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Abstract

In this article, we address the problem of early classification on temporal se-
quences with adaptive prediction times. We frame early prediction as a se-
quential decision making problem and we define a partially observable Markov
decision process (POMDP) fitting the competitive objectives of classification
earliness and accuracy. We solve the POMDP by training an agent for early
prediction with reinforcement learning. The agent learns to make adaptive deci-
sions between classifying incomplete sequences now or delaying its prediction to
gather more data points. We adapt an existing algorithm for batch and online
learning of the agent’s action value function with a deep neural network. We
propose prioritized sampling, prioritized storing and a specific episode initial-
ization to address the fact that the agent’s memory is unbalanced due to (1):
all but one of its actions terminate the process and thus (2): actions of classifi-
cation are rarer than delay actions. In experiments, we compare two definitions
of the POMDP based on delay reward shaping vs. reward discounting. We
demonstrate that a static naive deep neural network trained to classify at static
times is less efficient in terms of accuracy vs. speed than the equivalent network
trained with adaptive decision making capabilities. Finally, we show improve-
ments in accuracy induced by our specific adaptation to existing algorithm used
in the online learning of the agent’s action value function.
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1. Introduction

Early classification of temporal sequences with measurements collected dy-
namically over time is of prime importance in time-sensitive applications. When
each measurement can be costly or when it is critical to act as early as possible,
there is a need for methods to make fast online predictions. Taking into con-5

sideration that some incomplete sequences can be classified using fewer mea-
surements than more complex ones, the method should make decisions with
adaptive prediction time. It should adaptively decide to classify an incoming
yet incomplete sequence now or to delay the prediction to gather more mea-
surements. The method should balance its decision between two competitive10

objectives: classification earliness and accuracy.

1.1. Related work
As opposed to static data, temporal sequences are dynamic data that can be

sequentially completed with new measurements. Classification on other types of
dynamic data has been proposed by several authors which turned the problem15

of dynamic data classification as a sequential decision problem.
Formulated as "learning when to stop thinking and do something" in [1], this

problem was tackled by reinforcement learning. The authors were interested in
algorithms capable of returning a response at any time, which, when working
on a problem, can be interrupted. In that case, an "any time algorithm" must20

return its current best answer. Their approach is policy-gradient-based and uses
REINFORCE from [2]. After collecting an observation at a given step k, the
stochastic policy determines whether the algorithm should continue to think
with a given probability, or to act. In case it is interrupted, the policy thus
allows to provide a confidence value in the prediction.25

In [3], a Markov decision process (MDP) is formulated for the problem of
text classification where it is not always necessary to read an entire document
to classify its content. By reinforcement learning using approximate policy iter-
ation, the authors propose a method that either continues reading a document
sentence by sentence, or classifies it (using a support vector machine). Their30

method is shown to better accomodate to small training datasets than standard
non-sequential classifiers.

The approach proposed in [3], working on a single feature (the sentence),
was extended to multiple features by the same authors in [4]. The key idea is
that some data points can easily be classified using few features while others35

would require more features to achieve an accurate classification. This can be of
practical interest in various domains. In medicine for example, online symptom
checking for disease diagnosis requires such an algorithm to find key positive
symptoms. REFUEL algorithm proposed in [5] is a policy-based method using
REINFORCE which encourages a reinforcement learning agent to discover posi-40

tive symptoms more quickly. The authors incorporated a potential-based reward
shaping in order to adapt the reward according to the observations collected by
the agent before and after making an action.
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The problem of costly feature acquisition in the medical domain was also
tackled in [6] who proposed to optimize the trade-off between classification ac-45

curacy and the total feature cost using a deep reinforcement learning (DRL)
based on Double Deep-Q-Network (DDQN) algorithm from [7]. The authors
demonstrated the capability of their algorithm to solve binary classification
problems efficiently.

The trade-off between classification accuracy and the prediction time is also50

of paramount importance in early classification applications. Also called early
prediction, this problem has been solved using sequential decision methods by
various non-DRL approaches in [8, 9, 10, 11, 12, 13].

We proposed in [14] a recent previous work on a DRL approach using online
Deep-Q-Network (DQN) algorithm for the early multi-class classification prob-55

lem. Compared to standard approaches for early classification, this approach is
an end-to-end learning of both the features in the sequences and the decision
rules. The end-user thus does not need to perform feature engineering. The
simultaneous optimization of both classification accuracy and earliness relies on
a trade-off specified by the user in terms of a reward function dedicated to the60

problem of early classification.
The framework for early prediction with reinforcement learning we proposed

in [14] makes the agent’s memory unbalanced. Indeed, after each acquisition of
new measurement, the agent can either predict a class label or wait for more
data. For a classification decision at time k, the agent collected k measurements65

in the sequence and the memory has been filled with k−1 delay actions against
one classification action. The delay action is over-represented. Moreover, since
most actions terminate the acquisition process, it is generally unlikely for the
agent to reach the end of a sequence. Early prediction times are over-represented
as well. The unbalanced memory in both prediction times and actions can lead70

the agent to learn on sub-optimal experiences and disturb its overall training.

1.2. Contributions
The contributions we detail in the present paper are the following.
(1) We frame early prediction as a POMDP fitting the two competitive ob-

jectives of classification earliness and accuracy. We experimentally compare two75

definitions of the POMDP based on delay reward shaping vs. reward discount-
ing.

(2) We solve the POMDP by training an agent with both online and batch
reinforcement learning. The latest is particularly interesting for (early) classifi-
cation of temporal sequences since datasets are generally finite, but the online80

version of the algorithm can be useful to adapt the parameters of the agent’s
policy if more data are collected. We train the agent with DDQN algorithm
from [7] on which we introduce three modifications to cope with the aforemen-
tioned unbalanced memory issue. The modifications are the following: we make
use of an adapted prioritized sampling and prioritized storing when performing85

experience replay and we simply redefine episode initialization.
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We experimentally show that these modifications improve the agent’s train-
ing in terms of accuracy vs. speed and make the proposed algorithm more
robust to hyper-parameters setting.

(3) In experiments, we demonstrate that static naive deep neural networks90

trained to classify at static times are less efficient in terms of accuracy vs. speed
than equivalent networks trained with decision making capabilities on adaptive
prediction times.

The rest of the paper is organized as follows. Section 2 gives background
knowledge of reinforcement learning terminologies and algorithms. In Section95

3, we define the problem of early classification. Sections 4 and 5 introduce the
method by defining and solving a partially observable Markov decision process
dedicated to early prediction. In Section 6, we carry out experimental evalua-
tions on the method. Section 7 concludes the paper.

2. Background of deep reinforcement learning100

2.1. Reinforcement learning
In reinforcement learning, the objective is to solve a decision making process

characterized by an agent interacting in an unknown environment through trial
and error. In each state s from the state space S, the agent can pick some action
a in the set of possible actions A. The choice of action a is dictated by its policy105

π such that a = π(s). As a response, the agent receives a reward r = R(s, a)
and moves toward next state s′ = T (s, a) with R the reward function from the
environment and T its transition model. The interactions < s, a, r, s′ > between
the agent and the environment go on until the agent reaches a terminal state
leading to the end of an episode.110

At all timesteps t ∈ N+, the agent seeks to choose actions leading to maximal
return defined as the sum of future discounted rewards

∑∞
k=0 γ

krt+k. γ ∈ [0, 1]
is a discount factor valuing immediate rewards rather than future rewards. The
optimal policy π∗ leads to the maximal return.

State value. The value of a state s ∈ S is defined as the expectation of return
the agent can hope to get starting from that particular state s and following its
policy π.

Vπ(s) = Eπ[

∞∑
k=0

γkrt+k|st = s]

Action value. The action value (or Q-value) of a state s ∈ S conditioned on an
action a is defined as the expectation of return the agent can hope to get by
picking action a in state s and then following its policy π.

Qπ(s, a) = Eπ[

∞∑
k=0

γkrt+k|st = s, at = a]
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Bellman equation allows to decompose the action value as the sum of immediate
reward plus discounted action value of the following state.

Qπ(s, a) = Eπ[rt + γQπ(st+1, at+1)|st = s, at = a]

If the optimal action value function defined as Q∗(s, a) = maxπ Qπ(s, a) is115

known, then an optimal policy can be inferred by acting greedily over the Q-
function such that π∗(s) = arg maxaQ∗(s, a).

To find an optimal policy, we can use two families of methods: policy-based
methods approximate the policy function π directly while value-based methods
approximate the action value function Qπ(s, a) and act greedily over it to derive120

the policy.

2.2. Deep-Q-Network
In [15], the authors seek to approximate the optimal action value function

Q∗ by a deep neural network Q(s, a,Θ) with parameters Θ. Through a gradi-
ent descent on mini-batches of interactions {< s, a, r, s′ >} and using Bellman125

equation, the DQN algorithm minimizes the loss function from eq. 1 using two
strategies:

L(Θ) = (r + γ arg max
a

Q(s′, a,Θ−)−Q(s, a,Θ))2 (1)

• Experience replay allows to sample mini-batches of past interactions
{< s, a, r, s′ >} from a replay memory to perform stochastic gradient
descent. Samples within a batch are likely to come from independent or130

remote interactions further reducing correlations in the neural network
updates than the original Q-learning algorithm.

• Q-learning targets are computed with a separate Q-network Q(s, a,Θ−)
whose parameters Θ− are updated periodically to remove correlations and
improve convergence of the algorithm.135

Double Deep-Q-Network. In order to overcome DQN overestimations of the ac-
tion values, the authors in [7] introduce DDQN algorithm and modify the loss
function to optimize in eq. 2.

L(Θ) = (r + γQ(s′, arg max
a

Q(s′, a,Θ),Θ−)−Q(s, a,Θ))2 (2)

3. Problem definition

Let X = (x1, ..., xT ) ∈ Rp×T be a temporal sequence with maximal length140

T ∈ N+. At each timestep i ∈ [1, T ], the observation xi is a vector of p ∈ N+

features. When the temporal sequence is not fully acquired, we say that we
observe a partial temporal sequence X:t = (x1, ..., xt) ∈ Rp×t with t ≤ T . We
suppose we have a training dataset D = {(Xj , lj)}j=1..n with n pairs of complete
temporal sequences X and their associated class label l ∈ L, with L the set of145

labels.
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Classification. A (static) classifier is a mathematical function fclassif mapping
from a temporal sequence X to its class label l such that fclassif : {X} → L.
The performance of static classifiers over a dataset D is often measured through
the accuracy score: Acc =

∑n
j=1 1(fclassif (Xj) = lj)/n.150

Early classification. We define an early classifier as a mathematical function
fearly mapping from temporal sequence X to class labels l and predicting the
optimal earliest timestep t∗ ∈ [1, T ] to perform classification, such that fearly :
{X} → L × [1, T ]. The early classifier seeks to optimize the two competing
scores of classification accuracy and earliness:

t∗ = arg max
t∈[1,T ]

Acc(fearly(X:t), l) + Earliness(t)

These two objectives are often competitive since for two timesteps t1, t2 ∈
[1, T ], an earlier timestep t1 < t2 gets a larger score of Earliness while its score
of Acc can decrease due to the lack of information in Xt1 in comparison to Xt2 .

4. Early classification as a Partially Observable Markov Decision Pro-
cess155

We defined an early classifier as a model mapping from temporal sequence
X to class labels l and predicting the optimal earliest timestep t∗ ∈ [1, T ] to
perform classification. In real life applications, we do not observe the complete
sequence X but rather sequentially collect new observations xi ∈ Rp at each
timestep i ∈ [1, T ]. We focus on applications which do not seek to directly160

predict optimal timestep t∗ ∈ [1, T ] for classification but rather decide online,
at each time step t, to perform classification on the partial sequence X:t or to
delay classification in order to get additional observations.

To move closer to this objective, we frame early classification as a sequential
decision making problem represented by a POMDP. We define the POMDP by165

the tuple {S,A, T,R,O, γ} where S is the state space, A is the action space,
T is the transition model, R is the reward function, O is the observation space
and γ is the discount factor. Each element of the tuple is introduced below.

Agent. The mathematical function for early classification that we seek to op-
timize becomes the policy of an agent which will interact and train within the170

POMDP.

States. S is the state space. A state s ∈ S is characterized by the tuple s =
(X, l, t) with (X, l) ∈ D a pair of temporal sequence X and its associated label l
from the training dataset and with t ∈ [1, T ] the number of time steps observed
in the sequence. Since the objective is to predict class labels l ∈ L as early175

as possible, in real life applications we do not have access to the full state
information. The class label and future observations are unknown and the
Markov decision process is said to be partially observable. Such models assume
that we cannot directly observe the underlying state but instead receive an
incomplete or noisy observation of that state.180
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Observations. O is the observation space. An observation o of a state s =
(X, l, t) is the partial sequence of data points from X collected until time t such
that o = X:t.

Actions. A is the action space: A = Ac ∪ ad, with ad the action of delaying the
prediction and with Ac the set of classification actions: Ac = L.185

Dynamics. T : S×A −→ S is the transition model. In real life applications with
early prediction objectives, the acquisition of observations is often costly and
has to be shortened as much as possible. Once the system decides to perform
classification, observations are no longer collected. The transition model T is
defined by:

T ((X, l, t), a) =

{
terminal if {a ∈ Ac} ∪ {a = ad ∩ t = T}
(X, l, t+ 1) if a = ad

Rewards. R : S × A −→ R is the reward function. Let R(s, a) be the reward
for taking action a in state s. Rewards should encode the objective we want
the model to reach, specifically earliness and accuracy in the early classification
problem.

We choose to reward the classification actions according to the accuracy of190

the predicted class label. When the predicted class label matches the reference
label, we give a positive reward R((X, l, t), a = l) = +1. On the contrary when
the predicted class label differs from the reference label, we give a negative
reward R((X, l, t), a 6= l) = −1.

We point out that an objective can be encoded by several reward functions.195

For a same objective of fast prediction using as few features as possible, the
agent is rewarded positively with a score +1 if the classification is correct in [5]
while it receives null reward for correction classification and negative rewards
for incorrect classifications in [6].

To encode the objective of earliness, the following strategies are possible:200

• We could reward the agent based on classification actions only and use
a discount factor γ < 1 to motivate the agent to get early rewards. The
reward function is then defined by

R((X, l, t), a) 7−→

 +1 if a ∈ Ac and a = l
−1 if a ∈ Ac and a 6= l
0 if a = ad

• Or we could shape the rewards for delay with a score depending on time.
If the rewards for delay are given all at once at the time of classification,
the agent will get sparse rewards which are often difficult to train on as
explained in [16]. To avoid sparse rewards, the agent will be given negative
rewards at each decision of delay instead of a single reward at the end of205

delay: R((X, l, t), ad) = −λ × c(t) with c : [0, T ] → R+ the cost function
of delaying the prediction at time t, a monotonic non-decreasing function
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of time. λ ∈ R+ is a parameter setting the trade-off between the two
objectives. The more important earliness is in comparison to accuracy,
the larger λ should be. The will to compromise is application-dependent210

and the user can set λ to his preference.
We want the penalization for delay to take into account the amount of
information the agent has collected so far. The idea is that the more
observations and knowledge the agent has about the sequence, the worst
it is to delay. We want a penalty increasing in time t, in the form of κt215

with κ > 1. We normalize the reward function for delay so that it is
bounded independently of the sequence maximal length T .
The reward function is then defined by:

R((X, l, t), a) 7−→

 +1 if a ∈ Ac and a = l
−1 if a ∈ Ac and a 6= l
−λ ∗ κt/(κT − 1) if a = ad

If available, including domain knowledge into the reward function can guide
the agent towards a better or faster learning.

Discount factor. γ ∈ [0, 1] is the discount factor. When γ < 1, rewards are220

discounted and more importance is given to immediate rewards. For episodic
environments with short horizons, the cumulative reward is finite and γ can be
set to 1. Environments for early classification have horizon of size T which is
the maximal length of sequences.

4.1. POMDP models225

We define two models of the POMDP, based on delay reward shaping vs.
reward discounting:

• Mshaping = {S,A, T,R,O, γ} is a POMDP where delay actions are re-
warded negatively over time with R((X, l, t), ad) = −λ ∗ κt/(κT − 1),∀t ∈
[1, T ] and rewards are not discounted with γ = 1.230

• Mdiscount = {S,A, T,R,O, γ} is a POMDP where rewards are discounted
with γ < 1. The action of delay is not rewarded and the agent col-
lects rewards (positive or negative) from classification actions only with
R((X, l, t), ad) = 0,∀t ∈ [1, T ].

4.2. Specificities of the POMDP models235

All but one of the actions terminate the episode. As defined above, actions are
either to predict a class label l ∈ L or to delay prediction: A = Ac ∪ ad.
Since we terminate the acquisition of new observations once the classification is
performed, all but one of the actions lead to a terminal state. The probability
of reaching time t in an episode tends to zero as t increases:240

P (st 6= terminal) = P (a1 = ad)︸ ︷︷ ︸
≤1

P (a2 = ad)︸ ︷︷ ︸
≤1

... P (at−1 = ad)︸ ︷︷ ︸
≤1

=

t−1∏
j=1

P (aj = ad)︸ ︷︷ ︸
≤1
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Actions of classification are the rarest. When the agent classifies at time t, the
episode is composed of t−1 actions of delay for one action of classification. This
results in getting interactions that are mostly composed of delay action.

5. Learning the action value with a deep neural network

The action space being finite and small, we choose to learn the action value245

function and define the agent’s policy π by acting greedily over the action val-
ues. The observation space composed of temporal sequences is continuous and
therefore the action value function cannot be represented by a finite table with
action values on all pairs of observations and actions.

We approximate the action value function Q(s, a) with a deep neural network250

Q(o, a,Θ) with parameters Θ defined over the state of observations O. From the
POMDP definition and by approximating the action value with a deep neural
network, the method simultaneously learns optimal classification patterns in
the sequences and optimal strategic decisions for the time of prediction. The
end-to-end learning capabilities of neural networks set the user free from a prior255

step of feature engineering and definition of prediction rules.
We train the neural network Q(o, a,Θ) with DDQN algorithm from [7] to

find optimal parameters Θ.

5.1. Batch learning
Since many real-life applications of the early prediction problem come with a260

finite training dataset, their underlying POMDPs have a finite number of expe-
riences to train on. Unlike video games traditionally used in DRL and for which
the emulator can generate an infinite number of episodes, leading to simulta-
neous data collection and optimization, some applications cannot generate new
interactions with the environment along training. For those applications with265

a relatively small training dataset, a batch version of DDQN where the data
collection is decoupled from training can be used. We present in Algorithm 1
the adaptation of DDQN to early classification in a batch mode. The idea is
to first build an exhaustive replay memory with all possible interactions and
use prioritized sampling proposed in Section 5.1.1 to cleverly learn from it. The270

advantage of a batch version of the DDQN is to set the agent free from its tradi-
tional exploration-exploitation dilemma, leading to fewer hyper-parameters to
tune.

5.1.1. Prioritized sampling
DDQN uses a stochastic gradient descent where a mini-batch of interactions275

is randomly selected from the replay memory to update the neural networks
parameters and minimize the loss function from equation 2. A specificity of the
POMDP for early classification is the over-representation of the delay action
ad compared to prediction actions Ac. With DDQN uniform sampling in the
replay memory, batches of interactions will be highly unbalanced and the agent280

will harldy learn from prediction experiences.
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We adapt DDQN with a simple strategy where a fraction of interactions
within a mini-batch are forced to come from prediction actions and where the
sampling is forced to be balanced among different class labels in order to be
robust to unbalanced training datasets.285

From a replay memoryM and for each class label l ∈ L, we sample a random
mini-batch of interactions {< o, a, r, o′ >} ∼ M such that the observation o is
associated to a temporal sequence X of class label l, with fraction µ having
a ∈ Ac. µ ∈ [0, 1] is the sampling parameter.

Algorithm 1 DDQN algorithm applied to early classification in batch mode

Require: Environment described by a POMDP {S,A, T,R,O, γ} as defined in
Section 4.1 and corresponding training dataset D = {(Xj , lj)}j=1..n.
Sampling parameter µ ∈ [0, 1] and DDQN hyperparameters from [7].

Ensure: Action value function Q(o, a,Θ) with optimal weights Θ∗

Store all possible experiences in replay memoryM:
for j = 1 ... n do

Sample a training pair (Xj , lj) ∼ D.
for t = 1 ... T do

Compute observation o = Xj
:t

for a ∈ A do
Compute reward r = R((Xj , lj , t), a)
Compute next observation o′ = T ((Xj , lj , t), a).
Store interaction < o, a, r, o′ > into replay memoryM.

end for
end for

end for
Randomly initialize weights Θ. Set Θ− = Θ.
for step = 1 ... M do

Sample mini-batch of interactions {< o, a, r, o′ >} ∼ M using prioritized
sampling from Section 5.1.1 with sampling parameter µ.
Update weights Θ with gradient descent on loss function from eq. 2 com-
puted on the mini-batch {< o, a, r, o′ >}.
Periodically update Θ− = Θ

end for

5.2. Online learning290

Solving early prediction with reinforcement learning can also be performed
in an online mode with simultaneous data collection and optimization of the pol-
icy. To fit to the early prediction POMDP specificities, we propose in Algorithm
2 an adaptation of DDQN algorithm with a simple episode initialization strat-
egy (Section 5.2.2), prioritized sampling (Section 5.1.1) and prioritized storing295

(Section 5.2.1).
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5.2.1. Prioritized storing
To avoid possible overwriting of the delay action ad in the replay memory,

we propose to allocate a fraction of the memory to prediction actions. With
this strategy, delay actions will not be stored with the same importance than300

prediction actions and will be more often replaced.

5.2.2. Episode initialization
To answer our objective of fast decision making, the agent has little interest

in postponing prediction and reaching the end of temporal sequences. Therefore
a static episode initialization at time t = 1 would cause early prediction times305

to be over-represented in the replay memory. In Algorithm 2, we adapt DDQN
with a specific episode initialization. We start an episode at random time in the
temporal sequence to compel the agent to explore and train on all times of the
sequence acquisition.

Algorithm 2 DDQN algorithm applied to early classification in online mode

Require: Environment described by a POMDP {S,A, T,R,O, γ} as defined in
Section 4.1 and corresponding training dataset D = {(Xj , lj)}j=1..n.
Sampling parameter µ ∈ [0, 1] and DDQN hyperparameters from [7].

Ensure: Action value function Q(o, a,Θ) with optimal weights Θ∗

Randomly initialize weights Θ. Set Θ− = Θ. Initialize replay memoryM.
for episode = 1 ... M do

Initialize episode observation ot with episode initialization from Section
5.2.2
while episode not terminated do

The agent receives observation ot and picks action at =
arg maxa∈AQ(ot, a,Θ) with probability ε or random action with
probability 1− ε.
The environment computes reward rt = R((X, l, t), at) and next obser-
vation ot+1 = T ((X, l, t), at).
Store interaction < ot, at, rt, ot+1 > into replay memoryM according to
prioritized storing from Section 5.2.1.
Sample mini-batch of interactions {< o, a, r, o′ >} ∼ M according to
prioritized sampling from Section 5.1.1 with sampling parameter µ.
Update weights Θ with gradient descent on loss function from eq. 2
computed on the mini-batch {< o, a, r, o′ >}.
Periodically update Θ− = Θ
Increment time t = t+ 1

end while
end for

6. Experimental evaluation310

The experimental objectives are threefold: (1) We evaluate the effect of
delay reward shaping vs. reward discounting in the definition of the POMDP.
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Figure 1: Distribution of class labels
a, b, c, and d among the sets of train-
ing, validation and testing.
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Figure 2: Two-dimensional t-SNE embedding
of the temporal sequences from the training set.

(2) We compare early classifiers with adaptive prediction time capabilities to
equivalent naive deep neural networks trained to classify at static times. (3) We
assess performance gain brought by our specific adaptation to DDQN algorithm.315

6.1. Dataset
Data. We conduct experimental evaluations on a dataset collected from a pri-
vate project carried out by bioMérieux company. Data are multivariate time se-
ries derived from living organisms. The 3155 temporal sequencesX = (x1, ..., xT )
have length T = 77 and each data point xi∈[1,T ] is a 5-dimensional array. With320

previous notations from Section 3, X ∈ R5×77.
This real life example can be generalized to industrial problems with the same

objective of early classification on multivariate or univariate temporal sequences.
In previous work [14], we compared the reinforcement learning framework to
state-of-the-art methods on the UCR archive from [17] which is widely used as325

benchmark for classification and clustering of time series.

Labels. Sequences are associated to class labels a, b, c, and d depicting four
classes of living organisms. Figure 1 gives the distribution of the class labels
among the training, validation and testing sets.

t-SNE projection. In Figure 2, we represent the training set with a two-dimensional330

t-SNE embedding of the (complete) temporal sequences using algorithm from
[18]. We observe overlapping clusters of points from different class labels. Sam-
ples from class b and c are often mixed among the same clusters of points. This
illustrates the complexity of the dataset in which sequences from different classes
are very similar due to the biological variability in the dataset.335

6.2. Evaluation pipeline
In Section 4, we framed early prediction as a sequential decision making

problem defined by a POMDP. We proposed to solve the POMDP by training
an agent with reinforcement learning in Section 5. In this section, we introduce
metrics and procedures used to train the agent, select optimal policies and340

compare performance between trainings.
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6.2.1. Hyper-parameter setting
In Section 5, the agent is defined by its policy whose model is a deep neural

network Q(o, a,Θ) with weights Θ trained with DDQN algorithm. The deep
neural network training depends on a set of hyper-parameters to define. The345

combinatorial space of the hyper-parameters being too large, we cannot perform
an exhaustive search.

To fine-tune the method, we randomly select a set of hyper-parameters in a
restricted combinatorial space near optimal parameters presented in [15]. We
dedicate one agent per setting of hyper-parameters. Agents are trained sepa-350

rately between all settings.

6.2.2. Training procedure
When trained under supervision (for static classification or regression tasks),

deep neural networks are updated until the loss function stops decreasing on
the validation set. The selection of the best deep neural network model is also355

straightforward: the selected model is the one with highest performance on the
validation set. When trained with reinforcement, the loss function is based on
an approximation of future cumulated rewards and is typically not used to stop
the training procedure or to select optimal policies either.

Instead, for each hyper-parameter setting of the method, we independently360

train an agent for a fixed number of episodes in the environment, until it reaches
100000 updates of its deep neural network weights Θ. We simultaneously eval-
uate the agent of each setting on the validation set every 1000 updates of Θ.
Figure 3 reports the evaluations performed during an agent’s training.

6.2.3. Evaluation metrics365

Accuracy. We define the agent accuracy Acc on a dataset D = {(Xj , lj)}j=1..n

as

Acc =

n∑
j=1

1(fclassif (Xj) = lj)/n

Time of prediction. The prediction time tj,pred of the agent on a sequence
(Xj , lj) ∈ D is defined as the earliest time-step for which the action value
of a classification action outreaches the action value of delay, such that:

tj,pred = arg min
t∈[1,T ]

arg max
a∈A

Q(Xj
:t, a) ∈ Ac

The prediction time tpred of the agent on a dataset D is the mean of prediction
times on all sequences from the dataset, such that:

tpred =

n∑
j=1

tj,pred/n
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6.2.4. Optimal policy selection
In [15], the authors evaluate the agent policies over training and select the

optimal policy as the one with the highest score of reward. In the special case
of early prediction with two competitive objectives optimized one against the
other, the optimal policy selection can be application-dependant.370

Among all trainings, each one being dedicated to a set of hyper-parameters,
we select the policy with highest Acc on the validation set for several ranges
of tpred (as illustrated in Figures 4, 6 and 7 where the top-5 optimal policies
are represented). We then have as many optimal policy candidates as ranges of
tpred considered. Among all candidates, we can then choose the optimal policy375

as the one satisfying the most our will to compromise between accuracy and
speed. The optimal policy reflects the best performance achieve by the method
during its fine-tuning.

6.2.5. Training evaluation
Best performance. To assess an agent best performance during its training, we380

compute max Acc, as illustrated in Figure 3.

Mean performance. To globally assess an agent performance over its entire
training, we compute mean Acc and mean tpred over all the agent’s evalua-
tions, that is to say on the 100 policies that were evaluated every 1000 updates
of Θ, as illustrated in Figure 3. A large score of mean Acc means that the agent385

was globally highly accurate all along its training.

Stability. We measure the stability of a training through the variation in Acc
and tpred with the standard deviation metric (stdev), as illustrated in Figure 3.
A high score of stdev Acc means that the policies evaluated along training were
not equally accurate and very unstable.390

6.2.6. Methods comparison
Best performance. When comparing several methods, we seek to identify which
one gave the best results. Thus we compare the optimal policies results between
each method, as illustrated in Figures 4, 6 and 7.

Robustness. We are also interested in assessing the robustness of each method395

regarding the hyper-parameter setting. We compare each method through the
distribution of max Acc, mean Acc, stdev Acc, mean tpred and stdev tpred
computed on each training. For each metric, we report the p-values of Mann-
Whitney rank statistical tests on the null hypothesis that the two versions are
equivalent.400

6.3. Experimental comparison between two models of POMDP: reward discount-
ing and delay reward shaping

We carry out an experiment to assess the impact of delay reward shaping
vs. rewards discounting in the definition of the POMDP. We compare the two
POMDP models Mdiscount and Mshaping from Section 4.405
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Figure 3: An agent training with 100000 updates of its deep neural network parameters Θ.
The agent’s policy is evaluated every 1000 updates on the validation set. Policies performances
are represented with dot points in terms of Acc vs. tpred. Dots points are colored according
to the updates. The black vertical line (resp. band) gives the agent’s mean (resp. stdev) tpred
over training. The black horizontal line (resp. band) gives the agent’s mean (resp. stdev) Acc
over training. The red horizontal line gives the agent’s maximal Acc over training.

Experimental setting. We solve each POMDP with DDQN algorithm adapted
with prioritized sampling, introduced in Algorithm 1. We perform 50 train-
ings on each POMDP model (Section 6.2.2) by varying the deep neural network
architecture and respective specific hyper-parameters. We vary γ ∈ [0.3, 1]
for Mdiscount, λ ∈ {0.05, 0.1, 0.25, 0.5, 1, 2} and κ ∈ {1.06, 1.09, 1.1, 1.2} for410

Mshaping. Other shared DDQN hyper-parameters are fine-tuned (Section 6.2.1).

Experimental comparison. To evaluate if both POMDP models achieve compa-
rable best classification accuracy under different trade-offs, we report in Figure
4 the top-5 optimal policies within ranges of prediction times (Section 6.2.4).
Experiments show that Mshaping results in top-5 policies with higher Acc than415

Mdiscount under different trade-off of tpred.
We compare the robustness between the two POMDP models by comput-

ing metrics from Section 6.2.6 which are shown in Figure 5 and statistically
compared in Table 1. Tests allow to reject the null hypothesis that both
POMDP models achieve comparable max Acc along training. Figure 5 shows420

that Mshaping reaches higher max Acc. Also, tests on the stdev Acc and stdev
tpred lead to the conclusion thatMshaping is more variable thanMdiscount during
its fine-tuning.

6.4. Experimental comparison between early classifier and naive static classifiers
We seek to experimentally measure the added value of our method for early425

classification in comparison to static classification. To perform the evaluation,
we deactivate the decision making capability of our algorithm, ie. the rein-
forcement learning part, and train the equivalent naive deep neural network to
classify at a list of predefined (static) time steps.
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Figure 4: Top-5 policies from Mshaping and Mdiscount. We select the top-5 policies in Acc
on the validation set for several ranges of tpred. We evaluate those policies on the test set.
The full line represents mean Acc and the band is the stdev Acc.

Figure 5: Performance metrics on Mshaping and Mdiscount on the validation set. (a) Max
Acc. (b) Mean Acc. (c) Stdev Acc. (d) Mean tpred. (e) Stdev tpred.

Performance Stability

Max Acc Mean Acc Mean tpred Std Acc Std tpred
0.0228 0.1962 0.0018 0.0016 1.3162e−8

Table 1: p-values of Mann-Whitney rank tests on the null hypothesis that Mshaping and
Mdiscount have comparable metric score for each metric from Figure 5.
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Experimental setting.430

Early classifier We use experiments from 6.3 onMshaping solved with Al-
gorithm 1 to obtain early classifiers enhanced with decision making capabilities.

Static classifier For regular time steps t ∈ [1, T ], we train equivalent
deep neural networks to map between the partial temporal sequences and the
class labels. We use the training pairs from dataset D = {(Xj , lj)}j=1..n and435

we train deep neural networks as a mathematical function fclassif such that
fclassif : {X:t} → L. For each regular time step t ∈ [1, T ], the deep neural
networks are trained separately until the loss function stops decreasing on the
validation set (Section 6.2.2).

The neural networks used for both static classification and the agent’s policy440

are similar except from the output layer. The output layer of the agent’s policy
is linear and has an additional neuron for the delay action compared to the static
classifier which has as many neurons as class labels and a softmax activation.

Experimental comparison. In Figure 6, we report top-5 policies performance
for different ranges of tpred (Section 6.2.4). Both static deep neural network445

and early classifier have poor Acc in early times (tpred < 20) due to lack of
information in the partial temporal sequences.

Then the early classifier provides top-5 policies with higher Acc than static
classifiers. The improvement in Acc for equivalent tpred is due to the capability
of the agent to adapt its classification individually on each temporal sequence.450

The agent can choose to quickly classify sequences that can easily been catego-
rized or to require more observations on sequences lacking discriminant patterns.
The early classifier’s will to individually compromise makes the classification
more efficient than static networks using the same amount of observations in all
sequences independently of their complexity.455

Interestingly, we cannot evaluate the early classifier in late prediction times
(tpred > 55). To reach its objective of fast decision making, the agent did not
choose to classify at the end of the sequences and it always provided fastest
policies.

6.5. Online learning: Experimental evaluation of prioritized sampling, priori-460

tized storing and episode initialization in DDQN algorithm
We carry out an experiment to assess the impact of prioritized sampling

(Section 5.1.1), prioritized storing (Section 5.2.1) and episode initialization (sec
5.2.2) when training early classifiers with DDQN algorithm in an online fashion.
We consider four versions of DDQN to solve Mshaping:465

• DDQN-baseline refers to original DDQN algorithm [7].

• DDQN-ps refers to DDQN with prioritized sampling and prioritized stor-
ing proposed in sections 5.1.1 and 5.1.1.
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Figure 6: Top-5 policies from Mshaping and top-5 static deep neural network classifiers. We
select the top-5 policies and classifiers in Acc on the validation set for several ranges of tpred.
We evaluate those policies and classifiers on the test set. The full line represents mean Acc
and the band is the stdev Acc.

• DDQN-ei refers to DDQN with specific episode initialization proposed in
Section 5.2.2.470

• DDQN-ps-ei refers to DDQN with simultaneously prioritized sampling,
prioritized storing and episode initialization as synthesized in Algorithm
2.

Experimental setting. All shared DDQN hyper-parameters are first manually
fine-tuned (Section 6.2.1). On each version of DDQN algorithm, we perform 100475

trainings (Section 6.2.2). We vary rewards for correct classificationR((X, l, t), a =
l) ∈ {0,+1} in order to obtain policies with slow decision making and to be able
to compare the four versions of DDQN in late prediction times.

Experimental comparison. Top-5 policies (Section 6.2.4) on all four versions of
DDQN algorithm are shown in Figure 7. DDQN-baseline top-5 policies are480

globally the least accurate under all trade-offs of tpred. Top-5 policies with
highest Acc for different trade-off of tpred are produced by DDQN-ei and DDQN-
ps-ei.

The distributions of performance metrics from Section 6.2.5 are shown in
Figure 8 and statistically compared in Table 2. Tests show that both DDQN-485

ei and DDQN-ps-ei improve max Acc and shorten mean tpred over DDQN-
baseline. Also, mean Acc is significantly higher over trainings from DDQN-ps
and DDQN-ps-ei compared to the baseline which leads to the conclusion that
those improvements over DDQN are more robust to initial hyper-parameter set-
ting. Policies from DDQN-ps are significantly less variable in terms of accuracy490

compared to DDQN-baseline.

18



Figure 7: Top-5 policies from DDQN-baseline, DDQN-ei, DDQN-ps and DDQN-ps-ei eval-
uated on the test set. The full line represents mean accuracy and the band is the accuracy
standard deviation.

Figure 8: Performance metrics on DDQN-baseline, DDQN-ps, DDQN-ei and DDQN-ps-ei on
the validation set. (a) Max Acc. (b) Mean Acc. (c) Stdev Acc. (d) Mean tpred. (e) Stdev
tpred.

Performance Stability

Methods Max Acc Mean Acc Mean tpred Stdev Acc Stdev tpred
DDQN-baseline vs. DDQN-ei 0.0023 0.1467 0.0430 0.8227 0.6270

DDQN-baseline vs. DDQN-ps 0.2464 0.0001 0.8067 1.7212e−5 0.1090

DDQN-baseline vs. DDQN-ps-ei 0.0001 0.0036 0.0286 0.2263 0.5418

Table 2: p-values of Mann-Whitney rank tests on the null hypothesis that DDQN-baseline
have a metric score comparable to DDQN-ps and DDQN-ps-ei for each metric from Figure 8.
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7. Conclusion

We defined a POMDP to train an agent for early prediction with reinforce-
ment learning. We modeled the agent’s policy by a deep neural network and
we adapted the DDQN algorithm in order to address the specificities of the495

POMDP that could lead to unbalanced memory of the agent if applied with-
out modifications. The validity of the method was shown experimentally on a
complex multi-class classification problem on a dataset of multivariate temporal
sequences with natural variability. We experimentally demonstrated that:

• Shaping the environment reward signal for delay leads to higher accuracy500

at all prediction times than sparse discounted rewards.

• Improvements to DDQN online algorithm such as prioritized sampling,
prioritized storing and specific episode initialization increase the classifi-
cation accuracy of the agent while boosting the rapidity of its decision
making.505

• The method empirically results in an agent with adaptive fast-classification
capabilities which achieves higher accuracy performance than an equiva-
lent neural network trained for static classification.
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