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We use X-ray imaging to study viscous resuspension. In a Taylor-Couette geometry, we shear an initially settled
layer of spherical glass particles immersed in a Newtonian fluid and measure the local volume fraction profiles. In
this configuration, the steady-state profiles are simply related to the normal viscosity defined in the framework of the
Suspension Balance Model (SBM). These experiments allow us to examine this fundamental quantity over a wide
range of volume fractions, in particular in the semi-dilute regime where experimental data are sorely lacking. Our
measurements strongly suggest that the particle stress is quadratic with respect to the volume fraction in the dilute
limit. Strikingly, they also reveal a nonlinear dependence on the Shields number, in contrast with previous theoretical
and experimental results. This likely points to shear-thinning particle stresses and to a non-Coulomb or velocity-
weakening friction between the particles, as also evidenced from shear reversal experiments.

I. INTRODUCTION

Understanding the flow of particles suspended in a fluid is
critical to obtaining reliable predictions and models of trans-
port and migration phenomena in industrial and natural slur-
ries. This problem has attracted significant attention over the
last two centuries, starting from the seminal works of Stokes 1

and Einstein 2 who studied how a single particle affects the
flow of a viscous fluid at low Reynolds number. Due to the
large number of particles in the fluid and to the presence
of both solid contacts and long-range hydrodynamic interac-
tions between them, addressing the full problem of suspen-
sion flows remains a complex challenge even after almost a
hundred years of theoretical and experimental effort. The last
two decades have seen the emergence of the suspension bal-
ance model (SBM)3,4 as a robust framework to describe mi-
gration phenomena in suspensions, despite some conceptual
flaws that were settled recently5,6. Notable progress has also
been made to reconcile this theoretical framework for dense
suspensions with those for granular rheology7.

The SBM introduces the concept of particle stress to ex-
plain particle migration in flowing suspensions. It accounts
for the fact that particle contacts tend to generate normal
stresses that act as an osmotic pressure to keep the particles
dispersed under shear. The normal viscosity tensor ηn quan-
tifies this particle stress in a dimensionless form as a function
of the volume fraction φ . In the presence of stress inhomo-
geneities, particle migration occurs leading to volume fraction
gradients that ensure the balance of particle normal stresses in
steady-state conditions.

The SBM then relies on empirical expressions of the shear
and normal viscosities of dense suspensions derived from ex-
periments performed under homogeneous conditions, such as
those provided by Morris and Boulay 4 and Boyer, Guazzelli,

a)Electronic mail: b.saint-michel@imperial.ac.uk

and Pouliquen7,8, to derive the particle migration dynam-
ics and the steady-state concentration profiles in any flow
geometry4. In all these works, a viscous scaling of all
stresses is assumed, which is theoretically justified for ideal
rate-independent Coulomb friction between the particles9.
Many experimental results, however, show the emergence of
a shear-thinning viscosity at high volume fraction in non-
Brownian suspensions10–14. This has been proposed to orig-
inate from a velocity-weakening friction between the parti-
cles13 or from non-Coulomb friction12,14 as evidenced experi-
mentally by Chatté et al. 12 . These nonlinear properties would
then largely depend on both the bulk and surface properties of
the particles considered.

Moreover, some aspects of the SBM remain unclear. For
instance, the anisotropy in the particle pressure is modelled
through the use of three different coefficients for the normal
viscosity, ηn,i=1,2,3 acting respectively in the direction of flow,
in the flow gradient direction and in the vorticity direction,
perpendicular to both flow and flow gradient directions. Mor-
ris and Boulay 4 assume that these coefficients are propor-
tional to each other for all φ . However, recent experimen-
tal evidence by Dbouk, Lobry, and Lemaire 11 , who measured
the particle pressure simultaneously in two directions, have
shown otherwise. Confirming such results is particularly chal-
lenging because very few experimental configurations probe
the particle pressure in the vorticity direction. Such measure-
ments indeed require a parallel-plate geometry11,15 or a tilted
trough16. The typical particle pressures in these geometries
are usually too small to be measured accurately for φ ≤ 0.2,
which means that the asymptotic limits proposed by Morris
and Boulay 4 have yet to be confirmed. Additional measure-
ments of the normal viscosity in the vorticity direction would
allow one to confirm such predictions or to correct them and
improve our understanding of particle migration and transport
in dilute and semi-dilute suspensions.

Viscous resuspension17,18, where an initially settled sus-
pension is made to flow until a steady state is reached, is an
interesting alternative to measure directly the normal viscosity
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coefficients. Indeed, under a homogeneous and steady shear
flow, particle pressure gradients originating from the initial
particle concentration inhomogeneity induce a vertical posi-
tive particle flux –that is, particles are resuspended– which
is balanced in steady state by the negative buoyancy of the
particles. Resuspension experiments have been performed
in various geometries including the annulus geometry17 and
the Taylor-Couette geometry18. Due to technical limitations,
these two previous works only report measurements of the
maximum height of the sediment h above which the parti-
cle volume fraction is identically zero. This height increases
when raising the shear rate γ̇ , as expected from the balance
between viscous forces and buoyancy. More specifically, in
the context of viscous resuspension in a Taylor-Couette ge-
ometry, the increment h− h0 of an initially settled bed can
be related to the normal viscosity in the vorticity direction.
Interestingly, the data of Acrivos et al., analysed in the frame-
work of the suspension balance model by Zarraga, Hill, and
Leighton Jr. 10 , suggest an alternative dependence of the nor-
mal viscosity with φ compared to pressure-imposed experi-
ments4,7. In particular, for vanishing volume fractions φ , this
alternative expression converges faster to zero than the ones
proposed by Morris and Boulay 4 and by Boyer et al. (see
Section IV A for more details).

The height of the sediment in resuspension experiments is
an integral response, and as such it includes both the dilute
particle layers close to the top of the sediment and the more
concentrated parts at the bottom. However, in the steady state,
a mechanical balance links the vertical concentration profile to
the normal viscosity everywhere in the sediment, or, in other
words, at every concentration from the very dilute regime
to the highly concentrated regime. Therefore, concentration
profiles in Taylor-Couette resuspension experiments could be
used to estimate the normal viscosity for a wide range of vol-
ume fractions, including the very dilute limit. This would be
particularly helpful to reconcile the point of view of Zarraga
et al. and that of Morris and Boulay 4 and Boyer et al. on the
expression of the normal viscosity.

The objective of the present work is to achieve the mea-
surement of volume fraction profiles φ(z) during viscous re-
suspension in a Taylor-Couette geometry and to use this infor-
mation to determine the normal viscosity. For this purpose we
take advantage of X-ray imaging, since X-ray absorbance is
directly related to the particle volume fraction without being
affected by multiple scattering12,19,20. This technique allows
a precise and local measurement of the particle volume frac-
tion. The paper is organized as follows. Section II gives a
detailed description of the experimental setup and the deriva-
tion of the concentration profiles from the raw X-ray radiog-
raphy intensity maps. Section III discusses our experimental
concentration maps and the conditions under which vertical
concentration profiles can be extracted. The profiles are then
compared to the predictions of the SBM using the two empiri-
cal formula for the normal viscosity7,10 in Section IV. Finally,
Section V offers an interpretation of our results in the frame-
work of solid friction weakening and shear-thinning.

II. EXPERIMENTAL SETUP AND METHODS
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FIG. 1. Schematic diagram of the experimental setup. a) Side view:
the suspension, with fluid in blue and particles in orange, is sheared
between the two concentric cylinders of a Taylor-Couette cell. X-
rays generated from a pointlike source 25 cm from the geometry (left
of the picture, not shown) are selectively absorbed by the suspension
before hitting the planar X-ray sensor, located 70 cm away from the
cell. The sample temperature is controlled thanks to a water circula-
tion around the outer cylinder of the cell. b) Top view: the thickness
w of the suspension slab crossed by the X-rays depends on the trans-
verse coordinate x. A plot of w as a function of x is shown on the
right. The two cross-sections (left and right CS) used in our study
are indicated with dashed lines. A typical X-ray for a given x of the
left CS (thick red line) crosses areas of the geometry corresponding
to multiple values of r ≥ x.

A. Geometry, Fluid and Particles

A schematic diagram of our experimental setup is shown
in Figure 1. It consists of a Taylor-Couette cell made of an
inner cylindrical spindle of radius Ri = 23.0 mm and height
H = 53.5 mm and of an outer cup of radius Ro = 25.0 mm.
The choice of this thin-gap Couette geometry is prescribed by
the need to avoid significant shear-induced migration while
accommodating at least ∼ 8 particles across the gap. Both
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cylinders are made of poly(methyl-methacrylate) (PMMA)
and are smooth compared to the particle typical size. The
spindle is recessed over 1.5 mm at its end in order to limit
secondary flows at the bottom of the geometry. Water is cir-
culated around the cup to control the temperature to 25±1◦C.

We focus on glass spheres of density ρp = 2500 kg.m−3.
The batch particles (purchased from Wheelabrator) were
sieved leading to a diameter range 250 < 2a < 315 µm. We
suspend these particles in a mixture of water at 65% wt. and
UCON (Dow Chemical, 75-H-90,000) at 35% wt. The sus-
pending fluid mixture is Newtonian with a viscosity η0 '
0.23 Pa.s and a density ρ f ' 1.03× 103 kg.m−3. The total
particle mass M = 4.00 g was weighed using a precision scale
before inserting them in the geometry and the global particle
volume fraction is φ = 10%.

Assessing the shear viscosity of such suspensions is diffi-
cult: strong sedimentation effects result in a suspension that is
non-homogeneous in the vertical direction. We can however
evaluate this viscosity by conducting additional experiments
with suspensions composed of the same particles suspended
in a similar but much more viscous fluid phase (20% wt. wa-
ter, 80% wt. UCON), for which homogeneous steady states
under shear are a priori reached. These additional results are
shown in Appendix A. They evidence that the shear viscosity
follows a standard Maron-Pierce like evolution with volume
fraction, which seems to diverge at φm ' 0.6, in addition to
weak shear-thinning at the highest concentrations. We will
thus consider that the SBM is a priori an appropriate frame-
work to describe these suspensions rheology.

In the resuspension experiments, the spindle is driven by
a stress-imposed rheometer (AR G2, TA Instruments). The
vertical position of the spindle is set as the lowest position that
allows free rotation, usually around 50-100 µm from the cup
bottom, in order to prevent particles from getting below the
spindle. We use the rheometer feedback loop on the imposed
stress to apply a constant shear rate γ̇ = 1000, 500, 250, 100,
50, 25 and 0 s−1 in successive steps of 5 min duration each.

B. X-ray Radiography

The whole rheometer and the Taylor-Couette cell are in-
serted in a high-resolution X-ray apparatus (Phoenix v|tome|x
s, GE) set to work in two-dimensional mode with a pointlike
source (see Figures 1a, 11 and 12) fitted with a copper plate to
improve source monochromaticity and limit beam-hardening
effects21. The experimental X-ray intensity map Iφ (x,z) trans-
mitted through the Taylor-Couette cell is recorded by a planar
sensor. This intensity depends on the absorbance of all the
parts of the setup, including the PMMA cup and spindle, the
suspending fluid and the particles. To isolate the particle con-
tribution, we first acquire a reference intensity map I0(x,z) ob-
tained with a geometry filled with the pure suspending fluid.
The specific absorbance A(x,z) solely due to the presence of
particles throughout the geometry is then defined as:

A(x,z) =− log10
Iφ (x,z)
I0(x,z)

. (1)

In a homogeneous medium, the absorbance A can be di-
rectly related to the global volume fraction φ through the
Beer-Lambert law:

A = (εp− ε f )wφ , (2)

where ε f and εp are the specific extinction coefficients of the
fluid and the particles, and w is the thickness of the suspension
slab crossed by the X-rays. In our experiments, the cross-
section w depends on the transverse coordinate x (see Fig-
ure 1b) and the particle volume fraction φ depends on both
r and z. The latter point implies that the absorbance A(x,z) is
a weighted average of φ over r, the radial distance to the ro-
tation axis. A rigorous determination of the local particle vol-
ume fraction φ(r,z) requires the expression of Equation (2) in
an integral form and the application of an inverse Abel trans-
form as detailed by Gholami et al.20. Here, for the sake of
simplicity, we shall focus on the two regions corresponding
to Ri ≤ |x| ≤ Ro that we refer to as the left and right cross-
sections (CS) as depicted in Figure 1b. We denote their local
cross-sectional widths as w(x). As discussed below, the parti-
cles are essentially homogeneously distributed in the horizon-
tal plane under shear. Hence, we express φ(r,z) as the ratio
A(x,z)/[w(x)(εp− ε f )], identifying x with r and ignoring the
weighted average.

Additional parallax issues also induce a smoothing of the
actual concentration maps on a typical scale `≈ 8a along the
vertical direction. The reader is referred to Appendices B and
E for more details about the approximations used in data anal-
ysis and about calibration issues.

III. RESULTS

A. General Observations

To the best of our knowledge, the concentration maps
φ(r,z) shown in Figure 2 are the first measurements of this
kind for resuspension experiments. We first notice that the
particles show some vertical layering at the outer wall of the
Taylor-Couette geometry. This phenomenon is particularly
pronounced for the lowest shear rates where the local concen-
tration φ(r,z) may exceed random close packing. In the par-
ticular case of the sediment at rest, it even reaches φ = 0.74,
indicating that particles form a hexagonal packing close to
the outer wall (see leftmost panel in Figure 2). We cannot
conclude on the presence of layering at the inner wall: since
our determination of φ close to the rotating spindle involves a
weighted average on all Ro ≤ r ≤ Ri, layering may be hidden
by the volume fraction in the bulk.

In the vertical direction, starting from the top of the cup,
the sediment at rest shows a rather sharp transition from φ = 0
to its maximal value over the size of the typical smoothing `
resulting from the finite distance between the X-ray source
and the geometry. The sediment at rest is homogeneous
along z with an average volume fraction over the entire gap
of 0.55, in fair agreement with the existing literature on non-
attractive spheres settling very slowly22–25. In particular, this
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FIG. 2. Local volume fraction φ(r,z) obtained by averaging X-ray images over the last 60 s of each shear rate step. The two regions of interest
(left and right CS) are shown for the seven shear rates under study. Image blurring due to parallax issues is visible at the bottom of the geometry
(see Appendix B).

volume fraction is clearly lower than random close packing
(φ = 0.636) and than the critical volume fraction where the
shear viscosity of monodisperse frictional sphere suspensions
diverges (usually 0.58≤ φ ≤ 0.62, 0.6 in our case)7,8,26,27.

For increasing shear rates, Figure 2 shows the resuspension
process in action: the top of the sediment rises as γ̇ increases.
In order to conserve the number of particles, the volume frac-
tion in the bulk of the sediment decreases. In contrast with the
sediment at rest, a finite vertical gradient in volume fraction
develops throughout the sediment, including at the top of the
sediment where φ → 0. Once again, the averaging process we
use to derive concentration maps cannot completely rule out
particle migration towards the outer edge: our measurements
only confirm that strong migration does not occur for shear
rates below or equal to 250 s−1, for which the particle volume
fraction looks quite homogeneous in the horizontal direction
except where layering is present. For the two highest shear
rates, we notice that the top of the profiles is rounded and sym-
metric with respect to the gap center. This observation is at
odds of what one would expect, since both particle stress gra-
dients and inertial effects tend to push the particles outwards.
Inertial effects should actually be the dominant effect since
their amplitude relative to gravity, γ̇2e2/gRi are respectively
5 and 19 for γ̇ = 500 and 1000 s−1. In addition, experiments
have reported28 that particle migration induce suspension den-
sity gradients which trigger currents called natural convection
currents. They may further alter the concentration profiles; in
such a case a fully two-dimensional study of the resuspension
process is necessary to understand the shape of the experimen-
tal profiles. Knowing this, we have then performed numerical
simulations to evaluate the amount of distortion ascribed to
inertial migration. We show in Appendix C that these effects
can be neglected up to γ̇ = 250 s−1. We will then systemati-
cally exclude data at γ̇ = 500 and 1000 s−1 from our analysis,
yet we will display their apparent profiles in Figure 7 to high-
light their misleading nature, which could lead one to believe
they are actually valid.

Finally, it can be noted that the concentration maps in the

left and right cross-sections differ slightly from each other.
Measurements of the resuspended sediment height highlight
the relative differences, ranging from 1 to 9% depending on
the applied shear rate. These differences could stem from a
slight misalignment of our geometry: our measurements show
a 3% –two pixels in our images– difference in size between the
two cross-sections. They did not show any significant angular
misalignment between the spindle and the cup rotation axes.
Any potential misalignment does not prevent steady states to
be reached, as can be seen in Figure 15 in Appendix D. In the
following, we focus on one-dimensional profiles of the local
volume fraction that we compare to predictions of the SBM
based on the various expressions proposed in the literature for
the normal viscosity.

B. Concentration Pro�les Along the Vertical Direction

In order to extract one-dimensional concentration profiles
from the two-dimensional maps of Figure 2, we perform
local averages of φ(r,z) over various vertical slices across
the gap of the Taylor-Couette cell and compute φ(r0,z) =
〈φ(r,z)〉r0−∆r<r≤r0+∆r, where r0 and ∆r = (Ro − Ri)/14 '
0.14 mm respectively denote the centre position and the width
of each slice. As shown in Figure 3 for the step at γ̇ = 100 s−1,
the outermost and the innermost profiles significantly differ
from the other profiles, confirming that layering is present at
the walls and that particle migration in the bulk is limited.
These profiles also confirm that, under shear, the particle vol-
ume fraction continuously increases from the clear fluid down
to the bottom of the sediment rather than reaching a constant
value in the bulk of the sediment.

Defining concentration profiles φ(r0,z) requires a common
reference point z = 0 for the bottom of the sediment. The par-
allax issues described in Appendix B imply that the volume
fraction smoothly decreases to zero at the bottom of the sedi-
ment (see Figure 3b) so that we cannot trivially choose z = 0
as the bottom location at which φ vanishes. Since they are
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more prominent close to the inner cylinder, we define z = 0
as the location of the maximum volume fraction of the sec-
ond outermost volume fraction profile. We finally define the
height of the resuspended sediment, named h, as the maxi-
mum vertical position z at which the particle volume fraction
exceeds the noise level of our measurements, estimated to be
around 0.45% (see Figure 3c). We also remark that φ(r0,z)
reaches zero with an oblique asymptote at z = h i.e. φ(r0,z)
scales roughly as (h− z) at the top of the sediment.

In the following, we choose to work with the central slice
φ(r0 = 24 mm,z), hereafter noted φ(z) for simplicity, as rep-
resentative of the particle vertical distribution (see purple pro-
file in Figure 3). Plotting this quantity with the origin shifted
to the top of the sediment shows that φ(z) follows the same
trend for both cross-sections (see Figure 4). This means that
particles at the top are insensitive to the particle volume frac-
tion in the bulk of the resuspended sediment and at the bottom
of the cup. This justifies the use of a local theory such as the
SBM to model resuspension processes. It also means that we
may focus our study on the left cross-section only without any
loss of generality.

IV. COMPARISON WITH RESUSPENSION MODELS

A. Theoretical Framework

Though initially modelled in the framework of a diffusive
model17,18, viscous resuspension may also be described us-
ing the SBM8,10. The advantages of this second approach lie
in that (i) the model is fully tensorial and (ii) the same phe-
nomenological expressions can be used to account for particle
migration, for normal forces and for particle pressure mea-
surements. Though the latter argument is not strictly valid5,6,
it has been argued that the theoretical refinements detailed
in Lhuillier 5 and Nott, Guazzelli, and Pouliquen 6 might be
neglected provided that contact forces dominate the particle
stress, as should be the case at sufficiently high volume frac-
tion6. We therefore choose to discuss the present experimental
data in the framework of the SBM.

In the following Section, we derive one-dimensional con-
centration profiles using the SBM, and we neglect the radial
centrifugal force acting on the particles. We remind the reader
that we also computed numerically the two-dimensional con-
centration maps including migration effects in Appendix C,
which led us to conclude that inertial migration is small up to
–and including– 250 s−1.

The steady-state concentration profile results from the mo-
mentum balance in the particle phase, which reads4:

φ∆ρg+∇ ·Σp = 0 , (3)

where Σp is the particle stress tensor. We suppose this tensor
only depends on z and assume it is diagonal4,8, with compo-
nents Σp,ii = −η0 |γ̇|ηn,i (φ) where i = 1, 2 and 3. Defining
the global Shields number:

Sh =
η0γ̇

∆ρga
, (4)

which is a constant control parameter for a given shear rate,
we may recast Equation (3) in dimensionless form. Assuming
that the normal viscosity coefficient ηn,3 is a function of φ

only, we write:

φ

Sh
=−dηn,3

dφ

dφ

dẑ
, (5)

where ẑ = z/a. Other lengths will be normalized in a similar
fashion in the following sections.

Equation (5) is formally analogous to the one obtained us-
ing the diffusive model of Acrivos, Mauri, and Fan 18 . By
identification, we can relate the normal viscosity ηn,3 to the
dimensionless shear-induced diffusivity D̂ of the diffusive
model, dηn,3/dφ = 9D̂/2 f (φ), where f (φ) is the hindrance
function accounting for the presence of other particles.

Equation (5) can be solved together with an equation for
mass conservation to compute the total height ĥ of the re-
suspended sediment and the volume fraction profile, provided
one assumes an expression for ηn,3(φ). Several tentative em-
pirical expressions for this quantity –also called correlations
in the literature8,18– have been proposed, which generally as-
sume the following form:

ηn,3(φ) = λ

(
φ/φm

1−φ/φm

)n

, (6)

where φm is the volume fraction at which both shear and nor-
mal viscosities diverge. Zarraga, Hill, and Leighton Jr. 10

choose n = 3, λ = 0.24 and φm = 0.62 based on previous ex-
perimental results of viscous resuspension in a Taylor-Couette
geometry18. Morris and Boulay 4 obtain n = 2, λ = 0.38
and φm = 0.68 combining sets of data from large-gap Taylor-
Couette and parallel-plate migration experiments. This scal-
ing is very similar to the one proposed by Boyer, Guazzelli,
and Pouliquen7,29 who derived n = 2, λ = 0.6 and φm = 0.585
from pressure-imposed shear and rotating rod experiments.

The volume fraction profiles can also be computed using
the expressions for the normal viscosity proposed by Boyer,
Guazzelli, and Pouliquen 7 and by Zarraga, Hill, and Leighton
Jr. 10 . Indeed, Equations (5) and (6) allow us to derive ĥ− ẑ as
a function of φ :

ĥ− ẑ = Sh
λ

φm

φ(2φm−φ)

(φm−φ)2 for Boyer et al., (7)

ĥ− ẑ = Sh
λ

2φm

φ 2(3φm−φ)

(φm−φ)3 for Zarraga et al. (8)

Since these two expressions are strictly monotonic functions
of φ , we can invert them to generate numerical concentration
profiles. In the case of the Boyer et al. correlation, inverting
Equation (7) analytically results in:

φ(ẑ)
φm

= 1−
(

1+
φm

λSh
(ĥ− ẑ)

)−1/2

. (9)

Finally we need to estimate ĥ in Equations (8) and (9) in
order to superimpose numerical profiles to experimental data.
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FIG. 3. Computing concentration profiles along the vertical direction in the left cross-section. a) Concentration map φ(r,z) for γ̇ = 100 s−1.
The seven slices over which φ(r,z) is averaged to produce concentration profiles are highlighted with colored rectangles. b) Concentration
profiles φ(r0,z) resulting from the averaging process. The thick pink line represents the center slice. Surrounding slices are plotted as dashed
lines. The first and last slice are plotted as dotted lines. c) Close-up of the top region between 15 and 20 mm. We set the noise level to
φ = 0.45 % (horizontal black line).
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FIG. 4. Concentration profiles φ derived from the central zones of
each cross-section of the gap. Circles: left CS. Crosses: right CS.
Colors code for the imposed shear rate from γ̇ = 0 s−1 (dark pur-
ple) to γ̇ = 1000 s−1 (yellow). Both z and the resuspended sediment
height h, as defined in Figure 3c, are normalized by the particle ra-
dius a.

To do so, we use particle conservation,

ĥ0φm =
∫ ĥ

0
φ(ẑ)dẑ , (10)

together with the values of ĥ0 obtained in Appendix E for the
left and right cross-sections of the gap. While the resuspended
sediment heights following the correlation of Zarraga et al.
have to be computed numerically, we can derive a closed, ex-
plicit formula for ĥ from the correlation of Boyer et al.:

ĥ(Sh) = ĥ0 +2

√
λ ĥ0

φm
Sh . (11)

B. Height of the sediment

We first compare our results to the resuspension heights
measured by Acrivos, Mauri, and Fan 18 , who did not have
access to local particle concentration measurements. We re-
port our experimental results in Figure 5 along with the an-
alytical expression of Equation (11) and two other estimates
of ĥ(Sh) that are very close to one another: the first is a nu-
merical derivation based on Zarraga, Hill, and Leighton Jr.
while the second is the historical asymptotic expression pro-
posed by Acrivos, Mauri, and Fan. Our experimental data lie
systematically above the Zarraga et al. correlation while also
disagreeing with Equation (11). Height measurements indeed
offer limited or even ambiguous insight on the processes at
play and highlights the critical importance of measuring the
bulk concentration profiles in the sediment in order to fully
understand viscous resuspension.

C. Direct estimation of the normal viscosity

The volume fraction profiles measured in the previous sec-
tion allow us to determine directly the normal viscosity. In-
deed, integrating Equation (5) from any normalized position ẑ
along the resuspended sediment height to ĥ leads to

ηn,3(ẑ) =
1

Sh

∫ ĥ

ẑ
φ(u)du . (12)

Interestingly, a single volume fraction profile provides an esti-
mation of the normal viscosity on a range of φ that depends on
the Shields number of the experiment. By varying the Shields
number, we could not only cover a wide range of volume frac-
tions but also test the robustness of the approach thanks to data
redundancy.
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FIG. 5. Variations of the relative resuspended sediment height h/h0
as a function of the Shields number. Open squares show experimental
results for the left CS, and filled circles the right CS. The solid line
shows the sediment height from the Boyer et al. correlation and given
by Equation (11). The dotted line shows the sediment height from the
Zarraga et al. correlation. The dash-dotted line is the sediment height
predicted by Acrivos, Mauri, and Fan 18 .

The normal viscosities ηn,3(ẑ) inferred from our experi-
mental measurements are shown as a function of φ(ẑ) in
Figure 6a together with the correlations of Boyer, Guazzelli,
and Pouliquen 7 , Morris and Boulay 4 and Zarraga, Hill, and
Leighton Jr. 10 (see section IV A). The maximum volume
fraction was set to φm = 0.6 for all correlations following
the viscosity measurements reported in Appendix A for ho-
mogeneous suspensions. Maximum volume fractions are in-
deed not universal and have to be adjusted depending on the
solid friction coefficient between particles27. Rather than col-
lapsing on a master curve independent of the applied shear,
the normal viscosity curves ηn,3(φ) shift downwards with in-
creasing shear rates. We checked that such a shear rate de-
pendence cannot be ascribed to the uncertainty on the local
volume fraction measurements or to a lack of precision on the
determination of ẑ = 0 and ẑ = ĥ; it is also unlikely that po-
tential wall slip or confinement effects both in the vertical and
the lateral directions are responsible for this progressive shift
(see Appendix F for more details). Moreover, none of these
curves match any of the three correlations presented above in
Section IV A. This result is quite intriguing since all shear
rate dependence should be taken into account by the Shields
number in Equations (5) and (12) for hard, spherical particles
with a constant friction coefficient.

Figure 6b further shows that, when rescaled by a factor
0.65Sh0.29, all normal viscosity profiles follow a universal
shape for φ ≥ 0.2. Significant discrepancies are observed at
low volume fractions, which can be attributed to vertical par-
allax issues, described in more detail in Appendix B. They
induce a smoothing of the experimental concentration profiles
over a typical length `, of the order of a few particle radii
for the four shear rates under study. Smoothing effects will
artificially push the top of the sediment ĥ upwards, and even-
tually, through Equation 12, impact in turn our estimate of the
normal viscosity ηn,3. In the end, this effect leads to a system-
atic overestimation of the normal viscosity for low volume

a)

b)
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.2
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FIG. 6. a) Normal viscosity ηn,3 as a function of volume fraction
φ for shear rates ranging from γ̇ = 25 s−1 (purple) to γ̇ = 250 s−1

(green) for the left (thin solid lines) and right (thin dash-dotted
lines) cross-sections. ηn,3 is obtained from the experimental volume
fraction profiles using Equation (12). The black solid line shows
the normal viscosity correlation proposed by Boyer, Guazzelli, and
Pouliquen 7 , the dashed line corresponds to the one proposed by
Morris and Boulay 4 and the dotted line to the Zarraga, Hill, and
Leighton Jr. 10 correlation. b) Same data where the normal viscosity
has been rescaled by a factor 0.65Sh.0.31; the data coincide with the
Morris and Boulay correlation by changing the prefactor to 0.41.

fractions, and should be maximal for the lowest shear rate,
γ̇ = 25 s−1, since its volume fraction gradients are steeper.
This is precisely what we observe in Figure 6. Additional ex-
periments shown in Appendix G and performed with a smaller
amount of the same particles support the same scaling for
φ ≥ 30%. Interestingly, while the correlation proposed by
Zarraga et al. can be clearly ruled out, the normal viscosity
correlations of Boyer et al. and Morris and Boulay now yield
accurate descriptions of the experimental data in this new set
of axes, down to volume fractions of about 0.1 for the largest
shear rates, whose profiles are least sensitive to parallax is-
sues. Such a shift amounts to using an effective Shields num-
ber in Equation (12) given by Sheff = 1.54Sh0.71 to match the
prediction of Boyer et al., or 2.43Sh0.71 to match that of Mor-
ris and Boulay. This reflects the fact that the normal viscosity
grows –unexpectedly– slower than γ̇ , or, equivalently, that re-
suspension becomes less and less efficient as the shear rate
increases.
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D. Comparison with theoretical concentration pro�les

Figure 7a-b and 7c-d respectively show the numerical pro-
files of the volume fraction φ(z) computed from the Zarraga et
al. and the Boyer et al. normal viscosity correlations without
any free parameters. The Zarraga et al. correlation describes
the sediment height ĥ somewhat correctly for the three lower
shear rates and underestimates it for γ̇ > 100 s−1, as suggested
in Figure 5. More importantly, it fails to fit the data at low vol-
ume fractions, i.e. close to ẑ = ĥ, where the numerical profiles
display a vertical tangent whereas the experimental data show
a finite slope. In contrast, the Boyer et al. correlation cor-
rectly fits the data at γ̇ = 50 s−1 for almost all z but grossly
overestimates the sediment height at larger shear rates.

A much better agreement is obtained if we take the Shields
number as a free parameter in Equation (9). The numerical
profiles resulting from this procedure are displayed in Fig-
ure 7e-f and coincide very well with the experimental data for
all shear rates and particle volume fractions. Figure 7g shows
the variation of the effective Shields number deduced from
the fitting procedure as a function of the global Shields num-
ber Sh. Therefore, using the Boyer et al. correlation with an
effective Shields number Sheff = 1.52Sh0.70 provides an ex-
cellent description of our data, consistently with Section IV C
and, as will be discussed in the next Section, with nonlinear
particle stresses as in Equation (13).

V. DISCUSSION

The volume fraction profiles obtained for a significant
range of shear rates provide a strong test of the constitutive be-
havior of suspensions. From our observations, and after ruling
out parallax issues, wall slip, confinement effects and inertial
particle migration, it appears that the SBM with the standard
viscous scaling of all stresses is not able to describe our sys-
tem. Instead, the particle stresses seem to obey the following
scaling:

Σp ∝

(
φ/φm

1−φ/φm

)2

γ̇
0.7 . (13)

Let us discuss separately the dependence of the particle stress
Σp with respect to the volume fraction and to the shear rate.
Although coupling between these two variables cannot be ex-
cluded in the general case, this separation of variables is the
simplest expression that fits the data. It is also natural in our
thin-gap Taylor-Couette geometry, as the shear rate is homo-
geneous. Furthermore, such an approach has been systemat-
ically used in the framework of the SBM. This result is quite
general: provided that the suspension formulation is the same,
we expect Equation (13) to hold for every geometry probing
the vorticity component of Σp.

A. E�ect of volume fraction

As recalled in section IV A, two main correlations for the
normal viscosity ηn,3(φ) have been proposed in the literature.

The main difference between the correlation of Zarraga et al.
and that of Morris and Boulay 4 or Boyer et al. is the value
of the exponent n in Equation (6), which sets both the asymp-
totic behavior at low volume fraction ηn,3 ∼ φ n and the one
close to jamming. The fits to the concentration profiles of
Figure 7 and the direct normal viscosity determination of Fig-
ure 6 lead to the same conclusion: the n = 2 correlation of
Boyer, Guazzelli, and Pouliquen 7 matches our results much
better that the n = 3 equation proposed by Zarraga, Hill, and
Leighton Jr. 10 . In particular, close to the top of the sediment,
the oblique asymptotes of the φ(z) profiles highlight the n = 2
scaling of the normal viscosity at low φ , which was proposed
–yet never measured– by Morris and Boulay and by Boyer et
al..

Strikingly, the n = 3 scaling was deduced in Ref. 10 from
viscous resuspension experiments in a Taylor-Couette geom-
etry, in which Acrivos, Mauri, and Fan 18 measured the resus-
pended sediment height. However, as shown in Figure 5 and
contrary to the volume fraction profiles, this height provides
limited insight into the asymptotic behavior of the normal vis-
cosity at low φ , which might allow an n = 3 scaling to fit the
data.

From a physical point of view, the φ 2 scaling at low volume
fractions points to pairwise interactions, contrary to a φ 3 scal-
ing which would rather hint at three-body hydrodynamic inter-
actions as considered in Ref. 30. As pointed out by Lhuillier5,
both non-hydrodynamic and hydrodynamic forces could in
principle lead to shear-induced migration. It has been argued
that the effect of non-hydrodynamic forces such as contact
forces between particles is likely to dominate at high volume
fraction6. Our finding that Σp ∝ φ 2 at low φ thus indicates that
the shear-induced migration evidenced in resuspension exper-
iments originates –at least for the system studied here– from
non-hydrodynamic interactions, even at low volume fractions,
where the shear viscosity is dominated by viscous stress. As
will be shown in the following, these non-hydrodynamic in-
teractions are likely to be contact forces.

B. E�ect of shear-rate: nonlinear particle stress

The nonlinear power-law scaling of the particles stresses
Σp ∝ γ̇0.7 [Equation (13)] is not expected for a viscous sus-
pension when interparticle contact forces are modeled by an
ideal Coulomb friction law9. Many experimental results, how-
ever, show departures from the simple viscous scaling Σp ∝ γ̇

through a shear-thinning viscosity at high volume fraction in
non-Brownian suspensions10–14. For our suspension, we find
in Appendix A that η ∝ γ̇−0.17 for the largest volume fractions.
Recently, several authors have introduced non-Coulomb fric-
tion laws to explain such shear thinning, either by adding
an explicit velocity dependence13 or a normal stress depen-
dence12,14 to the microscopic sliding friction coefficient be-
tween particles.

Still, the shear viscosity cannot be correlated directly to the
particle stress that we extract from the shear-induced resus-
pension experiment. Indeed, the shear viscosity of the sus-
pension finds its contribution from both hydrodynamic and
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FIG. 7. Particle volume fraction profiles φ(z) from the left cross-section for γ̇ = 25, 50, 100 [a), c) and e)] 250, 500 and 1000 s−1 [b) and d)
and f)]. Same color code as in Figures 4 and 6. Circles correspond to valid experimental data and the small crosses represent experimental
data for which centrifugal effects invalidate our analysis. The solid lines show the numerical profiles computed from (a-b) the Zarraga et al.
correlation with no free parameter, (c-d) the Boyer et al. correlation with no free parameter and (e-f) the Boyer et al. correlation with the
effective Shields number shown in (g). Predictions for the inertia-dominated data are shown with dotted lines in Panels (b),(d) and (f). The
dashed line of panel (g) is Sh = Sheff and the solid line is the best power-law fit Sheff = 1.52Sh0.70. The colored crosses, corresponding to
inertia-dominated data, are excluded from the fit.

contact stresses. In order to get some insight into contact
stresses, one needs to perform, for example, shear reversal
experiments31–34. In such experiments, the suspension is first
sheared at a given shear stress or shear rate in a simple shear
flow until steady-state is reached. The direction of shear is
subsequently reversed (keeping the same value of the applied
shear rate or stress), and the viscosity evolution with strain is
recorded. In the presence of contact forces, most contacts are
predominantly oriented in the compression direction of sim-
ple shear. Upon shear reversal, all of these contacts are now in
traction and are suddenly broken, which results in an abrupt
decrease of the viscosity. The minimum viscosity achieved
during the reversal can then be associated mostly with hy-
drodynamic interactions, whereas the difference between the
steady-state viscosity and this minimum provides the contact
contribution to the viscosity34.

In order to estimate the particle contact contribution to
the shear viscosity, we performed shear reversal experiments
on suspensions composed of the same glass beads as in the
resuspension experiments, but in a more viscous fluid to
avoid sedimentation. These experiments are discussed in Ap-
pendix A 2 and the results are shown in Figure 10. Follow-
ing Peters et al. 34 to analyze these results, we show that the
hydrodynamic part of the shear viscosity is essentially rate-
independent, whereas the contact contribution to the viscosity
shows a pronounced shear-thinning behavior (see Table I). It
suggests that the contact contribution to stress scales as γ̇0.76,
which is broadly consistent with particle stresses scaling as
γ̇0.7 in resuspension experiments [Equation (13)]. Altogether,
these observations point to non-Coulomb friction between our
glass particles, as recently proposed by Chatté et al. 12 and by
Lobry et al. 14 . This means that the resuspension properties

of non-Brownian particles should depend much on the exact
nature of the particles and on the way their friction coefficient
varies with load and velocity.

VI. CONCLUSION

Previous experimental studies of shear-induced resuspen-
sion in the literature focused on the height of the resuspended
sediment and needed to assume a viscous scaling either for
the particle stress (in the case of the SBM) or for the diffu-
sion coefficient (in the case of the Acrivos model) in order to
model their observations. This assumption is justified in the
case of rate-independent Coulomb friction between the parti-
cles. Here, we have obtained local volume fraction profiles for
resuspension in a Taylor-Couette geometry thanks to X-ray
imaging. A significant range of volume fractions is covered
under various applied shear rates, which allows us to inves-
tigate both the volume fraction and shear rate dependence of
particle stresses when particle migration due to inertia is small
enough, i.e. for γ̇ ≤ 250 s−1. In the framework of the SBM,
our data demonstrate that the particle stresses asymptotically
scale as φ 2 at low volume fractions and display a nonlinear,
shear-thinning scaling with respect to the shear rate. The latter
is consistent with the shear thinning observed both in the shear
viscosity of the suspension and in the contribution of con-
tacts to this viscosity. This likely points to a non-Coulomb or
velocity-weakening friction between the glass particles. Fur-
ther work on the topic is critically needed. In particular, exper-
iments with a more viscous fluid phase and a larger number of
particles in the gap should be performed to confirm our non-
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viscous scaling and assess the impact of confinement on our
concentration profiles. Experiments using other particle types
– metallic, polymeric, or gel – would also be highly relevant
to get more insight into the impact of the precise local contact
laws between pairs of particles on the particle stresses, as well
as on the efficiency of resuspension.

ACKNOWLEDGMENTS

This research was supported in part by the Agence Na-
tionale de la Recherche through the FLUIDIDENSE project
(grant number ANR-17-CE07-0040). We wish to acknowl-
edge the support of the Plateforme de Caractérisation des
Matériaux d’Aquitaine (PLACAMAT) for allowing experi-
mental time on the X-ray tomography equipment. The au-
thors are greatly indebted to one of the anonymous referees
who pointed out centrifugal effects, therefore significantly im-
proving the manuscript. We thank Nicolas Lenoir and Ronan
Ledevin for technical support during the experiments. We also
thank Élisabeth Guazzelli, Elisabeth Lemaire and Frédéric
Blanc for insightful discussions.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
03

27
1



11

Appendix A: Macroscopic Suspension Rheology

In this Appendix we report and discuss the steady-state
macroscopic viscosity of suspensions. We also present the
results of a series of shear reversal experiments performed to
characterize the particle contact contribution to the shear vis-
cosity.

We use the same glass spheres as those used in the resus-
pension experiments of the main text. This time, the particles
are suspended in a mixture of 20% wt. water and 80% wt.
UCON (instead of 65% wt. water, 35% wt. UCON), which
is also a Newtonian fluid, with a viscosity η0 ' 14.5 Pa.s at
25◦C. Suspensions are prepared at various volume fractions
ranging from 10 to 50%. We use a Kinexus Ultra+ rheome-
ter (Malvern Panalytical) equipped with a wide-gap Taylor-
Couette geometry, with sandblasted surfaces (rotor diame-
ter 25 mm, stator diameter 37 mm), to characterize the sus-
pensions. Experiments are conducted in the controlled-stress
mode. The shear stress and shear strain are obtained from the
applied torque and the measured rotation angle by using the
standard equations for the Taylor-Couette geometry at the ro-
tor surface.

1. Steady-shear viscosity

For each volume fraction, the steady-shear apparent viscos-
ity is measured by applying a series of logarithmically-spaced
constant shear stresses, corresponding to shear rates varying
between 0.01 and 10 s−1. Each shear stress is applied for a
duration of 10 s.

The steady-state viscosity η is plotted as a function of the
steady-state shear rate in Fig. 8 for various particle volume
fractions φ . At low φ , a Newtonian behavior is observed with
a viscosity higher than that of the interstitial fluid. As the vol-
ume fraction is increased, the viscosity increases and a mild
shear-thinning is observed. For φ = 50%, the apparent vis-
cosity follows a scaling η ∝ γ̇−0.17. Similar shear-thinning
at high particle concentration has already been reported in a
number of other non-Brownian suspensions10–14.

In order to characterize the viscosity increase with vol-
ume fraction, we plot the dimensionless viscosity η(φ , γ̇ =
1 s−1)/η0 as a function of φ in Figure 9. Since the sus-
pensions show shear-thinning at high concentrations, we also
show error bars extending from the lowest to the highest di-
mensionless viscosity measured at each φ within the range of
investigated shear rates. The increase of η/η0 with φ is sim-
ilar to that reported for other non-Brownian suspensions8 and
may be fitted fairly well to a Maron-Pierce law35:

η

η0
=

(
1− φ

φm

)−2

, (A1)

with φm = 0.6, which is in the range of φm values typically
observed for monodisperse frictional spheres7,8,26,27.

10−2 10−1 100 101
101

102

103

γ̇ (s−1)

η
(P

a
s)

-0.17
1

FIG. 8. Shear viscosity η of a suspensions of glass spheres (diam-
eter 2a = 250 µm) in an 80% wt. UCON aqueous solution as a
function of the shear rate γ̇ . The thick black line shows the viscos-
ity of the pure fluid. The purple circles, blue left pointing triangles,
teal squares, green diamonds and yellow upwards pointing triangle
respectively correspond to φ = 10%, 20%, 40%, 45% and 50%. The
gray solid line provides the best power-law fit η ∝ γ̇−0.17 to the 50%
data.
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FIG. 9. Dimensionless shear viscosity η/η0 of a suspension of glass
spheres (diameter 2a = 250µm) in an 80% wt. UCON aqueous so-
lution, plotted for γ̇ = 1 s−1, as a function of the particle volume
fraction φ . Error bars on the experimental data show the maximum
and minimum value measured over the range of shear rates of Fig. 8.
The empirical viscosity laws of Maron and Pierce35 (solid line) and
Krieger and Dougherty36 (dashed line), both with φm = 0.6, are also
shown.

2. Shear reversal experiments

Next, following Lin et al. 33 and Peters et al. 34 , we use
shear reversal experiments to evaluate the particle contact
contribution to the shear viscosity. As in Blanc, Peters, and
Lemaire 32 , since we use a stress-controlled rheometer, we
work in the controlled-stress mode in order to monitor accu-
rately the transient evolution of the viscosity with strain. We
first shear the suspension at a constant imposed stress τ until
the shear strain γ exceeds 10 and a steady state is reached. We
then apply a resting period of 10 s at zero stress before apply-
ing a stress −τ until a new steady state is reached. We call γR
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FIG. 10. Shear Reversal experiments of a 50 % wt. suspension of glass particles in an 80 % wt. UCON-20% wt. aqueous mixture. a) Steady-
state relative viscosity η/η0 of the suspension plotted as a function of the strain before reversal γR− γ . Colors code for an applied shear stress
of 11.5 Pa (yellow), 28.3 Pa (green), 76.6 Pa (green-blue), 191 Pa (dark teal), 511 Pa (dark blue) and 1310 Pa (purple). b) Evolution of the
relative viscosity η/η0 as a function of the shear strain after reversal γ − γR. The shear reversal data for the all shear rates were smoothed
over 10 samples for clarity. c) Relative viscosity η/η0 as a function of the applied shear rate. Squares: steady-state viscosity, obtained from
a). Circles: relative viscosity minimum ηmin/η0 reached in b) soon after reversal. Triangles: contact contribution to the suspension viscosity
ηC. Diamonds: hydrodynamic contribution to the suspension viscosity ηH. Contact and hydrodynamic contributions are deduced from the
decomposition proposed by Peters et al. 34 , which we recall in Equations (A2) and (A3). Same color codes as in a) and b).

the reversal shear strain attained when the stress is set to −τ .
We monitor the evolution of the shear viscosity both before
and after shear reversal. These measurements are repeated for
the same values of τ as in the previous section and shown in
Fig. 10a-b for a suspension of volume fraction φ = 50%.

As already observed in the literature31,33,34, the shear vis-
cosity just after reversal is smaller than the steady-state vis-
cosity and it subsequently increases with strain until it reaches
a steady state for a strain of order 5. Figure 10b-c shows that
the steady-state viscosity is more sensitive to the shear rate
than the viscosity minimum ηmin reached shortly after shear
reversal. This last observation is consistent with the numeri-
cal simulations of Peters et al. 34 , which suggest the following
decomposition:

η = η
H +η

C , (A2)

ηmin = η
H +0.17η

C , (A3)

ηH and ηC being the hydrodynamic and contact contributions
to viscosity; the choice of the 0.17 numerical factor may a pri-
ori depend on the interparticle, local friction coefficient. We
perform a similar decomposition in Figure 10c. Using a nu-
merical factor 0.12 (instead of 0.17) in Equation (A3), we ob-
serve that the hydrodynamic part of the suspension viscosity
ηH is constant, as expected of a suspension of non-Brownian
hard spheres. Following that choice, the contact viscosity ηC

decreases for increasing shear rates γ̇ , and point to an aver-
age shear-thinning exponent of −0.24± 0.02 for the contact
viscosity, as shown in Table I. This exponent broadly agrees
with the −0.30 shear-thinning exponent of the normal viscos-
ity obtained from resuspension experiments in the main text.

φ 0.10 0.20 0.40 0.45 0.50

n (total) -0.01 -0.02 -0.15 -0.18 -0.17

n (contacts) / / -0.25 -0.25 -0.22

TABLE I. Shear-thinning exponents n of the suspension viscosity η

with the shear rate: η ∝ γ̇n. The total exponent is obtained from
the flow curves of Fig. 8. The contact exponent is deduced from the
viscosity decomposition of Peters et al. 34 for shear reversal experi-
ments, such as the one shown in Fig. 10. A viscous scaling implies
n = 0.

Appendix B: Geometrical Approximations and Parallax Issues

In this Appendix, we provide more details on the approxi-
mations made in Section II B. We first describe how comput-
ing φ(r,z) involves averaging over different radial positions.
We then detail the impact of a finite distance between the X-
ray source, the geometry and the detector on the final mea-
surements, which we shall refer to as parallax issues in the
main text.

1. General Approximation

For an X-ray source located at infinity, the apparent thick-
ness w(x) of the slab of suspension crossed by the X-rays at a
position x within the two cross-sections defined in Figure 1b
is simply given by:

w(x) = 2
√

R2
o− x2 . (B1)
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X-rays actually cross slabs of the suspension corresponding to
multiple values of the radial distance r. Given the notations in
Figure 1b, the integral version of the Beer-Lambert law reads:

A(x,z) = 2(εp− ε f )
∫ Ro

r=x
φ(r,z)

r√
r2− x2︸ ︷︷ ︸
ζ (x,r)

dr . (B2)

The approximation that we make in the main text consists in
assuming that:

φ(r = x,z)' A(x,z)
w(x)(εp− ε f )

. (B3)

Since 2
∫ Ro

x ζ (x,r)dr = w(x), Equation (B2) shows that the
above approximation is true only for r-independent concen-
tration fields or for x very close to the outer edge. In the latter
case, however, the precision on the volume fraction measure-
ment is poor due to the small value of w(x) (see Appendix E
for more details).

Consequently, the apparent φ(r,z) inferred from Equa-
tion (B3) is actually a weighted average of the true φ(r,z) over
x ≤ r ≤ Ro. The weight of r ' x in this averaging process is
particularly high since ζ (x,r) diverges for r→ x. This means
that in the absence of strong radial gradients in the particle
volume fraction, we may use Equation (B3) to obtain a rea-
sonable estimate of the local volume fraction. In any case, our
study is mostly focused on the vertical distribution of particles
so that the details of the volume fraction field in horizontal
planes can be averaged out.

2. Finite distance e�ects: parallax issues

In practice, both the X-ray source and the detector are lo-
cated at a finite distance from the Taylor-Couette geometry.
This implies that the incident X-rays, depicted so far as a par-
allel beam, actually diverge from the source. This has a direct
impact on the data especially in the vertical plane.

a. Changes in the horizontal plane

First, the width w(x) has to be computed for a source lo-
cated at a finite distance d ' 25 cm from the center of the ge-
ometry. The location x at which an X-ray hits the sensor now
varies with the distance between the source and the detector,
D ' 70 cm. The geometrical relations shown in Figure 11
allow us to derive the finite-distance slab thickness of the sed-
iment crossed by the X-rays as a function of x through the use
of θ , defined as tanθ = x/D:

wFD(x) = 2Ro sinβ (B4)

= 2

√
R2

o−
d2x2

D2 + x2 . (B5)

The boundaries of our cross-sections are defined by two
limit rays of angles θm and θM , such that d sinθm = Ri and

•

•
•

θm θM

θ

β

wFD

D

d

Ro

Ri

•

x

FIG. 11. Impact of the finite distance between source, geometry and
detector in the horizontal plane. We notice that x is proportional to D

d sinθM = Ro. We can relate these angles to the locations xm
and xM where the limit rays hit the sensor plane:

xm =
RiD√
d2−R2

i

, (B6)

xM =
RoD√
d2−R2

o
. (B7)

We notice that xM − xm is not equal to Ro−Ri and is instead
proportional to D. The size –expressed as a number of pixels–
of the cross-section in our raw images thus depends on both
the true resolution of the sensor (the number of pixels per mm)
and the distance D. In practice, we choose a scaling factor S
in the pictures so that the apparent cross-section size is equal
to S(xm− xM) = Ro−Ri.

Finally, the impact of the finite distance between the source
and the detector can be quantified as [wFD(Sx)−w(x)]/w(x).
Given our estimates for d/Ro ≥ 10 and D/Ro ≥ 20, the finite
distance leads to corrections on w that are always smaller than
0.1% and can therefore be neglected.

b. Impact in the vertical direction

Since the source is pointlike and set at a finite distance from
the geometry, X-rays may cross the suspension at some angle
relative to the horizontal direction. Consequently, as shown
in Figure 12, our measurements are also averaged vertically
over a typical “smoothing” length ` that can be expressed as
a function of the vertical distance ∆z between the source and
the slab of suspension under investigation and as a function of
the slab thickness w(x):

`= 4D
w(x)|∆z|

4d2−w2(x)
. (B8)
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In our setup, the vertical position of the source is z ' 16 mm
in the reference frame of Figure 2. In the case of the sedi-
ment at rest, there should be a sharp transition from φ = φm to
φ = 0 at the top of the sediment. We can thus readily estimate
` by measuring the typical width of the transition zone on the
experimental map of Figure 2a. In the worst-case scenario,
i.e. at the bottom of the sediment and close to the inner wall,
we predict `' 3.3 mm, which is compatible with the concen-
tration maps of Figure 2. We further predict ` ' 1.4 mm at
the top of the sediment at rest and close to the inner wall, in
fair agreement with Figure 2a-b. We finally compute an esti-
mate of ` at the centre of the cross-section, used to derive the
concentration profiles examined in Sections III B and IV. We
obtain `= 0.146|∆z| which amounts to 4 particle diameters at
the top of the sediment at rest and to 9 particle diameters at
the bottom of the sediment. The impact of parallax is very
limited at the bottom of the sediment since no significant vari-
ations of φ are observed over `. Rather, its impact is maximal
at the top of the sediment and for low shear rates where φ

show the strongest spatial variations.

∆z

w(x)

d

D

z

φeff

`
ey

ez
ex

FIG. 12. Parallax issues along the vertical direction. For a pointlike
source located at a vertical distance ∆z from the suspension slab un-
der study, volume fraction measurements are smoothed over a typical
size `, proportional to the suspension thickness crossed by the X-rays
w(x) and to ∆z for small X-ray angles.

We may compute concentration profiles resulting from ver-
tical parallax issues, taking into account the fact that ` varies
along the vertical axis. This is done in Figure 13, for which we
use the Zarraga correlation, both because it has been experi-
mentally reported by D’Ambrosio et al. 37 and because they
are the most sensitive to vertical parallax issues. It clearly
shows that the smoothing is insufficient to explain the shape
of the experimental profiles at 25 s−1 and that the effect of
smoothing for 50, 100 and 250 s−1 is negligible. This can be
understood given the fact that the vertical position of the top
of the sediment rises very close to that of the X-ray source
for the four lower shear rates, leading to a sharp decrease of
` at the top of the sediment, down to 1.8, 1.3, 0.6 and 0.55
particle diameters for the four lower shear rates. From these
results, we may conclude that our experimental results can-
not be explained by a Zarraga concentration profile coupled

0

0.2

0.4

0.6

φ

γ̇ = 25 s−1

0

0.2

0.4

φ

γ̇ = 50 s−1

0

0.2

0.4

φ

γ̇ = 100 s−1

100 120 140
0

0.2

0.4

ẑ

φ

γ̇ = 250 s−1

(a)

(b)

(c)

(d)

FIG. 13. Impact of the vertical parallax issues on Zarraga theoretical
concentration profiles, and comparison with experimental data for
γ̇ = 25 s−1 (a), 50 s−1 (b), 100 s−1 (c) and 250 s−1 (d). Black
dashed lines, concentration profile based on the Zarraga correlation
with no vertical parallax smoothing. Red solid line, concentration
profile smoothed by parallax issues. Circles, experimental data. The
dotted line represents the position of the X-ray source.

to vertical parallax issues. Their impact can still be noticed on
the normal viscosity data at low volume fraction in Figures 6
and 18 and it could explain part of the slight curvature of the
concentration profiles for φ very close to 0 in Figures 3, 4 and
7. The impact of this parallax issue then remains limited to
such details.

Appendix C: Consequences of centrifugal forces

The analysis performed in the main text is purely one-
dimensional (1D). We then implicitly neglect the centrifugal
forces that are acting on the particles due to geometry curva-
ture. For the highest shear rates tested, centrifugal forces ex-
ceed buoyancy terms and it is thus necessary to solve the full,
two-dimensional problem using the SBM, including the sec-
ondary currents driven by gravity and the anisotropy of nor-
mal stress differences. The momentum balance in the particle
phase reads:

∇ ·Σp−∆ρφgez+∆ρ
γ̇2e2

r
er−

9
2

η0

a2
φ

f (φ)
(up−u)= 0, (C1)

where the third term corresponds to the centrifugal force. The
last term represents the mean force exerted by the fluid phase;
it is proportional to the difference of up –the particle phase
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velocity– and u –the suspension velocity. f (φ) is the hin-
drance function, modelled as (1− φ)5 following Richardson
and Zaki 38 . This last term does not necessarily vanish in the
steady, two-dimensional flow whereas it is identically zero in
the 1D case.

The previous equation is complemented by the Navier-
Stokes (NS) equations, i.e. the momentum balance of the
whole suspension,

ρ (∂tu+u ·∇u) =−∇p+∇ ·Σ+ρg, (C2)

and the conservation equations of both the particle phase and
that of the suspension,

∂tφ +∇ · (φup) = 0 (C3a)
∇ ·u = 0. (C3b)

The density ρ appearing in the NS equation is the local den-
sity of the suspension ρ = ρ f + φ∆ρ , where ρ f is the liquid
density. The particle stress Σp is modelled as in the 1D case by
a diagonal tensor [see, for instance, Eq. (3.1) from Guazzelli
and Pouliquen 8 ], while the stress tensor of the suspension is
assumed to be given by:

Σ = η(φ)
(

∇u+∇uT
)
+Σp. (C4)

For the sake of simplicity, we neglect the contribution of the
particle stress generated by the secondary currents in the plane
(er,ez), but keep the one due to the main shear flow.

We use a 2D finite volume numerical approach to solve the
above set of equations, using a home made second order cell-
centered implicit scheme to solve the particle conservation for
a given velocity field of the suspension. An extra but small
diffusion term has been added to the particle flux to facilitate
convergence. For a given concentration field, the scheme used
for the Navier-Stokes equations treats the non-linear convec-
tive term and external forces explicitly and the viscous term
in an implicit fashion. Incompressibility is ensured using a
projection approach. We conduct our simulations on a regu-
lar grid containing 25× 250 points respectively in the radial
and vertical –axial– directions. The simulations match exactly
the geometrical features and physical properties of the exper-
iments.

We show the simulation results in Figure 14, for the four
highest shear rates tested experimentally. We find, as com-
pared to the 1D case, that the centrifugal forces tilt the re-
suspended sediment, the particle volume fraction being higher
close to the stator. The coupling with Navier-Stokes equations
leads to a convection pattern which in turns curbs the tilt: the
suspension velocity points downwards close to the stator and
upwards at the rotor. This current is mostly localized at the top
of the resuspended sediment, where the local viscosity is low.
The typical velocity of this secondary current is from a few to
one hundred micrometers per second, and is thus of the order
of the sedimentation velocity for the highest shear rates (500
and 1000 s−1). Both buoyancy and normal stress anisotropy
could in principle lead to such secondary currents. Looking
into the details of the numerical results, we observe that the

currents driven by the normal stress anisotropy always remain
two orders of magnitude lower than buoyancy currents.

In principle, these effects preclude the use of the simple
1D model to interpret the experimental data. Nevertheless,
Figure 14 shows they only have a marginal influence on the
concentration maps up to γ̇ = 250 s−1 (included) for which
the volume fractions, especially at the center of the gap, are
very close to the 1D case. From γ̇ = 500 s−1 upwards, cen-
trifugal forces significantly alter the concentration profiles.
While the volume fraction profile distortion looks acceptable
for γ̇ = 500 s−1, it is significant for the low volume fractions
which are of highest interest in our article. For γ̇ = 1000 s−1,
profiles are severely distorted for all φ . We therefore exclude
these two shear rates from our analysis in the main text.

Importantly, up to 250 s−1, the secondary currents have
no influence on the apparent profiles, and the main conclu-
sions of the analysis are robust. The simulation results ob-
viously depend on the correlation used to model the parti-
cle stress Σp. The results shown in Fig. 14 have been ob-
tained using the empirical correlation found in this paper, i.e.
Σp33 = 1.53γ̇0.7φ 2/(1−φ/φm)

2, but we have checked that the
same conclusion holds for the correlations of Boyer and of
Zarraga: up to γ̇ = 250 s−1 the predicted profiles are not sen-
sitive to the centrifugal force and are thus very similar to the
1D case. In particular, we would have been able to identify
the vertical asymptotic behaviour of φ(z) for φ → 0 predicted
by the correlation of Zarraga, Hill, and Leighton Jr. 10 , i.e. for
Σp ∝ φ 3.

Appendix D: Spatiotemporal diagrams of resuspension
experiments

Figure 15 displays particle volume fraction maps averaged
over the gap width as a function of vertical position z and time
t for three different applied shear rates. All three plots show
that a steady profile is reached after t ' 70 s. Hence, the mean
volume fraction fields shown in Figure 2, where the temporal
average was performed over t = 90–150 s, do not include any
transient regime and fully characterize viscous resuspension
at the steady state.

Appendix E: Data validation and calibration

1. Locating the gap in X-ray images

When computing φ(r,z) using Equation (B3), we notice
that both A and w tend to zero for x = Ro. Therefore, volume
fraction measurements close to the outer cylinder are particu-
larly sensitive to where we define x = Ro in the raw images.
Any imprecision δx on the position of the outer wall may
result in dividing A by an effective thickness w(x+ δx) that
greatly differs from the actual w(x) in the vicinity of x = Ro.
Thus, we carefully choose the position of x=Ro in both cross-
sections so as to (i) obtain a gap width compatible with the
actual gap of the geometry (we respectively get 2.00 mm and
2.06 mm for the left and right cross-sections) and (ii) obtain a
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FIG. 14. Numerical investigation of centrifugal effects in our experiment. (a-h), predicted concentration maps for the four highest shear rates
considered in this Article, respectively 100, 250, 500 and 1000 s−1. We superpose in Panels (a),(c),(e),(g) the iso-lines of vz, the vertical
component of the suspension velocity field, and we do the same for the radial component vr in Panels (b),(d),(f),(h). Both quantities are
normalized by the free settling velocity of our particles, vs. The two color bars (blue and red) respectively represent negative and positive
values of vr and vz. The predicted concentration maps take into account the natural averaging due to X radiography, but excludes parallax
issues. Panels (i-l) show the predicted concentration profiles. The thick black line depicts the estimated profiles when no migration and no
secondary currents are considered (i.e. the 1D case). The thin colored lines correspond to the full, two dimensional simulations of the SBM.
Their color scheme corresponds to the seven divisions of the gap detailed in Figure 3. The gray crosses are the corresponding experimental
data.

local minimum of volume fraction at the outer edge of the ge-
ometry, followed by a progressive increase of φ up to r≈ a for
all shear rates. Our setup indeed allows us to resolve particles
that are in contact with the walls, which naturally introduces
an apparent particle concentration gradient at the outer bound-
ary.

2. Estimating the extinction coe�cients εp and ε f

The last step when converting A(x,z) into φ(r,z) consists in
estimating the proportionality constant between A/w and φ ,
namely the extinction coefficient difference εp− ε f . To this

aim, we perform the following integral:

2πρp

∫ Ro

Ri

xdx
∫

∞

0

A(x,z)
w(x)

dz = M(εp− ε f ) (E1)

For a given shear rate, we compute the above integrals for each
cross-section. Measuring independently the particle mass
M = 4.00± 0.01 g with a precision scale allows us to de-
duce the extinction coefficient difference εp− ε f from Equa-
tion (E1). Figure 16 shows all the individual estimations of
εp− ε f together with the average value εp− ε f ≈ 14.9 m−1.

Such an extinction coefficient difference is compatible with
an ordered layer at the outer edge of the experiment. We have
plotted in Figure 17 the volume fraction profiles for the pix-
els corresponding to the outermost concentration profile zone
(see Section III B and Figure 3) for the sediment at rest, us-
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FIG. 15. Spatiotemporal maps of the particle volume fraction for
three different shear rates: a) 500 s−1; b) 100 s−1; c) 25 s−1. Each
individual φ(r,z, t) at time t is averaged over r in order to provide
a space-time representation in the (z, t) plane. The mean volume
fraction fields presented in Figure 2 are averaged over the last 120
images, i.e. from the white dashed line to the right end of the axis.
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FIG. 16. Estimation of the differential extinction coefficient εp− ε f
deduced from the concentration profiles when using Equation (E1)
with the total particle mass M = 4.00 g. Open squares: estimation
from the left CS. Filled, black circles: estimation from the right CS.
The black line shows the average over the two CS. The dashed line
corresponds to the global average εp− ε f = 14.9 m−1.

ing εp−ε f = 14.9. We notice that φ sometimes exceeds 0.74,
yet we have verified that the excursions above φ = 0.74 never
occur over more than one particle diameter, reflecting both on
the ordering at the wall and the subparticle resolution of the
X-ray apparatus. The average profile (Figure 17, in black)
shown in the main text only seldom exceeds this value, con-
firming our data validation scheme.

Finally, we estimate the initial height h0 to be used for the
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ẑ
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FIG. 17. Particle volume fraction profiles near the outer wall of
the Taylor-Couette geometry obtained with εp− ε f = 14.9 m−1 for
γ̇ = 0 s−1. Gray lines correspond to a time-average of φ(r,z) at steady
state for r values corresponding to the 6 pixels closest to the outer
cup on the raw images for both the left and right cross-sections. The
thick black line is an average of the gray lines. The dashed line cor-
responds to φcfc = 0.74, which is the upper volume fraction limit for
monodisperse spheres.

models in Section IV D from the measured particle mass M
and by taking φm = 0.6 for the maximum volume fraction so
that h0 = M/[ρπ(R2

o−R2
i )φm] = 70.4a. In practice, since we

observe discrepancies in the sediment height between the left
and right cross-sections (see Figures 2 and 4), we correct h0
for each cross-section based on the data in Figure 16 and ob-
tain ĥ0 = 72.8 for the left CS and 68.6 for the right CS.

Appendix F: E�ect of slip and con�nement in the experiment

The results shown in Figures 6 and 7, discussed in Sec-
tion V, are striking and counter intuitive. We must ensure that
they do not result from undesirable physical effects present in
our experiment.

1. Wall slip

Slip may be present at the walls of our Taylor-Couette cell.
Experiments by Jana, Kapoor, and Acrivos 39 conducted in
suspensions of non-Brownian hard spheres in a Newtonian
solvent show that slip becomes noticeable only for volume
fractions above 0.45. The slip rate then increases with φ but
remains quite limited –below ten percent of the rotor velocity–
up to φ = 0.52, the maximum volume fraction investigated by
Jana, Kapoor, and Acrivos 39 . In Figure 7, we observe that the
correlation of Boyer fits our experimental data for γ̇ = 50 s−1

fairly well without relying on the non-viscous scaling of the
normal viscosity we observe in Figure 6. This means that the
effective Shields number is roughly equal to the actual Shields
number for this particular shear rate. Alternatively, it means
that if non-viscous effects are solely due to wall slip, it would
be zero for this particular shear rate. For higher shear rates,
the non-linear scaling of Equation 13 means a smaller effec-
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tive Shields number, a smaller effective strain rate, and hence
a higher wall slip. However, for higher applied shear rates, the
sediment is resuspended more strongly, resulting in lower vol-
ume fractions, and, following Jana, Kapoor, and Acrivos 39 , a
lower or even negligible wall slip, leading to a contradiction.
Wall slip therefore cannot explain our non-viscous scaling.

2. Con�nement

The peculiar dependence of Σp with φ and γ̇ could also be
due to particle confinement present in our geometry. Confine-
ment effects may come from the narrow gap width of the ge-
ometry or from the limited height of the sediment h compared
to the particle radius a.

a. Lateral confinement Our experimental configuration
involves ∼ 8 particles across the gap, which is slightly below
the classical limit requiring at least ∼ 10 particle diameters to
accurately reflect bulk behavior in granular materials40. How-
ever, radial confinement may not be that crucial since we re-
port layering that extends over only 1 to 2 particle radii from
the walls without any other significant radial gradients in the
volume fraction.

b. Vertical confinement Turning to the case of vertical
confinement, we note that imposing a zero velocity at the bot-
tom of the cup provides incompatible boundary conditions
with the velocity of the inner cylinder that imposes the global
shear rate. The consequences of such incompatibility should
be even more drastic for smaller sediment heights. To test
this idea, we performed additional resuspension experiments
with a number of particles two times smaller than in previous
measurements (see Appendix G). Such experiments show a
larger dispersion of the normal viscosity ηn,3 when plotted as
a function of φ . Yet, the scaling proposed in Equation (13)
remains valid for the larger volume fractions, i.e. close to
the bottom wall, suggesting that it results from a bulk prop-
erty of the suspension rather than from confinement effects.
A better control of boundary conditions at the edges of the
geometry (top or bottom) is possible, for instance by using a
non-miscible, very dense fluid such as mercury at the bottom
of the geometry18,37 or by considering positively buoyant par-
ticles in a dense fluid. Such experiments could confirm the
general nature of Equation (13).

Appendix G: Normal viscosities for a di�erent number of
particles

Additional experiments have been conducted using only
half of the particle number used in the main text, bringing
the global volume fraction in the experiment down to 5%.
Figure 18 shows the normal viscosities ηn,3 rescaled by the
same factors as those used in Figure 6. Discrepancies be-
tween shear rates are rather high for volume fractions below
φ = 30%. This is to be expected since the resuspended sedi-
ment height is smaller, leading to larger parallax issues in the
vertical direction. Nevertheless, their behavior at large vol-
ume fractions looks universal and matches the correlation pro-
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FIG. 18. Rescaled normal viscosity 0.65Sh0.29
ηn,3 as a function of

volume fraction φ for experiments with a global volume fraction of
5%, plotted following the results of Figure 6. Colored lines depict
experimental data: shear rates range from 25 s−1 (purple) to 250 s−1

(green). The black solid line corresponds to the normal viscosity
correlation proposed by Boyer et al.7.

posed by Boyer, Guazzelli, and Pouliquen 7 fairly well. This
result confirms that resuspension does not depend on the total
number of particles, and hence that the process is not strongly
affected by boundary conditions.
1G. G. Stokes, On the effect of the internal friction of fluids on the motion of
pendulums, Vol. 9 (Pitt Press Cambridge, 1851).

2A. Einstein, “Eine neue Bestimmung der Moleküldimensionen,” Ann. Phys.
324, 289–306 (1906).

3P. R. Nott and J. F. Brady, “Pressure-driven flow of suspensions: Simulation
and theory,” J. Fluid Mech. 275, 157–199 (1994).

4J. F. Morris and F. Boulay, “Curvilinear flows of noncolloidal suspensions:
The role of normal stresses,” J. Rheol. 43, 1213–1237 (1999).

5D. Lhuillier, “Migration of rigid particles in non-Brownian viscous suspen-
sions,” Phys. Fluids 21, 023302 (2009).

6P. R. Nott, É. Guazzelli, and O. Pouliquen, “The suspension balance model
revisited,” Phys. Fluids 23, 043304 (2011).

7F. Boyer, É. Guazzelli, and O. Pouliquen, “Unifying suspension and gran-
ular rheology,” Phys. Rev. Lett. 107, 188301 (2011).

8É. Guazzelli and O. Pouliquen, “Rheology of dense granular suspensions,”
J. Fluid Mech. 852 (2018).

9É. Guazzelli and J. F. Morris, A Physical Introduction to Suspension Dy-
namics (Cambridge University Press, 2012).

10I. E. Zarraga, D. A. Hill, and D. T. Leighton Jr., “The characterization
of the total stress of concentrated suspensions of noncolloidal spheres in
Newtonian fluids,” J. Rheol. 44, 185–220 (2000).

11T. Dbouk, L. Lobry, and E. Lemaire, “Normal stresses in concentrated
non-Brownian suspensions,” J. Fluid Mech. 715, 239–272 (2013).

12G. Chatté, J. Comtet, A. Niguès, L. Bocquet, A. Siria, G. Ducouret,
F. Lequeux, N. Lenoir, G. Ovarlez, and A. Colin, “Shear thinning in non-
Brownian suspensions,” Soft Matt. 14, 879–893 (2018).

13R. I. Tanner, C. Ness, A. Mahmud, S. Dai, and J. Moon, “A bootstrap
mechanism for non-colloidal suspension viscosity,” Rheol. Acta 57, 635–
643 (2018).

14L. Lobry, E. Lemaire, F. Blanc, S. Gallier, and F. Peters, “Shear thinning
in non-Brownian suspensions explained by variable friction between parti-
cles,” J. Fluid Mech. 860, 682–710 (2019).

15C. Gamonpilas, J. F. Morris, and M. M. Denn, “Shear and normal stress
measurements in non-Brownian monodisperse and bidisperse suspensions,”
J. Rheol. 60, 289–296 (2016).

16É. Couturier, F. Boyer, O. Pouliquen, and É. Guazzelli, “Suspensions in a
tilted trough: Second normal stress difference,” J. Fluid Mech. 686, 26–39
(2011).

17D. T. Leighton Jr. and A. Acrivos, “Viscous resuspension,” Chem. Eng. Sci.
41, 1377–1384 (1986).

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
03

27
1



19

18A. Acrivos, R. Mauri, and X. Fan, “Shear-induced resuspension in a Cou-
ette device,” Int. J. of Multiph. Flow 19, 797–802 (1993).

19S. Deboeuf, N. Lenoir, D. Hautemayou, M. Bornert, F. Blanc, and G. Ovar-
lez, “Imaging non-Brownian particle suspensions with X-ray tomography:
Application to the microstructure of Newtonian and viscoplastic suspen-
sions,” J. Rheol. 62, 643–663 (2018).

20M. Gholami, A. Rashedi, N. Lenoir, D. Hautemayou, G. Ovarlez, and
S. Hormozi, “Time-resolved 2d concentration maps in flowing suspensions
using X-ray,” J. Rheol. 62, 955–974 (2018).

21M. Baur, N. Uhlmann, T. Pöschel, and M. Schröter, “Correction of
beam hardening in x-ray radiograms,” Review of Scientific Instruments 90,
025108 (2019), https://doi.org/10.1063/1.5080540.

22J.-C. Bacri, C. Frenois, M. Hoyos, R. Perzynski, N. Rakotomalala, and
D. Salin, “Acoustic study of suspension sedimentation,” Europhys. Lett. 2,
123 (1986).

23G. Y. Onoda and E. G. Liniger, “Random loose packings of uniform spheres
and the dilatancy onset,” Phys. Rev. Lett. 64, 2727–2730 (1990).

24K. J. Dong, R. Y. Yang, R. P. Zou, and A. B. Yu, “Role of interparti-
cle forces in the formation of random loose packing,” Phys. Rev. Lett. 96,
145505 (2006).

25M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and
T. Aste, “Onset of mechanical stability in random packings of frictional
spheres,” Phys. Rev. Lett. 101, 018301 (2008).

26G. Ovarlez, F. Bertrand, and S. Rodts, “Local determination of the consti-
tutive law of a dense suspension of noncolloidal particles through magnetic
resonance imaging,” J. Rheol. 50, 259–292 (2006).

27R. Mari, R. Seto, J. F. Morris, and M. M. Denn, “Nonmonotonic flow
curves of shear thickening suspensions,” Phys. Rev. E 91, 052302 (2015).

28A. Ramachandran and D. T. Leighton Jr, “Viscous resuspension in a tube:
the impact of secondary flows resulting from second normal stress differ-
ences,” Physics of fluids 19, 053301 (2007).

29F. Boyer, O. Pouliquen, and É. Guazzelli, “Dense suspensions in rotating-
rod flows: normal stresses and particle migration,” J. Fluid Mech. 686, 5–25
(2011).

30Y. Wang, R. Mauri, and A. Acrivos, “Transverse shear-induced gradient
diffusion in a dilute suspension of spheres,” Journal of Fluid Mechanics
357, 279–287 (1998).

31F. Gadala-Maria and A. Acrivos, “Shear-induced structure in a concentrated
suspension of solid spheres,” J. Rheol. 24, 799–814 (1980).

32F. Blanc, F. Peters, and E. Lemaire, “Local transient rheological behavior
of concentrated suspensions,” J. Rheol. 55, 835–854 (2011).

33N. Y. C. Lin, B. M. Guy, M. Hermes, C. Ness, J. Sun, W. C. Poon, and
I. Cohen, “Hydrodynamic and contact contributions to continuous shear
thickening in colloidal suspensions,” Phys. Rev. Lett. 115, 228304 (2015).

34F. Peters, G. Ghigliotti, S. Gallier, F. Blanc, E. Lemaire, and L. Lobry,
“Rheology of non-Brownian suspensions of rough frictional particles under
shear reversal: A numerical study,” J. Rheol. 60, 715–732 (2016).

35S. H. Maron and P. E. Pierce, “Application of Ree-Eyring generalized flow
theory to suspensions of spherical particles,” Journal of colloid science 11,
80–95 (1956).

36I. M. Krieger and T. J. Dougherty, “A mechanism for non-Newtonian flow
in suspensions of rigid spheres,” Transactions of the Society of Rheology
3, 137–152 (1959).

37E. D’Ambrosio, F. Blanc, F. Peters, L. Lobry, and E. Lemaire, “Viscous
resuspension of non-Brownian particles: determination of the concentration
profiles and particle normal stresses,” arXiv:1907.01793 (2019).

38J. Richardson and W. Zaki, “Sedimentation and fluidisation: Part i,” Trans-
actions of the Institution of Chemical Engineers 32, 35–53 (1954).

39S. Jana, B. Kapoor, and A. Acrivos, “Apparent wall slip velocity coeffi-
cients in concentrated suspensions of noncolloidal particles,” J. Rheol. 39,
1123–1132 (1995).

40B. Andreotti, Y. Forterre, and O. Pouliquen, Granular Media: Between
Fluid and Solid (Cambridge University Press, 2013).

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
03

27
1



S
en
so
r

2Ro

2Ri

h
H

γ̇

ezey ex×

x

w
•Left CS

Right CS

•O
ex

ey
ez

x

•

r

er

eθ

ez

a)

b)



01
Ro − r (mm)

0

25

50

74

φ (%)

0 1 2

1000 s−1

01
Ro − r (mm)
0 1 2

500 s−1

01
Ro − r (mm)
0 1 2

250 s−1

01
Ro − r (mm)
0 1 2

100 s−1

01
Ro − r (mm)
0 1 2

50 s−1

01
Ro − r (mm)
0 1 2

25 s−1

01
Ro − r (mm)
0 1 2

25

20

15

10

5

0

-5

z
(m

m
)

0 s−1

Left
CS

Right
CS



0 1 2

20

15

10

5

0

Ro − r (mm)

z
(m

m
)

0 10 20
0

10

20

30

40

50

z (mm)

φ

Outer

2nd

3rd

Center

5th

6th

Inner

z = h

15 16 17 18 19 20
0

1

2

3

z (mm)

φ
(%

)

a) b) c)



0 50 100 150 200
0

20

40

60
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