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ABSTRACT

Regularization, filtering, and denoising of biomedical images
requires the use of appropriate filters and the adoption of effi-
cient regularization criteria. It has been shown that the Stein’s
Unbiased Risk Estimate (SURE) can be used as a proxy for
the mean squared error (MSE), thus giving an effective cri-
terion for choosing the regularization amount as to that min-
imizing SURE. Often, due to the complexity of the adopted
filters and solvers, this proxy must be calculated with a Monte
Carlo method. In practical biomedical applications, however,
images are affected by spatially-varying noise distributions,
which must be taken into account. We propose a modification
to the Monte Carlo method, called svSURE, that accounts for
the spatial variability of the noise variance, and show that it
correctly estimates the MSE in such cases.

Index Terms— Stein’s Unbiased Risk Estimate (SURE),
regularization, anisotropic filter, MRI

1. INTRODUCTION

In biomedical imaging, low sensitivity and/or high instrumen-
tal noise often requires the use of filters to perform denois-
ing/restoration. In image processing, a plethora of methods
has been developed based on different criteria. For instance,
when dealing with the human visual perception of images,
the quality of the restoration may be assessed as function of
the structural information degradation [1]. In other cases, a
measure of image content is used [2]. However, biomedical
images acquired for instance in Magnetic Resonance Imag-
ing (MRI) are often not ready for human intelligibility but are
instead used for quantitative measurements and/or constitute
the basis for further processing. As an example, spin-echo im-
ages are used to compute relaxation images. In such cases, a
measure for the restoration quality should have a more quan-
titative meaning such as the mean squared error (MSE) of the
denoised image with respect to the original noise-free ground-
truth one. Obviously, such a metric is not directly accessible
in MRI experiments thus it has to be estimated. Stein [3]
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proposed a measure, thereafter named Stein’s Unbiased Risk
Estimate (SURE), that provides an unbiased estimate of the
MSE without having access to the original ground-truth im-
age. Many methods employing this criterion have been de-
vised and are found in the literature. However, the calcula-
tion of SURE is not straightforward and an explicit solution
is available for linear filters but is generally not accessible
for non-linear filters, unless considering very specific cases.
To overcome this limitation, Ramani et al. [4] proposed a
Monte Carlo calculation of SURE that is suitable for a large
variety of filters. Indeed, SURE is based on the knowledge
of the noise variance – given or pre-estimated – and of the
operator/filter divergence with respect to the data. There is
generally no explicit solution for the divergence, so this is ap-
proximated through the Monte Carlo calculation. Particularly,
the divergence of the operator is estimated by probing the re-
sponse of the operator itself, in an input-output experiment,
with additive Gaussian noise. In this work, to comply with the
local nature of the noise affecting biomedical images such as
in MRI, we propose to inject information about the noise vari-
ance spatial variability when probing the input-output system
with Gaussian noise, obtaining the spatially varying SURE
(svSURE). We show with simulations that such an adaptation
allows for estimating the MSE when regularizing an entire
image at once. This allows having an effective sample size,
i.e. the number of pixels considered by the operator, that is
large enough to avoid fluctuations on repeated estimates, as
opposed to local patch-based operators – where the variance
could be considered stationary per patch – that would be less
suited for Monte Carlo estimation. We point out that, differ-
ently from other ”weighted” or ”adaptive” versions of SURE
[5, 6] that aim at estimating the weighted MSE or the local
optimal filter, svSURE aims at estimating the MSE when the
noise is spatially varying in combination with a global spa-
tially varying operator.

2. IMAGE REGULARIZATION

We consider a bi-dimensional operator on an image I0, de-
fined on x ∈ Ωx and y ∈ Ωy , that admits a well-defined



second order Taylor expansion. It includes a regularization
term implementing some function, R(I), on the image I , and
an attachment to data term that is weighted by a weighting
function, w(x, y), which expresses the amount of confidence
in the data, typically proportional to the inverse variance,
w(x, y) ∼ 1/σ2(x, y). The final operator, ρ(·), is defined as

ρ(I0, λ) = inf
I(x,y)

λ

∫
Ωx,Ωy

w(x, y) [I0(x, y)− I(x, y)]
2
dxdy

+R(I) (1)

where the scalar λ regulates the compromise between the
two terms. In the present work, we implemented a highly
non-linear regularization term, following the formulation
proposed by Kornprobst et al. [7], that allows for constant
smoothing perpendicularly to the local gradient direction
while selectively smoothing along it, i.e. across edges, as
a function of the gradient norm as exp(−‖∇I‖2/2θ2), i.e.
smoothing across edges is damped in the proximity of an
edge with θ regulating the speed. The operator is evaluated
numerically with an in-house implicit step iterative method.

3. SPATIALLY VARYING SURE

The Stein’s unbiased risk estimate, ϕ, for an image I0 as a
function of λ is defined as

ϕI0,λ =
1

XY
‖I0−ρ(I0, λ)‖22−σ2 +

2σ2

XY
div [ρ(I0, λ)] (2)

where X = |Ωx|, Y = |Ωy|, and div[·] indicates the diver-
gence of the operator that will be estimated with the Monte
Carlo method. Indeed, this can be approximated [4] as

div [ρ(I, λ)] ≈
1

ε
vec[bXY ]T vec [ρ(I + εbXY , λ)− ρ(I, λ)] (3)

where bXY is an image of sizeX×Y which entries are drawn
from an identically distributed zero mean Gaussian, N(0, 1),
and where ’vec’ indicates vectorization. The approximation
is more valid as ε → 0, but typically a value ε = 0.01 is
sufficient. In order to account for the noise spatial variability,
while using the operator in eq. (1), we propose to multiply
bXY by the square root of the locally estimated variance nor-
malized such that the total noise energy corresponds to that of
unit variance throughout the whole image

bsvXY (x, y) = bXY (x, y)

√
σ2(x, y)∑X

x=1

∑Y
y=1 σ

2(x, y)
XY (4)

while respecting the condition of bounded higher order mo-
ments [8]. By substituting bsvXY to bXY in eq. (3) we can esti-
mate the divergence of an operator that operates differently as
a function of the local noise variance, as it is the case of that
expressed in eq. (1). This enables de facto the use of SURE
with spatially varying Gaussian noise, as we shall show in the
following synthetic experiments.

(a) q = 0.5 (b) q = 0.7 (c) q = 0.9

Fig. 1: Different tested spatial variability maps.

4. EXPERIMENTS AND RESULTS

The proposed svSURE requires the knowledge of the local
noise variance. For this reason, we focus our synthetic ex-
periments on MRI images where this information is available
through measurements or estimates [9, 10]. Typical magni-
tude MRI images are affected by Rician-like noise distribu-
tion, but this can be considered Gaussian for signal-to-noise
ratios (SNRs) higher than five [11], and eventually unbias-
ing [12] can be used for the other cases. We simulate T2
relaxation-based Spin-Echo realistic synthetic MRI images
with Fiberfox [13], to which we add spatially varying Gaus-
sian noise with different mean SNR ∈ [2, 6]. Spatial variabil-
ity of the noise variance is simulated according to realistic
values as a bivariate Gaussian surface such that the variance
is high in the center of the image, decreasing radially towards
the borders. Figure 1 shows three examples of the standard
deviation spatial variability where the value of q represents a
multiplier for the horizontal and vertical standard deviations
of the surface which are fixed to 18 and 23 pixels respectively.
Figure 2 shows a simulated ground-truth spin-echo image (a)
and an example of spatially varying additive noise (b).

For a given SNR and spatial variability map, we calculate
the SURE and svSURE estimates of the mean squared error
as a function of the regularization parameter λ, based on the
operator in eq. (1) with θ = 150. The operation is repeated
ten times so that we can obtain a mean value of the estimates
and the standard deviation, which are reported in the plots of
fig. 3. In the top row we report results for the proposed spa-

(a) ground-truth (b) noise (SNR=3, q=0.8)

Fig. 2: Synthetic dataset.



(a) q = 0.5 (b) q = 0.7 (c) q = 0.9

Fig. 3: Difference between the proposed svSURE (spatially varying, on the top), and SURE (stationary, bottom), for different
SNRs, and for increasing values of q, i.e. with noise spatial variability that becomes more homogeneous from left to right.

tially varying svSURE (means indicated by filled circles), and
in the bottom row we report results for the stationary version
of SURE (means with ”+” symbol). In the plots, the values
of λ for each SNR (encoded by different colors) are differ-
ent and scaled such that the minimum of the mean squared
error (dashed black lines) lies on the vertical dotted line that
corresponds to one. With this alignment, it appears clear that
the spatially varying svSURE consistently estimates the MSE
across the whole range of tested λ values, SNRs, and spatial
variability maps (each column of the figure is obtained for a
different q). We note that SURE (bottom row) systematically
misestimates the MSE not only at low SNR values, but also
at higher ones. The misalignment of SURE with the MSE de-
pends on the nature of the spatial variability map. Indeed, as
illustrated in fig. 1, as the value of q increases the spatial vari-
ability reduces (noise is more homogeneous across the im-
age), thus resembling more and more a stationary case and
favouring the overlap. On the contrary, svSURE always per-
forms correctly and guarantees a good overlap with the MSE.

When using a criterion for automatic regularization, the

main objective is to identify the optimal amount of regular-
ization (or attachment to data), i.e. to find an estimate λ̂ that
minimizes the mean squared error. In fig. 3 it is possible to
visualize all the ten attempts of estimating such a value, indi-
vidually for each MSE (cyan circles for svSURE and red ones
for SURE). These were obtained by minimizing the two ver-
sions of eq. (2), with the divergence estimated with or with-
out using eq. (4), via a golden-section bisection method [14].
Results illustrate that when minimizing the MSE through a
proxy such as SURE it is important to consider the spatial
variability of the noise as proposed in eq. (4). For instance,
in the bottom plots of fig. 3 we note that the estimated values
of λ̂ are biased, whereas the cyan circles in the top plots are
always much better aligned on the dotted vertical line corre-
sponding to one, i.e. the optimal λoptimal. As expected, the
performance of the stationary version decreases with lower
values of q, i.e. with increasing noise spatial variability.

In order to quantify the performance of the methods, we
calculate the relative loss in MSE resulting from a wrong es-
timation of the minimum, performing none or several repeti-



Fig. 4: Relative MSE loss compared to the optimal solu-
tion, accounting for a single estimation with different filters,
θ ∈ [150, 250, 350], different spatial variability maps, q ∈
{0.5, 1}, and different signal-to-noise ratios, SNR∈ {2, 6}.
The number of averages refers to the number of Monte Carlo
iterations used to compute the mean estimate of the MSE.

tions for averaging the estimates of eqs. (3) and (4). The re-
sults shown in fig. 4 are computed once but including a large
combination of operators as in eq. (1) (values of θ), q, and
SNRs. The stationary version of SURE leads to errors that
do not decrease with the number of Monte Carlo repetitions
(”averages” in the plot) used to calculate the averaged esti-
mate of the MSE, thus featuring the presence of a systematic
bias. Conversely, svSURE visibly entails a negligible loss.

5. DISCUSSION AND CONCLUSION

The proposed spatially varying Monte Carlo SURE, svSURE,
allows the correct estimation of the mean squared error and
its minimum, thus enabling the use of Stein’s criterion for
the case in which a global spatially varying operator is ap-
plied on data corrupted by spatially varying Gaussian noise.
We demonstrated this by using different non-linear operators,
noise levels, and noise spatial variability maps, from less to
more homogeneous. The results suggest that to perform auto-
matic regularization it is fundamental to account for the noise
variance spatial variability. The amount of compensated mis-
estimation also depends on the input image, so it is likely that
for different scenarios and imaging modalities the need of sv-
SURE could even be more marked.
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