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An adaptive upper bound on the Ramsey numbers R(3

Since 2002, the best known upper bound on the Ramsey numbers

We show here how any closing-in on R 4 (3) yields an improved upper bound on R n (3) for all n ≥ 4. For instance, with our present adaptive bound, the conjectured value R 4 (3) = 51 implies R n (3) ≤ n!(e -5/8) + 1 for all n ≥ 4.

Introduction

For n ≥ 1, the n-color Ramsey number R n (3) = R(3, . . . , 3) denotes the smallest N such that, for any n-coloring of the edges of the complete graph K N , there is a monochromatic triangle. See e.g. [START_REF] Graham | Ramsey Theory[END_REF][START_REF] Ramsey | On a Problem of Formal Logic[END_REF][START_REF] Soifer | The mathematical coloring book[END_REF] for background on Ramsey theory. There is a well known recursive upper bound on R n (3) due to [START_REF] Greenwood | Combinatorial relations and chromatic graphs[END_REF], namely

R n (3) ≤ n(R n-1 (3) -1) + 2 (1)
for all n ≥ 2. Currently, the only exactly known values of R n (3) are R 1 (3) = 3, R 2 (3) = 6 and R 3 (3) = 17. As for n = 4, the current state of knowledge is

51 ≤ R 4 (3) ≤ 62.
The lower bound is due to [START_REF] Chung | On The Ramsey Numbers N[END_REF] and the upper bound to [START_REF] Fettes | An upper bound of 62 on the classical Ramsey number R[END_REF], down from the preceding bound R 4 (3) ≤ 64 in [START_REF] Sánchez-Flores | An improved upper bound for Ramsey number N[END_REF]. Moreover, it is conjectured in [START_REF] Xu | On some open questions for Ramsey and Folkman numbers[END_REF] that

R 4 (3) = 51.
Here is a brief summary of successive upper bounds on R n (3). In [START_REF] Greenwood | Combinatorial relations and chromatic graphs[END_REF], the authors proved that R n (3) ≤ n!e + 1 for all n ≥ 2. Whitehead's results [START_REF] Whitehead | Algebraic structure of chromatic graphs associated with the Ramsey number N[END_REF] led to

R n (3) ≤ n!(e -1/24) + 1
for all n ≥ 2, and Wan [START_REF] Wan | Upper bounds for Ramsey numbers R(3, 3, . . . , 3) and Schur numbers[END_REF] further improved it to

R n (3) ≤ n!(e -e -1 + 3)/2 + 1.
The last improvement came in 2002, when it was proved in [START_REF] Xu | Upper bounds for Ramsey numbers R n (3) and Schur numbers[END_REF] that

R n (3) ≤ n!(e -1/6) + 1
for all n ≥ 4. That bound relies on the estimate R 4 (3) ≤ 62 by [START_REF] Fettes | An upper bound of 62 on the classical Ramsey number R[END_REF].

Because of the recurrence relation [START_REF] Chung | On The Ramsey Numbers N[END_REF], any improved upper bound on R k (3) for some k ≥ 4 will yield an improved upper bound on R n (3) for all n ≥ k. Our purpose here is to make this automatic improvement explicit. For instance, combined with our adaptive upper bound, the above-mentioned conjecture R 4 (3) = 51 implies R n (3) ≤ n!(e -5/8) + 1 for all n ≥ 4. This would be a substantial improvement over the current upper bound n!(e -1/6) + 1, since e -1/6 ≈ 2.55 while e -5/8 ≈ 2.09.

Main results

As reported in [START_REF] Radziszowski | Small Ramsey numbers[END_REF], it is proved in [START_REF] Xu | Upper bounds for Ramsey numbers R n (3) and Schur numbers[END_REF] that

R n (3) ≤ n!(e -1/6) + 1
for all n ≥ 4. But the latter paper is in Chinese and not easily accessible to English readers. In this section, we prove a somewhat more general statement. We shall need the formulas below.

Useful formulas

In proving R n (3) ≤ n!e + 1, the authors of [START_REF] Greenwood | Combinatorial relations and chromatic graphs[END_REF] used without comment the formula

(n + 1)!e = (n + 1) n!e + 1
for all n ≥ 1. For convenience, we provide a proof here, as a direct consequence of the auxiliary formula below.

Proposition 2.1. For all n ≥ 1, we have n!e = ∑ n i=0 n!/i! .

Proof. We have e = 1/0!

+ 1/1! + ∑ ∞ i=2 1/i! = 2 + ∑ ∞ i=2 1/i!. Since e < 3, it fol- lows that ∑ ∞ i=2 1/i! < 1. Now n!e = ∑ n i=0 n!/i! + ∑ ∞ i=n+1 n!/i!.
The left-hand summand is an integer, while the right-hand one satisfies

∞ ∑ i=n+1 n!/i! = ∞ ∑ j=1 1 Π j k=1 (n + k) ≤ ∞ ∑ i=2 1/i! < 1.
This concludes the proof.

Corollary 2.2 ([5]

). For all n ≥ 1, we have (n + 1)!e = (n + 1) n!e + 1.

Proof. Applying Proposition 2.1 for n + 1 and then for n, we have

(n + 1)!e = n+1 ∑ i=0 (n + 1)!/i! = (n + 1) n ∑ i=0 n!/i! + (n + 1)!/(n + 1)! = (n + 1) n!e + 1.

An optimal model

We now exhibit an optimal model for the recursion (1). Proposition 2.3. Given q ∈ Q, let f : N → Z be defined by f (n) = n!(eq) + 1 for n ∈ N. Then, for all n ∈ N such that n!q ∈ Z, we have

f (n + 1) = (n + 1)( f (n) -1) + 2.
(2)

Proof. We have

f (n + 1) = (n + 1)!(e -q) + 1 = (n + 1)!e -(n + 1)!q + 1 [since (n + 1)!q ∈ Z] = (n + 1) n!e + 1 -(n + 1)!q + 1 [by Corollary 2.2] = (n + 1) n!(e -q) + 2 [since n!q ∈ Z] = (n + 1)( f (n) -1) + 2.

An adaptive bound

Our adaptive upper bound on R n (3) is provided by the following statements.

Proposition 2.4. Let k ∈ N and q ∈ Q satisfy k ≥ 2, R k (3) ≤ k!(e -q) + 1 and k!q ∈ N. Then R n (3) ≤ n!(e -q) + 1 for all n ≥ k. Proof. As in Proposition 2.3, denote f (n) = n!(e -q) + 1 for n ∈ N. By as- sumption, we have R k (3) ≤ f (k) (3) 
and k!q ∈ Z. It suffices to prove the claim for n = k + 1, since if k!q ∈ N then (k + 1)!q ∈ N. By successive application of (1), ( 3) and ( 2), we have

R k+1 (3) ≤ (k + 1)(R k (3) -1) + 2 ≤ (k + 1)( f (k) -1) + 2 = f (k + 1).
Note that using ( 2) is allowed by Proposition 2.3 and the assumption k!q ∈ N.

Theorem 2.5. Let k ≥ 2 be an integer. Let a ∈ N satisfy a ≤ k!e -R k (3) + 1, and let q = a/k!. Then R n (3) ≤ n!(eq) + 1 for all n ≥ k.

Proof. We have

a ≤ k!e -R k (3)+1, so R k (3) ≤ k!e -a +1 = k!(e -q)+1. More- over k!q = a ∈ N.
The conclusion follows from Proposition 2.4.

Remark 2.6. Theorem 2.5 is the best possible application of Proposition 2.4. Indeed, with the value a = k!e -R k (3) + 2 and q = a /k!, it no longer holds that R k (3) ≤ k!(eq ) + 1.

The case k = 5

Let us also briefly consider the case k = 5. At the time of writing, we only know 162 ≤ R 5 (3) ≤ 307. See [START_REF] Radziszowski | Small Ramsey numbers[END_REF].

Proposition 2.12. Let a ∈ N satisfy a ≤ 327 -R 5 [START_REF] Fettes | An upper bound of 62 on the classical Ramsey number R[END_REF]. Then setting q = a/120, we have R n (3) ≤ n!(eq) + 1 for all n ≥ 5.

Proof. By Theorem 2.5 and the value 5!e = 326 given by Proposition 2.1.

Here again are three possible outcomes. The adaptive upper bound on R n (3) given by Theorem 2.5 may still be quite far from reality, as the asymptotic behavior of R n (3) remains poorly understood. For instance, is there a constant c such that R n+1 (3) ≤ cR n (3) for all n? Or, maybe, such that R n (3) ≥ cn! for all n? The former would imply that lim n→∞ R n (3) 1/n , known by [START_REF] Chung | A Survey of Bounds for Classical Ramsey Numbers[END_REF] to exist, is finite, whereas the latter would imply lim n→∞ R n (3) 1/n = ∞. At the time of writing, it is not known whether that limit is finite or infinite. See e.g. [START_REF] Liang | On a diagonal conjecture for classical Ramsey numbers[END_REF], where this question is discussed together with related problems.

Link with the Schur numbers

The Schur number S(n) is defined as the largest integer N such that for any ncoloring of the integers {1, 2, . . . , N}, there is a monochromatic triple of integers 1 ≤ x, y, z ≤ N such that x + y = z. The existence of S(n) was established by Schur in [START_REF] Schur | Uber die Kongruenz x m + y m ≡ z m (mod p)[END_REF], an early manifestation of Ramsey theory. Still in [START_REF] Schur | Uber die Kongruenz x m + y m ≡ z m (mod p)[END_REF], Schur proved the upper bound S(n) ≤ n!e -1 [START_REF] Greenwood | Combinatorial relations and chromatic graphs[END_REF] for all n ≥ 2. The similarity with the upper bound R n (3) ≤ n!e + 1 proved 40 years later in [START_REF] Greenwood | Combinatorial relations and chromatic graphs[END_REF] is striking. In fact, there is a well known relationship between these numbers, namely

S(n) ≤ R n (3) -2. ( 6 
)
Thus, via [START_REF] Liang | On a diagonal conjecture for classical Ramsey numbers[END_REF], our adaptive upper bound on R n (3) given by Theorem 2.5 also yields an upper bound on S(n).

Knowing only R 5 ( 3 )

 53 ≤ 307 does not allow to improve the current estimate R n (3) ≤ n!(e -1/6) + 1. At the other extreme, if R 5 (3) = 162 holds true, it would yield R n (3) ≤ n!(e -11/8) + 1 for all n ≥ 5. As an intermediate estimate, if R 5 (3) ≤ 227 holds true, it would imply R n (3) ≤ n!(e -5/6) + 1 for all n ≥ 5.
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 1 On lim n→∞ R n (3) 1/n
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The case k = 4

We now apply the above result to the case k = 4. We only know 51 ≤ R 4 (3) ≤ 62 so far. Note that by Proposition 2.1, we have

Proposition 2.7. Let a ∈ N satisfy a ≤ 66 -R 4 (3). Then setting q = a/24, we have R n (3) ≤ n!(eq) + 1 for all n ≥ 4.

Proof. By (4), a satisfies the hypotheses of Theorem 2.5. The conclusion follows.

When the exact value of R 4 (3) will be known, Proposition 2.7 will provide an adapted upper bound on R n (3) for all n ≥ 4. In the meantime, here are three possible outcomes.

Proof. Since R 4 (3) ≤ 62, we may take a = 4 in Proposition 2.7. The conclusion follows from that result with q = a/4! = 1/6. Note that the above bound dos not extend to n = 3, since R 3 (3) = 17, whereas by Proposition 2.1, we have 3!(e -1/6) + 1 = 3!e = 3! + 3! + 3 + 1 = 16.

As mentioned earlier, it is conjectured in [START_REF] Xu | On some open questions for Ramsey and Folkman numbers[END_REF] that R 4 (3) = 51. If true, Proposition 2.7 will yield the following improved upper bound. Corollary 2.9. If R 4 (3) = 51, then R n (3) ≤ n!(e -5/8) + 1 for all n ≥ 4.

Proof. By Proposition 2.7, with a = 66 -51 = 15 and q = 15/4! = 5/8.

As noted in the Introduction, this would be a substantial improvement over the current upper bound n!(e-1/6)+1, since e-1/6 ≈ 2.55 whereas e-5/8 ≈ 2.09.

An intermediate step would be, for instance, to show R 4 (3) ≤ 54 if at all true. This would yield the following weaker improvement. Proof. By Proposition 2.7, with a = 66 -54 = 12 and q = a/4! = 1/2.

Remark 2.11. The above three corollaries are best possible applications of Proposition 2.7, as in each case we took the largest admissible value for a ∈ N.