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Introduction

irly lssi(tion @igA of temporl sequenes with mesurements olleted dynmilly over time is of prime importne in timeEsensitive pplitionsF hen eh mesurement n e ostly or when it is ritil to t s erly s possileD there is need for methods to mke fst online preditionsF his is for exmple the se in the (eld of helthD where it is neessry to provide medil dignosis s soon s possile from the sequene of medil oservtions olleted over timeF enother exmple is preditive mintenne with the ojetive to ntiipte mhine9s rekdown from its sensor signlsF king into onsidertion tht some inomplete sequenes n e lssi(ed using fewer mesurements thn more omplex onesD n ig method should mke deisions with dptive predition timeF st should dptively deide to lssify n inoming yet inomplete sequene now or to dely the predition to gther more mesurementsF he method should lne its deision etween two omE petitive ojetivesX lssi(tion erliness nd uryF 1.1. Related work es opposed to stti dtD temporl sequenes re dynmi dt tht n e sequentilly ompleted with new mesurements over timeF sn the litertureD lssi(tion on other types of dynmi dt hs een proposed y severl uthors whih turned this prolem s sequentil deision prolemF pormulted s 4lerning when to stop thinking nd do something4 in ID this prolem ws tkled y reinforement lerning @vAF he uthors were interested in 4nytime lgorithms4 tht n e interrupted t ny time nd for whih we ssume tht the longer they 4think4D the etter the qulity of their responseF sn prtiulrD the uthors seek to uild poliy tht deides if n nytime lgorithm should ontinue thinking or if it should return its urrent est nswerF heir pproh is poliyEgrdientEsed nd uses isxpygi lgorithm from PF sn QD wrkov deision proess @whA is formulted for the prolem of text lssi(tion for whih it is not lwys neessry to red n entire doument to lssify its ontentF fy v using pproximte poliy itertionD the uthors propose method tht either ontinues reding doument sentene y senE teneD or lssi(es it @using support vetor mhineAF heir method is shown to etter omodte to smll trining dtsets thn stndrd nonEsequentil lssi(ersF he pproh proposed in QD working on single feture @the senteneAD ws extended to multiple fetures y the sme uthors in RF he key ide is tht some dt points n esily e lssi(ed using few fetures while others would require more fetures to hieve n urte lssi(tionF his n e of prtil interest in vrious dominsF sn mediine for exmpleD online symptom heking for disese dignosis requires suh n lgorithm to (nd key positive symptomsF ipiv lgorithm proposed in S is poliyEsed method using isxpygi whih enourges v gent to disover positive symptoms more quiklyF he uthors inorported potentilEsed rewrd shping in order to P J o u r n a l P r e -p r o o f dpt the rewrd ording to the oservtions olleted y the gent efore nd fter mking n tionF he prolem of ostly feture quisition in the medil domin ws lso ddressed in T who proposed to optimize the trdeEo' etween lssi(tion ury nd the totl feture ost with deep reinforement lerning @hvA sed on houle heepEExetwork @hhxA lgorithm from UF he uthors demonstrted the pility of their lgorithm to solve inry lssi(tion prolems e0ientlyF he trdeEo' etween lssi(tion ury nd the predition time is lso of prmount importne in ig pplitionsF elso lled erly preditionD this prolem hs een solved using sequentil deision methods y vrious nonEhv pprohes in VD WD IHD IID IPD IQF e proposed in IR reent previous work on hv pproh using online heepEExetwork @hxA lgorithm for the multiElss ig prolemF gompred to stndrd ig pprohesD this pproh o'ers n endEtoEend lerning of oth the fetures in the sequenes nd the deision rulesF he endEuser thus does not need to perform feture engineeringF he simultneous optimiztion of oth lssi(tion ury nd erliness relies on trdeEo' spei(ed y the user in terms of rewrd funtion dedited to the ig prolemF he frmework proposed in IR pplies hx lgorithm in its originl formD iFeF in online lerning with suessive repetitions of IA intertion olletion etween the gent nd the environmentD nd its storing in the gent9s memoryD nd PA updte of the gent9s poliyF st mkes the gent9s memory unlnedF sndeedD fter eh quisition of new mesurementD the gent n either predit lel or wit for more dtF por lssi(tion deision t time kD the gent olleted k mesurements in the sequene nd the memory hs een (lled with k -1 dely tions ginst one lssi(tion tionF he dely tion is overE representedF woreoverD sine most tions terminte the quisition proessD it is generlly unlikely for the gent to reh the end of sequeneF irly predition times re overErepresented s wellF he unlned memory in oth predition times nd tions n led the gent to lern on suEoptiml intertions nd distur or slow down its overll triningF 1.2. Contributions he ontriutions we detil in the present pper re the followingF @IA e frme ig s ywh (tting the two ompetitive ojetives of lssi(tion erliness nd uryF e experimentlly ompre two de(nitions of the ywh sed on dely rewrd shping ginst rewrd disountingF @PA sn order to solve the ywh nd trin n ig gentD we dpt hhx lgorithm from U in two versionsD online lerning nd th lerningD depending on whether the ig pplition omes with (nite trining dtset or n ollet new trining dt over timeF e introdue three modi(tions to ope with the forementioned unlE ned memory issueF he modi(tions re the followingX we mke use of n dpted prioritized smpling nd prioritized storing when performing experiene reply nd we simply rede(ne episode initiliztionF Q J o u r n a l P r e -p r o o f Journal Pre-proof e experimentlly show tht these modi(tions improve the gent9s trinE 90 ing in terms of ury ginst speed nd mke the proposed lgorithm more roust to hyperEprmeters settingF @QA sn experimentsD we demonstrte tht stti nive deep neurl networks trined to lssify t stti times re less e0ient in terms of ury ginst speed thn equivlent networks trined with v nd ene(ting from deision 95 mking pilities on dptive predition timesF he reminder of the pper is orgnized s followsF eF P gives kground knowledge of v terminologies nd lgorithmsF sn eF QD we de(ne the ig prolemF eF R nd eF S introdue the method y de(ning nd solving prtilly oservle wrkov deision proess dedited to igF sn eF TD we 100 rry out experimentl evlutions on the methodF eF U onludes the pperF 2. Background of deep reinforcement learning 2.1. Reinforcement learning sn vD the ojetive is to solve deision mking proess hrterized y n gent interting in n unknown environment through tril nd errorF sn 105 eh stte s from the stte spe SD the gent n pik some tion a in the set of possile tions AF he hoie of tion a is ditted y its poliy π suh tht a = π(s)F es responseD the gent reeives rewrd r = R(s, a) nd moves towrd next stte s = T (s, a) with R the rewrd funtion from the environment nd T its trnsition modelF he intertions < s, a, r, s > etween the gent 110 nd the environment go on until the gent rehes terminl stte leding to the end of n episodeF et ll time steps t ∈ N + D the gent seeks to hoose tions leding to mximl return de(ned s the sum of future disounted rewrds

∞ k=0 γ k r t+k F γ ∈ [0, 1]
is disount ftor vluing immedite rewrds rther thn future rewrdsF he 115 optiml poliy π * leds to the mximl returnF State value. he vlue of stte s ∈ S is de(ned s the expettion of return the gent n hope to get strting from tht prtiulr stte s nd following its poliy πF

V π (s) = E π [ ∞ k=0 γ k r t+k |s t = s]
Action value. he tion vlue @or EvlueA of stte s ∈ S onditioned on n tion a is de(ned s the expettion of return the gent n hope to get y piking tion a in stte s nd then following its poliy πF

Q π (s, a) = E π [ ∞ k=0 γ k r t+k |s t = s, a t = a]
fellmn eqution llows to deompose the tion vlue s the sum of immedite rewrd plus disounted tion vlue of the following stteF 

Q π (s, a) = E π [r t + γQ π (s t+1 , a t+1 )|s t = s, a t = a] R J o u
Q(s , a, Θ), Θ -) -Q(s, a, Θ)) 2 @PA 3. Problem denition vet X = (x 1 , ..., x T ) ∈ R p×T e temporl sequene with mximl length T ∈ N + F et eh time step t ∈ [1, T ]D the mesurement x t is vetor of p ∈ N +
feturesF hen the temporl sequene is not fully quiredD we sy tht we oserve prtil temporl sequene X :t = (x 1 , ..., x t ) ∈ R p×t with t ≤ T F e 145 suppose we hve trining dtset D = {(X j , l j )} j=1..n with n pirs of omplete temporl sequenes X nd their ssoited lel l ∈ LD with L the set of lelsF Classication. e @sttiA lssi(er is mthemtil funtion f classif mpping from temporl sequene X to its lel l suh tht f classif : {X} → LF S J o u r n a l P r e -p r o o f Early classication. e de(ne n erly lssi(er s mthemtil funtion f early mpping from temporl sequene X to lel l nd prediting the optiml erliest time step t * ∈ [1, T ] to perform lssi(tionD suh tht f early : tD to perform lssi(tion on the prtil sequene X :t or to dely lssi(tion in order to get dditionl mesurementsF o move loser to this ojetiveD we frme ig s sequentil deision mkE ing prolem represented y ywhF e de(ne the ywh y the tuple {S, A, T, R, O, γ} where S is the stte speD A is the tion speD T is the 165 trnsition modelD R is the rewrd funtionD O is the oservtion spe nd γ is the disount ftorF ih element of the tuple is introdued elowF Agent. he mthemtil funtion for ig tht we seek to optimize eomes the poliy of n gent whih will intert nd trin within the ywhF States. S is the stte speF e stte s ∈ S is hrterized y the tuple 170 s = (X, l, t) with (X, l) ∈ D pir of omplete temporl sequene X nd its ssoited lel l from the trining dtset nd with t ∈ [1, T ] the numer of time steps oserved in the sequeneF ine the ojetive is to predit lels l ∈ L s erly s possileD in relElife pplitions we do not hve ess to the full stte informtionF he lel nd future mesurements re unknown nd 175 the wrkov deision proess is sid to e prtilly oservleF uh models ssume tht we nnot diretly oserve the underlying stte ut insted reeive n inomplete or noisy oservtion of tht stteF Observations. O is the oservtion speF en oservtion o of stte s = (X, l, t) is the prtil sequene of mesurements from X olleted until time t Dynamics. T : S ×A -→ S is the trnsition modelF sn relElife ig pplitionsD the quisition of oservtions is often ostly nd hs to e shortened s muh s possileF yne the system deides to perform lssi(tionD oservtions re no longer olletedF he trnsition model T is de(ned yX

{X} → L × [1, T ]F
T ((X, l, t), a) = terminal if {a ∈ A c } ∪ {a = a d ∩ t = T } (X, l, t + 1) if a = a d Rewards. R : S × A -→ R is the rewrd funtionF vet R(s, a) e the rewrd
for tking tion a in stte sF ewrds should enode the ojetive we wnt the 185 model to rehD spei(lly erliness nd ury in the ig prolemF e hoose to rewrd lssi(tion tions ording to the ury of the predited lelF hen the predited lel mthes the referene lelD we give positive rewrd R((X, l, t), a = l) = +1F yn the ontrry when the predited lel di'ers from the referene lelD we give negtive rewrd

190 R((X, l, t), a = l) = -1F
e point out tht n ojetive n e enoded y severl rewrd funtionsF por sme ojetive of fst predition using s few fetures s possileD the gent is rewrded positively with sore +1 if the lssi(tion is orret in S while it reeives null rewrd for orretion lssi(tion nd negtive rewrds 195 for inorret lssi(tions in TF o enode the ojetive of erlinessD the following strtegies re possileX

• e ould rewrd the gent sed on lssi(tion tions only nd use disount ftor γ < 1 to motivte the gent to get erly rewrdsF he rewrd funtion is then de(ned y

R((X, l, t), a) -→    +1 if a ∈ A c nd a = l -1 if a ∈ A c nd a = l 0 if a = a d
• yr we ould shpe the rewrds for dely with sore depending on timeF sf the rewrds for dely re given ll t one t the time of lssi(tionD the gent will get sprse rewrds whih re often di0ult to trin on s 200 explined in ISF o void sprse rewrdsD the gent will e given negtive rewrds t eh deision of dely insted of single rewrd t the end of delyX R((X, l, t), a d ) = -λ × c(t) with c : [0, T ] → R + the ost funtion of delying the predition t time tD monotoni nonEderesing funtion of timeF λ ∈ R + is prmeter setting the trdeEo' etween the two 205 ojetivesF he more importnt erliness is in omprison to uryD the lrger λ should eF he will to ompromise is pplitionEdependent nd the user n set λ to his prefereneF e wnt the penliztion for dely to tke into ount the mount of informtion the gent hs olleted so frF he ide is tht the more 210 U J o u r n a l P r e -p r o o f oservtions nd knowledge the gent hs out the sequeneD the worst it is to delyF e wnt penlty inresing in time tD in the form of κ t with κ > 1F e normlize the rewrd funtion for dely so tht it is ounded independently of the sequene mximl length T F he rewrd funtion is then de(ned yX 

R((X, l, t), a) -→    +1 if a ∈ A c nd a = l -1 if a ∈ A c nd a = l -λ * κ t /(κ T -1) if a = a d
P (s t = terminal) = P (a 1 = a d ) ≤1 P (a 2 = a d ) ≤1 ... P (a t-1 = a d ) ≤1 = t-1 j=1 P (a j = a d ) ≤1
Actions of classication are the rarest. hen the gent lssi(es t time tD the episode is omposed of t-1 tions of dely for one tion of lssi(tionF his results in getting intertions tht re mostly omposed of dely tionF @PA e ompre erly lssi(ers with dptive predition time pilities to equivlent nive deep neurl networks trined to lssify t stti timesF @QA e ssess performne gin rought y our spei( dpttion of hhx lgorithmF 345 6.1. Dataset Data. e ondut experimentl evlutions on dtset olleted from priE vte projet rried out y iowérieux ompnyF ht re multivrite time series derived from living orgnismsF he ig pplition is relted to n inE vitro miroiologil dignosti nd seeks for rpid tegoriztion of the living 350 orgnisms desried y wF he QISS temporl sequenes X = (x 1 , ..., x T ) hve length T = 77 nd eh mesurement x i∈[1,T ] is 5Edimensionl rryF ith previous nottions from eF QD X ∈ R 5×77 F his relElife exmple n e generlized to industril prolems with the sme ig ojetive on multivrite or univrite temporl sequenesF sn previous 355 work IRD we ompred the v frmework to stteEofEtheErt methods on the g rhive from IW whih is widely used s enhmrk for lssi(tion nd lustering of time seriesF e point out tht the utonomous lerning of fetures for deisionEmking nd lssi(tion mkes the proposed method pplile to dt on whih we hve no fetures expertiseF sndeedD we did not hve ny prior 360 knowledge on these puli dtsetsF Labels. equenes re ssoited to lels aD bD cD nd d depiting four lsses of living orgnismsF pigF I gives the distriution of the lels mong the triningD vlidtion nd testing setsF t-SNE projection. sn pigF PD we represent the trining set with twoEdimensionl 365 tExi emedding of the @ompleteA temporl sequenes using lgorithm from PHF e oserve overlpping lusters of points from di'erent lelsF mples from lss b nd c re often mixed mong the sme lusters of pointsF his ilE lustrtes the omplexity of the dtset in whih sequenes from di'erent lsses re very similr due to the iologil vriility in the dtsetF 370 IQ J o u r n a l P r e -p r o o f 6.2. Evaluation pipeline sn eF RD we frmed ig s sequentil deision mking prolem de(ned y ywhF e proposed to solve the ywh y trining n gent with v in eF SF sn this setionD we introdue metris nd proedures used to trin the gentD selet optiml poliies nd ompre performne etween triningsF 375 6.2.1. Hyper-parameter setting sn eF SD the gent is de(ned y its poliy whose model is deep neurl network Q(o, a, Θ) with weights Θ trined with hhx lgorithmF he deep neurl network trining depends on set of hyperEprmeters to de(neF he omintoril spe of the hyperEprmeters eing too lrgeD we nnot perform 380 n exhustive serhF o (neEtune the methodD we rndomly selet set of hyperEprmeters in restrited omintoril spe ner optiml prmeters presented in ITF e dedite one gent per setting of hyperEprmetersF egents re trined sepE rtely etween ll settingsF 385 6.2.2. Training procedure hen trined under supervision @for stti lssi(tion or regression tsksAD deep neurl networks re updted until the loss funtion stops deresing on the vlidtion setF he seletion of the est deep neurl network model is lso strightforwrdX the seleted model is the one with highest performne on the 390 vlidtion setF hen trined with reinforementD the loss funtion is sed on n pproximtion of future umulted rewrds nd is typilly not used to stop the trining proedure or to selet optiml poliies eitherF snstedD for eh hyperEprmeter setting of the methodD we independently trin n gent for (xed numer of episodes in the environmentD until it rehes 395 IHHHHH updtes of its deep neurl network weights ΘF e simultneously evlE ute the gent of eh setting on the vlidtion set every IHHH updtes of ΘF pigF Q reports the evlutions performed during n gent9s triningF 6.2.3. Evaluation metrics Accuracy. e de(ne the gent ury Acc on dtset

D = {(X j , l j )} j=1..n s Acc = n j=1 1(f classif (X j ) = l j )/n
Time of prediction. he predition time t j,pred of the gent on sequene (X j , l j ) ∈ D is de(ned s the erliest time step for whih the tion vlue of lssi(tion tion outrehes the tion vlue of delyD suh thtX elsoD tests on the stdev Acc nd stdev t pred led to the onlusion tht 460 M shaping is more vrile thn M discount during its (neEtuningF 6.4. Experimental comparison between early classier and naive static classiers e seek to experimentlly mesure the dded vlue of our method for ig in omprison to stti lssi(tionF wore preiselyD for n gent tht would predit on verge t t pred D we seek to evlute whether stti hxx lssi(er 465 tht would mke the predition with the sme verge speed @ut lwys t the sme time step t pred A would hieve etter lssi(tion qulity thn the gentF o perform the evlutionD we detivte the deision mking pility of our lgorithmD iFeF the v prtD nd trin the equivlent nive deep neurl 470 network to lssify t list of prede(ned @sttiA time stepsF IU J o u r n a l P r e -p r o o f TFPFPAF he neurl networks used for oth stti lssi(tion nd the gent9s poliy re similr exept from the output lyerF he output lyer of the gent9s poliy is liner nd hs n dditionl neuron for the dely tion ompred to the stti lssi(er whih hs s mny neurons s lels nd softmx tivtionF 485 Experimental comparison. sn pigF TD we report topES poliies performne for di'erent rnges of t pred @eF TFPFRAF foth stti deep neurl network nd erly lssi(er hve poor Acc in erly times @t pred < 20A due to lk of informtion in the prtil temporl sequenesF hen the erly lssi(er provides topES poliies with higher Acc thn stti 490 lssi(ersF he improvement in Acc for equivlent t pred is due to the pility of the gent to dpt its lssi(tion individully on eh temporl sequeneF he gent n hoose to quikly lssify sequenes tht n esily een tegoE rized or to require more oservtions on sequenes lking disriminnt ptternsF he erly lssi(er9s will to individully ompromise mkes the lssi(tion 495 more e0ient thn stti networks using the sme mount of oservtions in ll sequenes independently of their omplexityF snterestinglyD we nnot evlute the erly lssi(er in lte predition times @t pred > 55AF o reh its ojetive of fst deision mkingD the gent did not hoose to lssify t the end of the sequenes nd it lwys provided fstest Experimental comparison. opES poliies @eF TFPFRA on ll four versions of hhx lgorithm re shown in pigF UF por eh versionD ury rpidly inreses when the predition time rehes t pred = 30F henD ury slightly gets etter when the predition time inreses up to t pred = 40F e n oserve tht ury stops inresing 525 @nd even slightly dereses in some sesA when the predition is performed t t pred > 50 pproximtelyF his is due to the prtiulrity of the pplition for whih more time psses nd more the iologil proess ssoited with di'erent lsses will hve similr sttesF DDQN-baseline topES poliies re glolly the lest urte under ll trdeE 530 o's of t pred F opES poliies with highest Acc for di'erent trdeEo' of t pred re produed y DDQN-ei nd DDQN-ps-eiF e n see tht the di'erent proposed strtegies led to optiml poliies whih re t lest s good or etter thn those otined with the originl hhx lgorithmF he distriutions of performne metris from eF TFPFS re shown in pigF 535 V nd sttistilly ompred in F PF e (rst ompre the est lssi(tion performne hieved y the gent during eh of its trining sessionsD on eh version of the lgorithmF ht is to syD on eh of trining of the gentD we keep the poliy tht ws the most urte in lssi(tionF ests from F P show tht oth DDQN-ei 540 nd DDQN-ps-ei improve mx Acc over DDQN-baselineF sn other wordsD these versions of the lgorithm result in poliies with the est lssi(tion qulityF henD we ompre the verge performne of the gent during eh of its trining sessionsD y verging the performne of eh of its poliies from the sme trining sessionF his llows to illustrte the overll performne of the 545 gent throughout its triningD nd not t spei( moment of its triningF ests PH J o u r n a l P r e -p r o o f The alternative hypothesis is that the metric performance is dierent between the dierent versions of the algorithm. Fig. 8 shows which version has the greatest score.

t j,pred = min t∈[1,T ] {arg max a∈A Q(X j :t , a) ∈ A c } IR J o u
• smprovements to hhx online lgorithm suh s prioritized smplingD 575 prioritized storing nd rndom episode initiliztion inrese the lssiE (tion ury of the gent while oosting the rpidity of its deision mkingF

• he method empirilly results in n gent with dptive fstElssi(tion pilities whih hieves higher ury performne thn n equivE 

  r n a l P r e -p r o o f sf the optiml tion vlue funtion de(ned s Q * (s, a) = max π Q π (s, a) is knownD then n optiml poliy n e inferred y ting greedily over the E funtion suh tht π * (s) = arg max a Q * (s, a)F o (nd n optiml poliyD we n use two fmilies of methods ISX poliyE 120 sed methods pproximte the poliy funtion π diretly while vlueEsed methods pproximte the tion vlue funtion Q π (s, a) nd t greedily over it to derive the poliyF

  180 suh tht o = X :t F T J o u r n a l P r e -p r o o f Actions. A is the tion speX A = A c ∪ a d D with a d the tion of delying the predition nd with A c the set of lssi(tion tionsX A c = LF

  sf villeD inluding domin knowledge into the rewrd funtion n guide 215 the gent towrds etter or fster lerningF Discount factor. γ ∈ [0, 1] is the disount ftorF hen γ < 1D rewrds re disounted nd more importne is given to immedite rewrdsF por episodi environments with short horizonsD the umultive rewrd is (nite nd γ n e set to IF invironments for ig hve horizon of size T whih is the mximl 220 length of sequenesF 4.1. POMDP models e de(ne two models of ywh for igD sed on dely rewrd shping or rewrd disountingX • M shaping = {S, A, T, R, O, γ} is ywh where dely tions re reE 225 wrded negtively over time with R((X, l, t), a d ) = -λ * κ t /(κ T -1)D ∀t ∈ [1, T ] nd rewrds re not disounted with γ = 1F • M discount = {S, A, T, R, O, γ} is ywh where rewrds re disounted with γ < 1F he tion of dely is not rewrded nd the gent olE lets rewrds @positive or negtiveA from lssi(tion tions only with 230 R((X, l, t), a d ) = 0, ∀t ∈ [1, T ]F 4.2. Specicities of the POMDP models All but one of the actions terminate the episode. es de(ned oveD tions re either to predit lel l ∈ L or to dely preditionX A = A c ∪ a d F ine we terE minte the quisition of new oservtions one the lssi(tion is performedD 235 ll ut one of the tions led to terminl stteF he proility of rehing time t in n episode tends to zero s t inresesX
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 12 Figure 1: Distribution of labels a, b, c, and d among the sets of training, validation and testing.

Figure 3 :Figure 4 :

 34 Figure 3: An agent training with 100000 updates of its deep neural network parameters Θ. The agent's policy is evaluated every 1000 updates on the validation set. Policies performances are represented with dot points in terms of Acc vs. t pred . Dots points are colored according to the updates. The black vertical line (resp. band) gives the agent's mean (resp. stdev) t pred over training. The black horizontal line (resp. band) gives the agent's mean (resp. stdev) Acc over training. The red horizontal line gives the agent's maximal Acc over training.
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 5 Figure 5: Performance metrics on M shaping and M discount on the validation set. (a) Max Acc. (b) Mean Acc. (c) Stdev Acc. (d) Mean t pred . (e) Stdev t pred .
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 6 Figure6: Top-5 policies from M shaping and top-5 static deep neural network classiers. We select the top-5 policies and classiers in Acc on the validation set for several ranges of t pred . We evaluate those policies and classiers on the test set. The full line represents mean Acc and the band is the stdev Acc.
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 7 Figure 7: Top-5 policies from DDQN-baseline, DDQN-ei, DDQN-ps and DDQN-ps-ei evaluated on the test set. The full line represents mean accuracy and the band is the accuracy standard deviation.
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 8 Figure 8: Performance metrics on DDQN-baseline, DDQN-ps, DDQN-ei and DDQN-ps-ei on the validation set. (a) Max Acc. (b) Mean Acc. (c) Stdev Acc. (d) Mean t pred . (e) Stdev t pred .
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Table 1 :

 1 Statistical comparison between M shaping and M discount performance metrics. The table reports p-values of Mann-Whitney rank tests on the null hypothesis that M shaping and M discount have comparable metric score for each performance metric (max Acc, mean Acc, stdev Acc, mean t pred and stdev t pred ) from Fig.5. The null hypothesis is rejected in favor of the alternative hypothesis on tests with a p-value below 0.05, shown in bold. The alternative hypothesis is that the metric performance is dierent between the dierent POMDP models.

		erformne		tility
	wx Acc wen Acc wen t pred td Acc	td t pred
	0.0228	0.1962	0.0018	0.0016 1.3162e-8

Table 2 :

 2 Statistical comparison between DDQN-baseline, DDQN-ps, DDQN-ei and DDQN-ps-ei performance metrics. The table reports p-values of Mann-Whitney rank tests on the null hypothesis that DDQN-baseline have a score comparable to DDQN-ps and DDQN-ps-ei for each performance metric (max Acc, mean Acc, stdev Acc, mean t pred and stdev t pred ) from Fig.8. The null hypothesis is rejected in favor of the alternative hypothesis on tests with a p-value below 0.05, shown in bold.
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