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Fault-Tolerant Economic Model Predictive Control for Building

Temperature Regulation using ε -Regularization* Farah Gabsi 1,2 , Frédéric Hamelin 1 , Nathalie Sauer 2 and Dominique Sauter 1

Abstract-This paper presents an active Fault-Tolerant Control (FTC) scheme for the temperature regulation of buildings subject to actuator faults. An optimal control strategy based on a regularized predictive economic criterion is proposed to determine the remedial actions to be taken when actuator faults are diagnosed. These corrective actions can be used either to generate a less "aggressive" control scenario by minimizing the number of on/off cycles of the faulty actuator or to reduce the number of actuators used at any time. One of the interests of this strategy is to prevent simple faults from developing into serious failures for actuators particularly vulnerable to repeated on/off cycles (in particular heat pump compressors). To account for the "aggressiveness" of a control scenario, the penalty term associated with the regularized economic criterion is defined using the parsimony property of ε -norm (ε small).

I. INTRODUCTION

In the context of smart buildings, Building Energy Management Systems (BEMS) improve energy efficiency while providing the comfort levels expected by users. They monitor and control the building's energy needs. Through the use of advanced control techniques, BEMS can ensure that the building operates at the highest level of energy efficiency. They can be optimized to take full advantage of the flexibility of the building environment or to take into account aging and faulty equipment.

In recent years, the use of control techniques in building management has been a very active research area. To effectively control the temperature inside a building, many approaches have been proposed [START_REF] Salsbury | A survey of control technologies in the building automation industry[END_REF], [START_REF] Dounis | Advanced control systems engineering for energy and comfort management in a building environment-a review[END_REF]. Model Predictive Control (MPC) is considered the most appropriate method to ensure user comfort while minimizing energy consumption [START_REF] Gabsi | Hygrothermal modelling and MPC-based control for energy and comfort management in buildings[END_REF], [START_REF] Godina | Model predictive control home energy management and optimization strategy with demand response[END_REF], [START_REF] Serale | Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: Problem formulation, applications and opportunities[END_REF]. Indeed, this technique makes it possible to take into account predictions of disturbances such as the occupation of the zones, the outside temperature or the occupant behavior [START_REF] Mirakhorli | Occupancy behavior based model predictive control for building indoor climate-a critical review[END_REF]. Economic Model Predictive Control (EMPC) is becoming increasingly popular [START_REF] Zong | Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems[END_REF] because of the value of economic cost functions that are more realistic than traditional quadratic cost functions.

Failure of some components of the Heating, Ventilation and Air Conditioning (HVAC) system or its sensors can have *This work has financial support from the Contrat de Plan État-Région (CPER) Lorraine 2015-2020, project "Matériaux, Énergie, Procédés". 1,2 Farah Gabsi is with CRAN and LGIPM, Université de Lorraine/CNRS, F-54000 Nancy (CRAN), F-57000 Metz (LGIPM), France Farah.Gabsi@univ-lorraine.fr FirstName.LastName@univ-lorraine.fr

2 Nathalie Sauer is with LGIPM, Université de Lorraine, F-57000 Metz, France Nathalie.Sauer@univ-lorraine.fr a significant impact on the expected energy performance of the building and on users comfort (high energy consumption, low thermal comfort and unacceptable air quality) [START_REF] Zhang | Modeling of HVAC operational faults in building performance simulation[END_REF]. Faulttolerant control systems aim to recover performance close to nominal value after a fault has occurred. Several studies have been conducted as part of the fault-tolerant control applied to building temperature regulation [START_REF] Bengea | Fault-tolerant optimal control of a building HVAC system[END_REF], [START_REF] Sauter | Fault tolerant control of HVAC systems for energy efficient buildings[END_REF]. Some of them allow to accommodate the sensor faults [START_REF] Papadopoulos | Distributed adaptive sensor fault tolerant control for smart buildings[END_REF], [START_REF] Du | Tolerant control for multiple faults of sensors in VAV systems[END_REF] while others allow to reconfigurate the control law in the presence of HVAC failures [START_REF] Darure | Fault-adaptive control of VAV damper stuck in a multizone building[END_REF], [START_REF] Subramaniam | Fault tolerant economic model predictive control for energy efficiency in a multi-zone building[END_REF] (stuck faults in VAV dampers).

The main contribution of this work is the design of an active FTC scheme to best accommodate actuator faults affecting HVAC systems. The novelty of the proposed FTC strategy is that it is based on an EMPC, whose cost function is regularized by ε -norm penalties in the case of an actuator failure. By a judicious choice of the regularization terms, this approach makes it possible to smooth the control input of the faulty actuator, for which too frequent starts/stops would be critical. It also makes it possible to reduce the number of active control inputs at any time and to take into account stuck actuators. Regularization terms are defined on the basis of the LASSO (Least Absolute Selection and Shrinkage Operator) theory, particularly used in signal processing, which has led to the emergence of new predictive control strategies called " asso MPC" [START_REF] Gallieri | l asso MPC: Smart regulation of over-actuated systems[END_REF], [START_REF] Rao | Sparsity of linear discrete-time optimal control problems with l 1 objectives[END_REF]. Considering the 0 penalties [START_REF] Aguilera | Quadratic model predictive control including input cardinality constraints[END_REF], [START_REF] Aguilera | Quadratic MPC with l 0 -input constraint[END_REF] allows for more parsimonious capacities but makes the optimization problem non-convex.

The paper is organized as follows. Section 2 presents the general objectives of the proposed fault-tolerant economic model predictive control. It specifies the control objectives not only in the fault-free case by means of an economic criterion, but also under actuator fault occurrence in order to better accommodate it. Section 3 specifies these different objectives in the form of a non-convex ε -regularized economic criterion. The resulting NP-Hard minimization problem is solved using an iterative algorithm recently derived from [START_REF] Gabsi | Hygrothermal modelling and MPC-based control for energy and comfort management in buildings[END_REF]. Finally, conclusions and perspectives are presented in Section 4.

II. PROBLEM STATEMENT A. Dynamic Model

The general structure of the dynamic model considered in this paper is chosen in order to take into account the thermal modeling of a multizone building integrating the different equipment as well as all influential disturbances [START_REF] Gabsi | Building hygrothermal modeling by nodal method[END_REF]. For a N-zone building characterized by n u independent control scenarios (no action, Heat Pump (HP, on/off), Continuous Mandatory Ventilation (CMV, on/off), automatic tilt-turn windows (open/close), venetian blinds (open/close),...), a set of n u state-space models can be defined. The following bilinear state-space representation allows us to consider this set of linear models:

     x(k + 1) = n u -1 ∑ i=0 u i (k) (A i x(k) + B i q(k)) T OP (k) = C i x(k) (1) 
with:

• T OP (k) = T OP i (k) 1 ≤ i ≤ N ∈ R N : the output vector de- fined from the operational temperature T OP i (k) in each zone i ( 1 ≤ i ≤ N ); • u(k)= u i (k) 0≤i≤n u -1 ∈ R n u : the control vector defined
from the control inputs of all zones i . Each element u i (k) is equal to 1 or 0, these two values corresponding respectively to the switching on or off of the ith control input; • x(k) ∈ R n : the state vector;

• q(k) ∈ R n q : the disturbance vector that groups uncontrollable exogenous inputs and all heat flows in and out of the N zones i ; • A i , B i and C i : matrices of appropriate dimensions that may differ depending on the control inputs u i (k).

B. Economic Model Predictive Control (EMPC)

The principle of predictive control [START_REF] Rockett | Model-predictive control for nondomestic buildings: a critical review and prospects[END_REF] is to optimize a cost function to describe the control objectives over a time horizon of length N P . The economic objective function J MPC (u, x) that we propose in the context of the temperature regulation of a multizone building is as follows:

J MPC (u, x) = min u N P ∑ j=1 T OP (k + j) -T COMF (k + j) 2 Ψ j + ∆u(k + j) 2 e ∆u j + u(k + j) 2 e u j (2) 
where:

• T COMF (k + j) = T COMF i (k + j) 1 ≤ i ≤ N ∈ R N
and T OP (k + j) represent the estimated comfort temperature and operational temperature in each zone ( 1 . . . N ) according to [START_REF] Mccartney | Developing an adaptive control algorithm for europe[END_REF] and model [START_REF] Salsbury | A survey of control technologies in the building automation industry[END_REF]. As for ψ i , j , it reflects the importance attached to T OP i (k + j) being close to

T COMF i (k + j). • T OP (k + j) -T COMF (k + j) 2 Ψ j = ∑ i = 1 ,..., N ψ i , j |T OP i (k + j) -T COMF i (k + j)| 2 represents
a discomfort criterion at the time (future) k + j.

• ∆u(k + j) 2 e ∆u j = n u -1 ∑ i=0 e i, j |u i (k + j) -u i (k + j -1)| 2 and u(k + j) 2 e u j = n u -1 ∑ i=0 e i, j |u i (k + j)| 2 reflect the
economic cost of the control law implemented at the time k + j. The weightings e i, j and e i, j allow to specify the cost in euros of each possible action on the system. The e-terms reflect the energy cost of starting a HP or VMC for a given period of time while the e -terms reflect the opening or closing of tilt-turn windows or venetian blinds.

At any given time k, an optimal control sequence {u * (k + j)} 1≤ j≤N P is calculated to minimize J MPC (u, x) and only the first element u * (k + 1) is applied to the system.

C. Fault Tolerant Economic Model Predictive Control (FTEMPC)

In the presence of incipient actuator faults, it may be useful to continue to use these actuators but with less stress to allow the system to operate in slightly degraded mode. In the context of building temperature control, several scenarios may arise. If, for example, the compressor of a heat pump does not work well, it would be interesting to continue to use the heat pump but to reduce the number of start-up cycles. In this case, the optimal control scenario {u * (k + j)} 1≤ j≤N P must be modified so that the control input associated with this actuator has few fluctuations over the horizon N P . As a second example, if we consider a central Air-Handling Unit (AHU) supplying air to a large room by several Variable Air Volume (VAV) boxes, a failure of the supply fan may result in a decrease in the air flow. One solution to this problem could be to close some modulating dampers in these VAV boxes. In this case, {u * (k + j)} 1≤ j≤N P mut be modified so that the control inputs associated with these dampers are 0 on the N P horizon.

The objective of the FTEMPC approach proposed in this paper is to adapt the optimal control scenario {u * (k + j)} 1≤ j≤N P in the presence of an actuator fault so that the control input is smooth over the entire N P horizon of the faulty actuator (case of the first example) or the number of actuators used is reduced (case of the second example). To do this, the economic objective function J MPC (u, x) (2) is regularized.

III. REGULARIZED EMPC

A. Regularized Criterion

It is proposed to consider a regularized criterion such as:

J λ ,Ω (u) = (1 -λ )J MPC (u, x) + λ Ω (u) (3) 
with J MPC (u, x) defined by ( 2) and where 0 ≤ λ ≤ 1 is a regularization parameter whose value depends on the fault diagnosed on the system. The additional term λ Ω(u) in the criterion amounts to regularizing the solution. In the context of the problem presented above, λ Ω (u) should be a penalty that increases the parsimony of u or the first derivative of u. Based on the Tikhonov regularization method [START_REF] Engl | Regularization of inverse problems[END_REF], one possible technique is to include a linear operator R in the regularization term Ω (u), and solve the following problem :

u * λ ,p = arg min u∈R nu (1 -λ )J MPC (u, x) + λ Ru min(1,p) p ( 4 
)
where

• p is the p -norm z p := n z ∑ i=1 |z i | p 1 p
for a vector

z ∈ R n z .
The linear transformation R can take different forms:

• 0 th -order regularization:

R = R 0 = I (5) 
Penalty R 0 u min (1,p) p gives priority to solutions with a small norm.

• 1 st -order regularization:

R = R 1 =       -1 1 0 • • • 0 0 -1 1 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 -1 1       (6) 
The penalty term R 1 u min(1,p) p penalizes control increments between two consecutive time samples. Minimizing the regularized criterion (3) smoothes the control signal, which is useful when it is necessary to avoid sudden changes in control. All control inputs must be stored according to the vectors u i and u defined as follows:

u T i = u i (k + 1) . . . u i (k + N P ) u T = u T 0 . . . u T n u -1 (7) 

B. p Penalization

There are several types of penalty functions [START_REF] Hastie | The elements of statistical learning: data mining, inference and prediction[END_REF]. The Ridge regression is a penalty of type 2 -norm. The LASSO regression, introduced by Tibshirani [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], is a linear regression with a 1 -norm penalization, which increases the parsimony of the solution when R = I. An even more natural method to contract the value of the different elements of Ru but also to force some of these elements to be strictly zero for λ large enough is to take into account a constraint Ru ε ε (with 0 ≤ ε 1). To illustrate the advantages and disadvantages of each possible penalty, consider the following criterion:

J λ ,p (u) = (1 -λ )J 1 (u) + λ u min(1,p) p (8) with J 1 (u) = (u 1 -2 + u 2 ) 2 + (u 2 -0.5) 2 .
First, we observe that ∀p ≥ 0, we have:

   u * 0,p = 1.5 0.5 T = arg min u J 1 (u) u * ∞,p = 0 0 T = arg min u u min(1,p)
p Between these two extreme values, the trajectory Γ λ ,p followed by the optimal point u * λ ,p in the u 1u 2 plane as a function of λ is represented in red in Fig. 1. The ellipsoids and the filled contour plot in the background of these figures are isolines of J 1 (u) and u min(1,p) p respectively. We can see on each of the subfigures (Fig. 1a-1h) that the shape of the trajectories Γ λ ,p is very different depending on the p values. In particular, the LASSO selection (Fig. 1c) gives a more parsimonious solution than the Ridge selection (Fig. 1b), which tends to make the coefficients very small without canceling them. More generally, for p > 1, the trajectory Γ λ ,p tends towards u * ∞,p for λ increasing but without being "attracted" by the axes u 1 = 0 and u 2 = 0. On the other hand, as soon as p ≤ 1, we observe that this convergence towards u * ∞,p takes place along one of the axes u 1 = 0 or u 2 = 0. Another phenomenon appears for p < 1; the trajectory Γ λ ,p followed by u * λ ,p becomes discontinuous as the value of p decreases. This is due to the non-convexity of the term u min(1,p) p which increases for small values of p and makes the criterion J λ ,p (u) non-convex.

In the sequel, an explanation is given on the effect of p on the trajectory Γ λ ,p followed by u * λ ,p . It is based on the shape of the isolines u min (1,p) p shown in Fig. 2 for different p-values. First, the minimization of the regularized criterion J λ ,Ω (u) (4) is reformulated into a problem of minimizing the function J MPC (u, x) subject to an inequality constraint, It can therefore be observed that (4) corresponds to the Lagrangian form of the optimization problem [START_REF] Bengea | Fault-tolerant optimal control of a building HVAC system[END_REF]. As a result, if the cost function J MPC (u, x) is convex and if the regularization term Ru min (1,p) p is a p -norm with p ≥ 1 then the solutions to the problems ( 4) and ( 9) are identical. The exact relationship between β and λ is then data dependent.

Fig. 3 gives a geometric interpretation of the solution to the optimization problem [START_REF] Bengea | Fault-tolerant optimal control of a building HVAC system[END_REF] in the case of the example considered above [START_REF] Zhang | Modeling of HVAC operational faults in building performance simulation[END_REF], characterized by a strongly convex cost function J 1 (u). It helps to understand the interest of ε -norm compared to p -norm with p > 1. Depending on the p-values and their associated contour lines (Fig. 2), the reddashed borderlines in Fig. 3 plane for which the constraint u min (1,p) p ≤ β is fulfilled for different values of β . For a given β -value, the optimal point u * * β ,p , represented by a red dot on each subfigure corresponds to the intersection of the isoline u min(1,p) p = β with the lower-valued isoline J 1 (u) represented in blue. The β -evolution of u * * β ,p for β ∈ 0, u * 0,p min(1,p) p generates the black trajectory Γ β ,p . A geometric interpretation can be given to explain the "attractiveness" of the axes u 1 = 0 and u 2 = 0 for the trajectory Γ β ,p associated with the regularization term u min(1,p) p with p ≤ 1. This is due to the fact that the isolines associated with these norms have a sharp corner on the axes u 1 = 0 and u 2 = 0 that they do not cut orthogonally.

An analysis of Fig. 1 and3 shows that the trajectories Γ λ ,p and Γ β ,p are identical in the case of p = 1, 2 and +∞. We therefore observe that the solution of the problems ( 4) and ( 9) is the same for p ≥ 1. On the other hand, for the particular value p = 0.2, it appears that the trajectory Γ β ,p (Fig. 3d) differs from Γ λ ,p (Fig. 1g). Nevertheless, it can be noted that:

Γ λ ,p ⊆ Γ β ,p (10) 
this result having been demonstrated in [START_REF] Soussen | Homotopy based algorithms for 0 -regularized least-squares[END_REF].

C. Fault-Tolerant Regularized Criterion

In the context of a fault on the actuator u i , the penalty term Ω (u) (3) can be used to:

• reduce the number of on/off cycles of the faulty actuator. In view of the previous paragraph, the minimization of J λ ,Ω (u) (3) reflects this goal with Ω (u) =

R 1 u i (k) u T i T ε ε
and u i defined by ( 7); • use a reduced number of actuators at each prediction time k + j, which results in the minimization of J λ ,Ω (u) with Ω (u) = R 0 u(k + j) ε ε and u(k + j) = u i (k + j) 0≤i≤n u -1 ;

• have the control input u i (k + j) constant and equal to u i, f ∀ j when the actuator u i is stuck at u i, f . Minimizing

J λ ,Ω (u) with Ω (u) = R 0 u i -u i, f 1 ε ε satisfies this constraint.
Remark 1: It is interesting to note that the latter type of penalty can be used to assign a 1 or 0 value to the control inputs (on/off or open/closed). Minimizing J λ ,Ω (u) with Ω (u) = R 0 (u (u -1)) ε ε achieves this goal if u (u -1) refers to the element-wise product of the two vectors u and (u -1).

Remark 2: In the fault-free case, it may be worthwhile to reduce the number of actuators used or to smooth the control input over the entire horizon N P . It is therefore interesting to take into account the regularization term Ω (u) not only in the presence of an actuator fault, but also when the system is healthy.

Ω (u) is then defined as:

Ω (u) = γ 1 R 0 NB l=1 (u -u l 1) ε ε + γ 2 R 0 u i -u i, f 1 ε ε +α 1 R 1 u i (k) u T i T ε ε + α 2 N P ∑ j=1 R 0 u(k + j) ε ε (11) 
with:

• (u l ) 1≤l≤NB : constant values that can be taken by at least one of the control inputs. For on/off controls, we have NB = 2, u 1 = 1 (On) and u 2 = 0 (Off).

• NB l=1

(uu l 1) = (uu 1 1) . . . (uu NB 1);

• α 1 , α 2 , γ 1 , γ 2 : weighting coefficients. γ 1 is very large because the norm it weights must be zero. The values of α 1 , α 2 , γ 2 depend on whether or not an actuator has failed. In the fault-free case, a strategy based on Bryson's rule allows to choose α 1 and α 2 , which are then equal to the inverse of the maximum value of the weighted terms. In the presence of a fault on the actuator u i , α 1 and α 2 can be considerably increased depending on the magnitude of the fault and its criticality. As for γ 2 , it is non-zero only if u i (k + j) is stuck at u i, f ∀ j.

The parameter λ (3) allows to find a compromise between the cost function J MPC (u, x) and the penalty term Ω (u). The problem of the "best" choice of λ , which corresponds to the optimal compromise between the minimization criterion J MPC (u, x) and the respect of the "choice criterion" (Ω (u) "not too large"), is difficult and remains, from a theoretical point of view, largely open. As is often the case in methods for estimating the regularization parameter λ , it is proposed to evaluate the criterion for different values of λ defined on a grid Λ. The optimal regularization parameter λ * is determined using a classical technique widely used in this type of problem, the L-curve method [START_REF] Hansen | Analysis of discrete ill-posed problems by means of the l-curve[END_REF]. It consists in plotting the value of the two parts of the criterion for multiple values of λ . As an illustration, Fig. 4 shows these L-curves associated with the regularized criterion J λ ,p (u) (8) for different small values p. It should be noted that in the general case, the values of λ * are multiple and depend on the desired degree of parsimony (number of "0") in the penalty Ru. The determination of λ * is quite simple if the penalty is in ε -norm. Indeed, as can be seen in Fig. 4, the appearance of a "0" in the penalty Ru results in the presence of a discontinuity (negative step) in the L-curve. Thus, if we accept that the penalty term Ru has only one "0" then the optimal solution u * λ ,p is associated with the first discontinuity of the L-curve examined from left to right (J MPC (u, x) increasing). In Figure 4, this corresponds to the leftmost red dots. The following discontinuities in the curve reflect the presence of additional "0" in the penalty Ru. The value of λ * therefore depends on the desired degree of parsimony in the penalty Ru.

Schematically, the active actuator fault-tolerant control design we propose in this paper is shown in Fig. 5. Fig. 5: FTEMPC scheme.

D. Minimization of the regularized criterion

The above optimization problem is NP-Hard due to the non-convexity of the ε -norm. To solve this problem, we use a recently developed iterative algorithm [START_REF] Gabsi | Hygrothermal modelling and MPC-based control for energy and comfort management in buildings[END_REF], whose objective is to estimate the optimal control scenario with a lower computation load. The idea is to keep at each time of prediction k + j only a reduced number of scenarios among all those that are possible. For this purpose, a principal component analysis is performed on a limited number of points properly selected in the variables space (T OP 1 (k + j), . . . , T OP N (k + j)) in order to determine a suitable basis for the representation of all possible realizations of T OP i (k + j) with i = 1 , . . . , N . By prioritizing the information, this makes it possible to replace the set of all these realizations by a smaller subset S j whose cardinality is defined a priori. This procedure is repeated N p times iteratively for j ranging from 1 to N p . Of course, the larger the number |S j |, the better the approximation of the optimal control scenario. This prioritization technique allows to consider not only a non-convex regularized criterion J λ ,Ω (u) (3) but also large values for the forecast horizon N P .

IV. CONCLUSION

This paper presents an innovative Fault-Tolerant Economic Model Predictive Control (FTEMPC) based on the definition of a regularized economic criterion. In the fault-free case, this approach generates an optimal control scenario resulting from a compromise between thermal comfort in occupied zones and energy consumption. In the presence of actuator faults, the control scenario is optimally adjusted according to the type of fault assumed to be known. In this case, the regularization terms are used to allow both to smooth the control input of the faulty actuator and to reduce the number of operating actuators at any time. Their role is also to constrain the control inputs in the presence of stuck actuators. The proposed approach is particularly interesting in the context of building temperature regulation where some actuators are particularly sensitive to repeated on/off cycles (e.g. heat pump compressors). A detailed analysis showed the importance of choosing a ε -norm (ε small) to define the regularization terms. The proposed fault-tolerant control strategy will be implemented on the "Eco-Safe" platform at CRAN Nancy [START_REF] Gabsi | Energy efficiency of a multizone office building: MPC-based control and simscape modelling[END_REF], and will be reported in a follow-on paper.
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  (a) p = 0.8. (b) p = 0.6. (c) p = 0.4. (d) p = 0.2.

Fig. 4 :

 4 Fig. 4: L-curve Ru min(1,p) p versus J 1 (u) associated with the optimization problem (4).