25]: the L*-value represents lightness (L* = 0 for
black, L* = 100 for white), the a*-value represents the intensity in red and the b*-value represents the
intensity in yellow. A mean from the three zones recorded in skin and muscle were used for color
analysis. For correlation analysis the a*-value was chosen since this variable is the most associated
with astaxanthin content.

2.5. Astaxanthin Extraction and Quantification

The procedure for AX extraction used was as per [26] Briefly, 100 µL of plasma and approximately
50 mg of minced liver and muscle were weighed into Eppendorf tubes. Afterwards, 200 µL of distilled
water and 150 µL of ethanol were added. Mixtures were flushed with nitrogen, sonicated for 1 min and
vortexed for 5 min. The mixture was then extracted twice with 1 mL of hexane using vortex mixing
for 15 min each time. Hexane phases were recovered after centrifuging for 5 min at 2500× g (4 ◦C),
combined and evaporated to dryness with a nitrogen flow. The mixture was immediately re-dissolved
in adequate volume of chromatographic phase and filtered through a 0.45 µm filter into amber glass
vials under nitrogen prior to HPLC injection. AX quantification in liver, muscle, and plasma was
carried out according to the method of [27]. An Agilent 1260 Infinity II system equipped with a diode
array detector (DAD) and a 150 × 4.60 mm reverse phase C18 Thermo column were used. The mobile
phase was 80% MeOH/H2O (9:1) and 20% ethyl acetate, at a flow rate of 1.0 mL min−1; the injection
volume was 10 µL, and the effluent from the column was monitored at a wavelength of 472 nm.
Astaxanthin was quantified by an external standard method using a standard curve generated with
authentic crystalline astaxanthin (Sigma-Aldrich, Madrid, Spain).

2.6. Thiobarbituric Acid Reactive Substances

TBARS were determined according to the protocol of [28] with some modifications. Briefly, 50 µL
of 1% (w/v) butylated hydroxytoluene in ethanol were added to 500 mg of tissue followed by 1.5 mL of
20% (w/v) trichloroacetic acid and 2.95 mL of 50 mM thiobarbituric acid solution, both freshly prepared.
The reagents were mixed in a stoppered test tube and heated at 100 ◦C for 25 min. After cooling,
particulate matter was removed by centrifugation at 2000× g (4 ◦C). Absorbance in the supernatant was
determined in a spectrophotometer at 532nm against a blank sample. The concentration of thiobarbituric
acid reactive substances (TBARS), expressed as mmol malondialdehyde/g tissue, was calculated using
the absorption coefficient of 0.156 µM−1

× cm−1.

2.7. Liver Antioxidant Enzyme Activity

Antioxidant enzyme activities were assayed in liver as described previously [29]. Briefly,
superoxide dismutase (SOD, EC 1.15.1.1) activity was measured at 37 ◦C by monitoring the inhibition
of nitrotetrazolium reduction at 550 nm. Catalase (CAT, EC 1.11.1.6) activity was measured at 30 ◦C
by monitoring the decomposition of H2O2 at 240 nm. Glutathione peroxidase (GPX, EC 1.11.1.9)
activity was assayed at 30 ◦C by the coupled reaction with glutathione reductase (GR) using cumene
hydroperoxide and H2O2 as substrates for measuring total GPX, selenium-dependent GPX (Se-GPX)
and non-selenium-dependent GPX (NS-GPX) respectively. GR (EC 1.6.4.2) activity was determined at
30 ◦C by monitoring NADPH oxidation at 340 nm. Glutathione-S-transferase (GST, EC 2.5.1.18) activity
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was assayed at 30 ◦C by following the conjugation of glutathione with 1-chloro-2,4-dinitrobenzene at
340 nm.

2.8. Liver Glutathione

Total glutathione (tGSH) and oxidized glutathione (GSSG) were measured in liver using Cayman
glutathione assay kit (Bertin Pharma, Montigny-le-Bretonneux, France) according to the manufacturer’s
instructions with protein concentration assessed by the method of [30] using bovine serum albumin as
a standard. Reduced glutathione (GSH) was calculated as tGSH-GSSG and oxidative stress index (OSI)
as 100 × (2GSSG/tGSH).

2.9. Gene Expression Assays

Total RNA was isolated from liver by using Trizol reagent (Invitrogen, Cergy-Pontoise, France).
Quantitative RT-PCR was performed as described previously [31]. Briefly, complementary DNA was
generated from 1 mg total RNA using SuperScriptIII RT (Invitrogen) and a mix of oligo (dT)15 and
random primers (Promega, Charbonnières, France). Quantitative PCR analyses were performed with
2 µL of the diluted RT reaction mixture (dilution 40) and 4 µL of master mix added with 0.4 mM of each
primer (Table 2). Relative quantification of target gene transcripts were performed using elongation
factor 1α (ef1α) as the reference gene and N-CTRL as the reference group using the ∆∆Ct method [32].

Table 2. Sequences of the PCR primers used to assay gene expression by real-time quantitative
polymerase chain reaction.

Gene Accession Number Forward Primer Sequence Reverse Primer Sequence Amplicon Size

sod1 AF469663.1 tggtcctgtgaagctgattg ttgtcagctcctgcagtcac 201
sod2 CA352127.1 tccctgacctgacctacgac ggcctcctccattaaacctc 201
cat BX087110.3 tgatgtcacacaggtgcgta gtgggctcagtgttgttgag 195

gpx1a HE687021.1 aatgtggcgtcactctgagg caattctcctgatggccaaa 131
gpx4b CA344428.1 ttggaggtcaggagccaggt accctttcccttgggctgtt 152

gr HF969248.1 ctaagcgcagcgtcatagtg acacccctgtctgacgacat 108
gclc GSONMT00065033001 caaccaactggcagacaatg cctttgacaaggggatgaga 189
gstπ BX302932.3 tcgctgactggacgaaagga cgaaggtcctcaacgccatc 196

tr HF969247.1 acaaaatcaaggcgaccaac ggcagagagaacaggtcgtc 148
sepp1 EE605178 gcccaaacaggaagatgtgt gggcagggagatatggtagg 100
nrf2 CA360709.1 tgagctgcagcaatgtctga gttgggcaatgggtagaagc 124

keap1α GSONMT00034445001 gctacgtgatgtctgcccct ggtacctcatagcggccagt 116
nfκb BX880658.3 cagcgtcctaccaggctaaagagat gctgttcgatccatccgcactat 181
iκbα BT074199.1 agagacagactgcgctccac cggccttcagtagcctctct 72
g6pd EF551311.1 ctcatggtcctcaggtttg agagagcatctggagcaagt 177
gcka GSONMT00033781001 ctgcccacctacgtctgt gtcatggcgtcctcagagat 174
gckb GSONMT00012878001 tctgtgctagagacagccc cattttgacgctggactcct 150

pgm1X1 GSONMT00077832001 gaagagagtttcggcacagg cctccacactctgcttcctc 106
pgm1X2 GSONMT00077952001 aaagcatggcttcttcgtca tggacaatgtggctaaagcc 148
pgm1X3 GSONMT00016899001 tgatggtgacggtgatcgta ggctttagccacattgtcca 181
g6pcb1 GSONMG00066036001 a agggacagttcgaaaatggag ccagagagggaagaagatgaag 138
g6pcb2 GSONMG00013076001 b cctgcggaacaccttctttg tcaatttgtggcgctgatgag 195

ef1α AF498320.1 tcctcttggtcgtttcgctg acccgagggacatcctgtg 159

sod, superoxide dismutase; cat, catalase; gpx, glutathione peroxidase; gr, glutathione reductase; gclc,
glutamate-cysteine ligase catalytic subunit; gstπ, glutathione S-transferase π; tr, thioredoxin reductase; sepp1,
selenoprotein 1; nrf2, nuclear factor erythroid-2 related factor 2; keap1, Kelch-like ECH-associated protein
1; nfκb, nuclear factor kappa-light chain-enhancer of activated B cells; iκbα, nuclear factor kappa-light
chain-enhancer of activated B cells inhibitor α; g6pd, glucose 6 phosphate dehydrogenase; gck, glucokinase; pgm1,
phosphoglucomutase1; g6pc, glucose 6 phosphatase; EF1α, elongation factor 1α. a and also GSONMG00076841001.
b and also GSONMG00014864001.

2.10. Statistical Analysis

All the data were presented as means with their standard errors. The number of fish measured for
each parameter is specified in tables and figures. Data were tested for normality and homogeneity of the
variances with Levene’s test. Two-way ANOVA was used to determine the main effect of the diet factor
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(D), the environment factor (E), and their interaction (DxE). One-way ANOVA was used for growth
performance parameters, color evaluation and tissue AX content, followed by a Student-Newman-Keuls
test. Significant differences were accepted at p ≤ 0.05. The Pearson correlation coefficient was calculated
to analyze the significance of linear relationships between skin and muscle redness (a*) and the
studied variables. Correlations with p ≤ 0.05 were considered significant. All statistical analyses were
performed using SPSS (IBM, Chicago, IL, USA).

3. Results

3.1. Growth and Whole Body Composition

At the end of the 12-week feeding trial there was no significant effect of the CTRL and ASTA diet
on growth performance parameters or whole body composition (Table 3). No mortality was recorded
throughout the feeding trial and the 7-day episodic hyperoxia challenge.

Table 3. Growth performance and final whole-body composition of CTRL and ASTA-fed rainbow trout
during 12 weeks under normoxic conditions.

Environment Normoxia

Diet CTRL ASTA

Final weight (g) 848 ± 50 872 ± 50
DGI a 3.2 ± 0.2 3.3 ± 0.2
SGR b 1.2 ± 0.1 1.2 ± 0.1
VSI c 14.9 ± 1.2 11.4 ± 1.2
HSI d 1.3 ± 0.1 1.0 ± 0.1
CF e 1.9 ± 0.0 1.9 ± 0.0

FCR f 1.1 ± 0.1 1.1 ± 0.1
Whole-body composition

DM (%) 36.0 ± 0.6 36.6 ± 0.3
Crude protein (%) 17.1 ± 0.2 16.6 ± 0.1

Total lipid (%) 16.9 ± 0.7 17.7 ± 0.1
Ash (%) 1.9 ± 0.1 2.0 ± 0.1

Values are presented as means ± SEM. Different superscript letters within a row denote significant differences among
treatments determined by two-way ANOVA (p < 0.05). * p < 0.05; *** p < 0.001. a DGI, daily growth index = 100 ×
((final mean body weight)1/3

− (initial mean body weight)1/3)/duration; b SGR, specific growth rate = 100 × ((Ln
final mean body weight) − (Ln initial mean body weight))/duration c VSI, viscerosomatic index = (viscera weight,
g/weight of fish, g) × 100; d HSI, hepato-somatic index = (liver weight, g/weight of fish, g) × 100; e CF, condition
factor = (weight of fish, g)/(length of fish, cm)3; f FCR, feed conversation ratio = dry feed intake/wet weight gain.

3.2. Skin and Muscle Color and Liver and Muscle Astaxanthin (AX)

Dietary AX supplementation led to significantly increased skin redness under both normoxia and
hyperoxia conditions (Table 4). No significant effect of episodic hyperoxia (N-ASTA versus H-ASTA)
was observed in either of the skin color variables. Muscle redness and yellowness were significantly
higher in trout fed the ASTA diet under both normoxic and hyperoxic conditions (Table 4). Moreover,
episodic hyperoxia (N-ASTA versus H-ASTA) also exerted an increasing effect on these muscle color
variables. Muscle lightness was influenced by the diet, with trout fed the ASTA diet having a low
value under both normoxic and hyperoxic conditions (Table 4).

Rainbow trout fed the ASTA diet had significantly increased muscle, liver and plasma AX content,
under both normoxia and hyperoxia conditions (Table 4). Episodic hyperoxia (N-ASTA versus H-ASTA)
had a significant effect only on AX content in the liver with fish exposed to episodic hyperoxia challenge
having lower values than in rainbow trout reared under normoxic conditions. Muscle AX content was
slightly higher (albeit not significant, p = 0.09) in trout exposed to hyperoxic conditions.
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Table 4. Skin (n = 21) and muscle (n = 21) color, and tissue astaxanthin content (n = 12, ug g−1) of CTRL
and ASTA-fed rainbow trout exposed to normoxic (12 weeks) and hyperoxic (1 week) environments.

Environment Normoxia Hyperoxia

Diet N-CTRL N-ASTA H-CTRL H-ASTA

Skin
Lightness (L*) 54.7 ± 2.2 55.5 ± 1.5 57.9 ± 2.0 54.4 ± 2.1
Redness (a*) 6.8 ± 0.3 b 10.3 ± 0.5 a 6.7 ± 0.4 b 10.3 ± 0.4 a

Yellowness (b*) 1.7 ± 0.7 0.5 ± 0.6 1.4 ± 0.5 1.7 ± 0.6
Muscle

Lightness (L*) 42.5 ± 0.4 a 35.5 ± 0.4 b 42.2 ± 0.5 a 34.7 ± 0.4 b

Redness (a*) 1.5 ± 0.2 b 12.4 ± 0.4 a,B 1.2 ± 0.1 b 15.2 ± 0.3 a,A

Yellowness (b*) 1.6 ± 0.3 b 8.2 ± 0.5 a,B 2.6 ± 0.3 b 13.3 ± 0.4 a,A

Astaxanthin
Muscle 0.1 ± 0.0 b 4.9 ± 0.4 a 0.1 ± 0.0 b 6.0 ± 0.6 a

Liver 0.1 ± 0.0 b 1.4 ± 0.13 a,B 0.0 ± 0.0 b 1.1 ± 0.1 a,A

Plasma 0.1 ± 0.0 b 5.9 ± 0.4 a 0.1 ± 0.0 b 5.8 ± 0.6 a

Values are presented as means ± SEM. Different superscript lowercase letters (a,b) denote significant differences among
CTRL and ASTA-fed rainbow trout exposed to normoxic or hyperoxic environments, and different superscript capital
letters (A,B) denote significant differences among N-ASTA and H-ASTA determined by one-way ANOVA (p < 0.05).

3.3. Plasma Cortisol, Plasma Glucose, Hepatic Glycogen, and Plasma Triglycerides

Plasma cortisol, plasma glucose and hepatic glycogen were only significantly affected by
environmental conditions (Figure 2). Episodic hyperoxia increased plasma cortisol but decreased
plasma glucose. The lowering of plasma glucose, appeared to be enhanced, but not significant (p = 0.09),
by the interaction between diet and environment, as the lowest plasma glucose values were observed in
fish fed the ASTA diet and exposed to hyperoxia. Liver glycogen was higher with hyperoxic conditions
than with normoxia treatment. The highest liver glycogen content was found in H-ASTA fish, similar
to the lowest plasma glucose content. Plasma triglycerides were not significantly affected by any of the
factors evaluated (Figure 2).Antioxidants 2019, 8, x FOR PEER REVIEW 9 of 18 
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Figure 2. Plasma cortisol (n = 9), glucose (n = 21), hepatic glycogen (n = 9), and triglycerides (n = 12) of
CTRL and ASTA fed rainbow trout exposed to normoxic (12 weeks) and episodic hyperoxic (1 week)
environments. Values are presented as means ± SEM. Different superscript letters denote significant
differences between factors determined by two-way ANOVA (p < 0.05). D, diet factor; E, environment
factor; DxE, interaction between diet and environment; * p < 0.05; *** p < 0.001; ns not significant.
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3.4. Thiobarbituric Acid-Reactive Substance (TBARS) in Flesh and Liver

Analysis of lipid peroxidation products in muscle and liver showed differences between the two
tissues, with the highest TBARS content recorded in muscle (Figure 3). TBARS values in both tissues
were significantly affected by the dietary factor with lower values in rainbow trout fed the ASTA diet
than in fish fed the CRTL diet. Moreover, in the muscle, the environment also affected TBARS content,
with normoxia-exposed fish displaying higher values than hyperoxia-exposed individuals.
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Figure 3. Liver and muscle thiobarbituric acid-reactive sustances (TBARS) (n = 12) of CTRL and
ASTA-fed rainbow trout exposed to a normoxic (12 weeks) and episodic hyperoxic (1 week) environment.
Values are presented as means ± SEM. Different superscript letters (a,b for diet factor and x,y for
environment factor) within a tissue denote significant differences between factors determined by
two-way ANOVA (p < 0.05). D, diet factor; E, environment factor; DxE, interaction between diet and
environment; * p < 0.05; ns not significant.

3.5. Hepatic Antioxidant Enzyme Activity

Environmental conditions tested had a more profound effect on the activities of hepatic antioxidant
enzymes than dietary conditions (Table 5). The antioxidant enzymes CAT, NS-GPX, SOD, GR, and GST
were significantly reduced by the hyperoxia challenge. Only the activity of hepatic GR was influenced
by the diet, as trout fed the ASTA diet had an increased activity of this enzyme. The other antioxidant
enzymes, total-GPX and Se-GPX, were not influenced by any of the factors tested.

Table 5. Liver antioxidant enzyme activity (n = 9) of CTRL and ASTA fed rainbow trout exposed to a
normoxic (12 weeks) and episodic hyperoxia (1 week) environment.

Antioxidant Enzymes Diet Environment Two way
ANOVA

CTRL ASTA Normoxia Hyperoxia D E DxE

CAT (U mg pt−1) 1152.9 ± 85.4 1227.7 ± 85.7 1307.4 ± 95.8 a 1073.2 ± 63.3 b ns * ns
Total GPX (mU mg pt−1) 39.7 ± 2.9 42.0 ± 2.5 43.6 ± 2.7 38.3 ± 2.5 ns ns ns

Se-GPX (mU mg pt−1) 23.0 ± 2.0 23.8 ± 2.0 22.4 ± 2.5 24.4 ± 1.3 ns ns ns
NS-GPX (mU mg pt−1) 16.7 ± 1.8 18.1 ± 2.6 21.3 ± 2.3 a 13.5 ± 1.7 b ns * ns

SOD (U mg pt−1) 51.6 ± 3.6 54.0 ± 3.8 59.7 ± 2.9 a 45.9 ± 3.7 b ns ** ns
GR (mU mg pt−1) 9.6 ± 0.5 a 11.8 ± 0.7 b 11.9 ± 0.6 y 9.5 ± 0.7 x ** ** ns
GST (mU mg pt−1) 705.2 ± 34.6 715.1 ± 39.1 762.7 ± 38.6 a 657.6±30.3 b ns * ns

Values are presented as means ± SEM. Different superscript letters (a,b) denote significant differences among
factors determined by two-way ANOVA (p < 0.05). D, diet factor; E, environment factor; DxE, interaction between
diet and environment; CAT, catalase, GPX, glutathione peroxidase; SOD, superoxide dismutase; GR, glutathione
reductase; GST, glutathione-S-transferase; Se-GPX, selenium-dependent GPX; NS-GPX, non-selenium-dependent
GPX. * p < 0.05; ** p < 0.01.
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3.6. Hepatic Glutathione

Contrary to results found on hepatic antioxidant enzymes, two-way ANOVA revealed that the
dietary factor had a more significant effect on hepatic glutathione than the environmental factor
(Table 6). Rainbow trout fed the ASTA diet had significantly lower liver GSSG, resulting in an improved
ratio between reduced and oxidized glutathione (GSH/GSSG), and better OSI.

Table 6. Liver total glutathione (tGSH; mmolg−1; n = 9), oxidized glutathione (GSSG; mmolg−1; n = 9),
reduced glutathione (GSH; mmolg−1; n = 9), and oxidative stress index (OSI) of CTRL and ASTA-fed
rainbow trout exposed to a normoxic (12 weeks) and episodic hyperoxic (1 week) environment.

Glutathione
Diet Environment Two way ANOVA

CTRL ASTA Normoxia Hyperoxia D E DxE

tGSH 1.70 ± 0.04 1.69 ± 0.04 1.68 ± 0.04 1.71 ± 0.04 ns ns ns
GSSG 0.35 ± 0.01 b 0.32 ± 0.01 a 0.33 ± 0.01 0.34 ± 0.01 * ns ns
GSH 1.35 ± 0.03 1.37 ± 0.04 1.35 ± 0.04 1.37 ± 0.03 ns ns ns

GSH/GSSG 3.96 ± 0.16 a 4.37 ± 0.13 b 4.21 ± 0.18 4.12 ± 0.13 * ns ns
OSI 40.97 ± 1.2 b 37.68 ± 1.0 a 39.11 ± 1.31 39.54 ± 1.01 * ns ns

Values are presented as means ± SEM. Different superscript letters (a,b) denote significant differences among
treatments determined by two-way ANOVA (p < 0.05). D, diet factor; E, environment factor; DxE, interaction
between diet and environment; * p < 0.05. OSI = 100 × (2GSSG/tGSH).

3.7. Hepatic Gene Expression

Of the hepatic oxidative stress-related genes studied (Table 7), mRNA levels of glutathione
reductase (gr), glutamate-cysteine ligase catalytic subunit (gclc), and thioredoxin reductase (tr) showed
a clear effect of diet, with a higher expression of the above-mentioned genes in rainbow trout fed
the ASTA diet than fish fed a carotenoid-depleted diet. However, the environmental factor exerted
the opposite effect to the dietary factor on other genes such as glutathione peroxidase 1a (gpx1a),
selenoprotein 1 (sepp1), and nuclear factor kappa-light chain enhancer of activated beta cells inhibitor
(iκb), with reduced expression in hypoxia-exposed fish compared to normoxia-exposed fish. The rest
of oxidative stress related genes studied did not elicit a specific response to diet or environment.
With glucose metabolism-related genes (Table 8), two-way ANOVA highlighted that both environment
and diet exerted a significant effect on glucose-6-phosphate dehydrogenase (g6pd), hyperoxia having a
down-regulating effect, and the ASTA diet an up-regulating effect. Glucokinase b (gckb) was only higher
expressed in the ASTA diet compared to CTRL diet. Concerning phosphoglucomutase1X2 (pgm1X2)
and 1X3 (pgm1X3), episodic hyperoxia lowered the mRNA levels in comparison to normoxia conditions.
The other glucose metabolism related genes were not significantly affected by the factors studied.

Table 7. Expression of genes involved in antioxidant response of rainbow trout liver fed
two experimental diets (CTRL and ASTA) under normoxic (12 weeks) and episodic hyperoxic
(1 week) conditions.

Gene Diet Environment Two-way ANOVA

N-CTRL N-ASTA Normoxia Hyperoxia D E DxE

Antioxidant enzymes

sod1 1.3 ± 0.2 1.2 ± 0.1 1.1 ± 0.1 1.4 ± 0.2 ns ns ns
sod2 1.0 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 ns ns ns
cat 1.1 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 ns ns ns

gpx1a 1.0 ± 0.1 1.1 ± 0.1 0.9 ± 0.0 a 1.0 ± 0.1 b ns * ns
gpx4b 0.9 ± 0.2 1.3 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 ns ns ns

gr 1.0 ± 0.1 a 1.4 ± 0.1 b 1.2 ± 0.1 1.1 ± 0.2 ** ns ns
gclc 1.0 ± 0.1 a 1.3 ± 0.1 b 1.2 ± 0.1 1.1 ± 0.1 * ns ns
gstπ 1.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 ns ns ns

tr 1.2 ± 0.1 a 1.6 ± 0.1 b 1.3 ± 0.1 1.5 ± 0.1 * ns ns
sepp1 0.9 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 a 0.8 ± 0.1 b ns * ns



Antioxidants 2019, 8, 626 11 of 18

Table 7. Cont.

Gene Diet Environment Two-way ANOVA

N-CTRL N-ASTA Normoxia Hyperoxia D E DxE

Transcription factors

nrf2 1.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 ns ns ns
keap1α 1.2 ± 0.1 1.3 ± 0.1 1.2 ± 0.1 1.3 ± 0.2 ns ns ns

nfκb 1.0 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 ns ns ns
iκbi 1.0 ± 0.1 1.0 ± 0.1 1.2 ± 0.1 b 0.9 ± 0.1 a ns * ns

Values are presented as means ± SE. Different superscript letters (a,b) denote significant differences among treatments
determined by two-way ANOVA (p < 0.05). D, diet factor; E, environment factor; DxE, interaction between diet and
environment; * p < 0.05; ** p < 0.01.

Table 8. Expression of genes involved in glucose metabolism of rainbow trout liver fed two experimental
diets (CTRL and ASTA) under normoxic (12 weeks) and hyperoxic (1 week) conditions.

Gene Diet Environment Two-way ANOVA

CTRL ASTA Normoxia Hyperoxia D E DxE

Glucose metabolism

g6pd 1.0 ± 0.1 a 1.5 ± 0.1 b 1.4 ± 0.1 y 1.1 ± 0.1 x ** * ns
gcka 38.0 ± 21.3 72.3 ± 27.6 45.1 ± 26.0 65.2 ± 23.1 ns ns ns
gckb 2.4 ± 0.7 a 7.3 ± 1.7 b 5.9 ± 1.6 3.6 ± 1.0 ** ns ns

pgm1X1 1.0 ± 0.1 1.3 ± 0.2 1.2 ± 0.2 1.1 ± 0.2 ns ns ns
pgm1X2 0.9 ± 0.1 0.9 ± 0.1 1.1 ± 0.1 0.7 ± 0.1 ns ** ns
pgm1X3 0.9 ± 0.1 0.9 ± 0.1 1.1 ± 0.1 0.8 ± 0.1 ns ** ns
g6pcb1 1.3 ± 0.2 1.0 ± 0.1 1.0 ± 0.2 1.2 ± 0.2 ns ns ns
g6pcb2 1.9 ± 0.5 2.9 ± 0.6 2.2 ± 0.7 2.6 ± 0.5 ns ns ns

Values are presented as means ± SE. Different superscript letters (a,b for diet factor and x,y for environment factor)
denote significant differences between factors determined by two-way ANOVA (p < 0.05). D, diet factor; E,
environment factor; DxE, interaction between diet and environment; * p < 0.05; ** p < 0.01; *** p < 0.001.

3.8. Skin and Muscle Redness Correlation

In this study, we detected a positive, strong and significant correlation between muscle redness
and hepatic AX content; however, with skin redness although the correlation was also significant,
it was found to be moderate (Table 9). A positive, significant, but weak correlation was found between
muscle redness and hepatic OSI/hepatic gr, gclc, tr, g6pd, gckb mRNA levels, with no correlation with
hepatic GR activity found (Table 9). Skin redness presented no correlation with hepatic OSI and hepatic
gclc mRNA level, but showed a positive and significant although weak correlation with hepatic GR
activity/hepatic gr, tr, and g6pd mRNA levels. Negative, weak, and significant correlations were only
observed among muscle and skin redness and hepatic and muscle TBARS. As reported in Table 9,
muscle redness presented higher and more significant associations among the dependent variables
evaluated than skin redness.
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Table 9. Correlation coefficients (r) between rainbow trout skin and muscle redness (a*-values) and
oxidative stress response.

Oxidative Stress Response Redness a*-Values

Muscle Skin

Hepatic AX 0.85 ** 0.62 **
Hepatic GR activity ns 0.40 *

Hepatic OSI 0.36 * 0.27
Hepatic TBARS −0.36 * −0.34 *
Muscle TBARS −0.42 * −0.30 **

Hepatic gr mRNA level 0.45 ** 0.39 *
Hepatic gclc mRNA level 0.36 * 0.25

Hepatic tr mRNA level 0.42 * 0.34 *
Hepatic g6pd mRNA level 0.38 * 0.35 *
Hepatic gckb mRNA level 0.36 * 0.24

* p < 0.05; ** p < 0.01.

4. Discussion

Carotenoids are part of a complex and integrated antioxidant defense system and their biological
effects are mostly a result of co-operative interactions with endogenous and exogenous antioxidants,
rather than a direct antioxidant effect [33]. In the present study, dietary AX supplementation did not
affect the growth performance of juvenile rainbow trout. Similarly, no effect of dietary AX on growth
was reported in rainbow trout [34] or in other fish species fed 20–100 mg AX/kg [17,35,36].

4.1. Dietary AX and Episodic Hyperoxia on Physiological Response

Plasma cortisol levels found in this study indicate that hyperoxia caused a stress response in
rainbow trout. Cortisol values in resting or unstressed fish generally range between 0.5–4.0 µg dL−1,
while in stressed fish, the values increase up to 10–20 µg dL−1 [37–39]. Our data on elevated cortisol
values in rainbow trout exposed to episodic hyperoxia are also in agreement with the data of [19].
However, it is important to mention that the values found under normoxic conditions in this study
are also high. This could be attributed to the time employed for the fish capture before anesthesia.
The triggering of metabolic adjustments due to stressors also raises energy demands [40], increasing
glycogen mobilization as reflected by increased plasma glucose levels [41]. Hepatic glycogen is
also considered as a metabolic indicator of secondary stress response [42], which is decreased in
order to mobilize glucose to peripheral tissues. In contrast, in the present study the 7-day hyperoxia
challenge did not induce the glucose stress response normally observed in fish, but instead decreased
plasma glucose and increased hepatic glycogen content. Moreover, the hypoglycemic effect of episodic
hyperoxia noticed in this trial was associated with decreased mRNA expression of phosphoglucomutase,
an enzyme involved in both glycogen synthesis and mobilization. However, to date there are very few
studies in fish dealing with oxygen availability and the dynamics of cellular energy metabolism when
the partial pressure of oxygen increases. The decrease of plasma glucose and the increase of hepatic
glycogen content due to episodic hyperoxia were emphasized with the ASTA diet. In Asian seabass,
dietary AX showed a hypoglycemic effect, suggesting that this carotenoid may be possibly beneficial
in stimulating the insulin sensitivity of fish [43]. Similarly, a meta-analysis to evaluate the efficacy of
AX supplementation on plasma lipid and glucose concentrations revealed a slight glucose-lowering
effect of this carotenoid in humans [44]. Concerning hepatic glycogen, a glycogen-sparing effect of
AX was found in mice under situations of prolonged exercise [45]. There is evidence that dietary AX
promotes lipid metabolism in mice [46]. Thus, the effect of dietary AX on lipid metabolism in rainbow
trout deserves further investigation. In fact, it has been found that dietary carotenoids have an impact
on lipid profile of rainbow trout liver, potentially due to their antioxidant functions [47].
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Given that lipid peroxidation is reported to be a major contributor to the loss of cell function [48],
fighting against lipid peroxides is a key issue in aquatic species due to their generally higher tissue
concentrations of n-3 long-chain PUFAs than other animal species. Lipid peroxidation products such
as TBARS are considered pertinent markers of lipid peroxidative stress [49]. In this study, the lipid
peroxidation level was 30% higher in muscle than in the liver, and the episodic hyperoxia challenge
affected lipid peroxidation only in the muscle and not in the liver. A study on goldfish showed a
short-lived increase in TBARS levels during early hours of hyperoxia in most tissues evaluated, but they
quickly returned to values near or significantly below control levels [50]. However chronic hyperoxia
condition tested in Atlantic salmon pre-smolt for 6 weeks significantly increased liver TBARS [51].
Contrary to episodic hyperoxia challenge, dietary AX supplementation decreased susceptibility to
lipid peroxidation in both liver and muscle. Similarly, dietary AX decreased TBARS concentration in
muscle of rainbow trout [52] and liver of yellow catfish submitted to crowding stress [53].

It has been suggested that increased oxidative stress leads to AX mobilization in Atlantic
salmon [54]. We did not observe any effect of the episodic hyperoxia challenge on skin color or
plasma AX levels, although there was an improvement with dietary AX supplementation. These
results suggest that there is no allocation conflict between rainbow trout skin coloration and internal
antioxidant response after episodic hyperoxia. In contrast to skin color results, muscle redness and AX
content were significantly increased by hyperoxia in ASTA-fed rainbow trout, denoting a higher AX
allocation to this tissue, which is an important site of AX accumulation during the growth phase [55].
The increased muscle AX deposition together with higher TBARS levels recorded after the hyperoxia
challenge may suggest a high susceptibility of the muscle tissue to oxidative damage. Showing an
opposite trend to muscle, liver displayed a lower AX content after episodic hyperoxia. This could
be related to the higher antioxidant enzyme activity in this tissue, as indicated by the more efficient
scavenging of peroxyl radicals reflected by the non-increase of TBARS in liver.

4.2. Control of Antioxidant Enzymes by Episodic Hyperoxia and Dietary AX

Among ROS-induced adjustments of antioxidants to hyperoxia, endogenous enzyme activity
was significantly reduced, with the exception of total GPX and Se-GPX. The reduced activity found
in this study could be due to the increasing amounts of ROS generated by 7-day episodic hyperoxia,
which may have overwhelmed the response of endogenous antioxidant enzymes. Our results are
in accordance with a study in Atlantic salmon that found a decrease of SOD and Se-GPX activity in
response to 6-week moderate hyperoxia [51]. Transient activation of antioxidant enzymes seems to
take place in gills and liver of acute hyperoxia-exposed rainbow trout [56]. Hence, the exposure time to
hyperoxia may determine the activation of endogenous antioxidant enzymes, as these are considered
the first level of antioxidant defense [33]. The activities of antioxidant enzymes could partly result
from induction of the gene expressions of antioxidant enzymes, regulated in fish by the nuclear factor
erythroid 2-related factor 2 [29]. However, neither antioxidant enzyme mRNA levels, except gpx1a and
sepp1, nor mRNA level of nrf2 were influenced by the environmental conditions tested. Similarly to
our findings, the levels of hepatic sod1, cat, and gpx mRNA of Atlantic salmon exposed to hyperoxia for
a prolonged period of time did not change in comparison to the levels under normoxia [57]. However,
contrary to our results, Atlantic cod exposed to 145% O2 saturation for 6 weeks showed upregulated
hepatic gpx mRNA levels compared to the normoxia group [58]. Elevation in the expression of hepatic
antioxidant-related proteins was observed in the flatfish Solea senegalensis in response to 223% O2

saturation [59].
Concerning the effect of dietary AX supplementation on endogenous antioxidant enzymes (both

in terms of activities and mRNA level of GR), the enzyme involved in the reduction of GSSG to GSH
using NADPH as a reducing cofactor [60] was increased, whereas other antioxidant enzymes were not
significantly affected. Similar to our results, an enhanced GR activity was reported in liver of rainbow
trout after 8 weeks of AX supplementation [12].
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4.3. Control of Glutathione Metabolism by Episodic Hyperoxia and Dietary AX

No significant effect of episodic hyperoxia was observed on the glutathione response, in contrast
to [1] who suggested an increase of cellular GSH during stress conditions, but similarly to data from
Atlantic cod [58]. In a study with rainbow trout also exposed to episodic hyperoxia for 12 h and 12 h of
normoxia (12HYP:12NOR), total GSH was increased without a simultaneous increase in hepatic GSSG,
and hence this could be regarded as a sign of enhanced potential defense against ROS and not as a sign
of oxidative stress [19].

AX supplementation tested in this study enhanced the glutathione response, with a decreased
liver GSSG, increased GSH/GSSG ratio, and decreased OSI. The significant increase of GSH/GSSG
could be related to the fact that glutathione is recycled in a NADPH-dependent reaction by GR,
and the GR activity was significantly increased in fish fed the ASTA diet. Similarly, in a study with
rainbow trout fed an AX-supplemented diet for 8 weeks, elevated liver GR activity allowed liver
GSH amounts to be sustained [12]. In addition, NADPH synthesis seems to be augmented by the
ASTA diet through the increase in g6pd mRNA level. Among enzymes able to produce NADPH,
G6PD is considered the most important one [61], catalyzing the rate-limiting step in the oxidative
pentose phosphate pathway (oxPPP) that provides NADPH [62]. Dietary AX also boosted the oxPPP
through the upregulation of glucokinase (GK), a glucose-phosphorylating enzyme that yields glucose
6-phosphate (G6P), the main substrate for oxPPP. Consequently, the overall improvement of hepatic
glutathione redox status in rainbow trout fed the ASTA diet is possibly due to the increase of G6P
and the increased activity of G6PD, both key participants in the synthesis of NADPH necessary to
maintain a proper GSH/GSSG redox balance [63]. An enhancement of the liver glutathione system
is of pivotal importance, since in hepatocytes a substantial portion of the intracellularly recycled
or synthesized GSH may be exported out of the cells, as the liver is the main GSH producer and
storage organ which supplies other tissues [64]. Besides, AX seems to also enhance GSH production,
as the gene expression of liver glutamate cysteine ligase (gclc), a rate-limiting enzyme for glutathione
synthesis [65], was also upregulated. However, the authors of [66] did not find an AX effect on mRNA
levels of gclc (glutamate-cysteine ligase, catalytic subunit) in cultured hepatocytes.

In addition to the effect on glutathione metabolism, the ASTA diet also up-regulated thioredoxin
reductase (tr), part of the thioredoxin system that also constitutes another important system to sustain
the intracellular redox state [67]. Similarly to the glutathione system, the recycling occurs in a
NADPH-dependent reaction by thioredoxin reductase.

4.4. Antioxidant Defenses and Tissue Color

In a variety of animals, expression of color traits predicts aspects of performance to resist oxidative
stress [21]. It has been suggested that carotenoid-based colorations may signal the availability of
other non-pigmentary antioxidants [18]. The correlational approach used in this study showed that
both liver non-enzymatic and enzymatic antioxidant response were significantly associated with
both skin and muscle redness a*-values. To date, no study has investigated the relationship between
carotenoid-based skin and muscle color and oxidative state in rainbow trout. In a study with wild
brown trout, carotenoid-based skin colorations were considered a signal of individual quality in terms
of antioxidant defenses [18]. Results of this trial in rainbow trout suggest that although both muscle
and skin color were associated to tissue AX content and liver antioxidant response, the correlations
were higher and more significant in the muscle.

5. Conclusions

Our overall results suggest that supplementation with 100 mg kg−1 of synthetic AX can improve
antioxidant capacity through the role on the expression of certain antioxidant-related genes. The 7-day
episodic hyperoxia challenge appeared to induce mild stress, with reduced utilization of glycogen as
energy substrate and certain beneficial effects such as the enhancement of flesh redness in rainbow
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trout. Nevertheless, more research needs to be carried out to elucidate both findings, specifically as
this is the first fish study that suggests the role of AX in glutathione and thioredoxin recycling and in
glutathione synthesis as well as in pentose phosphate pathway activation in rainbow trout liver.
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