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Abstract. Non-linear models used in dynamic simulations usually re-
quire the solution of multiple large and sparse linear systems in a succes-
sive manner. In this paper, we conduct a study of numerical solvers in the
framework of real-time soft tissue deformation. Domain Decomposition
paradigm has the potential of providing parallelism at both levels of equa-
tion assembling and linear system solving. In our case domain decompo-
sition is employed to solve a non-linear model in a dynamic simulation in
order to meet real-time computation by using parallel architecture. Nu-
merical test on liver deformations using a non-linear deformation model
is presented to evaluate the acceleration impact of the domain decompo-
sition paradigm. Performances tests clearly show the efficiency of using
a domain decomposition approach for real-time feedback.

Keywords: soft tissue deformation · non-linear model · linear systems
· domain decomposition

1 Introduction

Image-guided therapy has revolutionized medicine, in its ability to provide care
that is both efficient and effective. However, images acquired during an inter-
vention are either incomplete, under-exploited, or can induce adverse outcomes.
This can be due, for instance, to the lack of dimensionality of X-ray images and
the associated radiation exposure for the patient. In the same time, the scien-
tific computing community developed a particular interest in medical models
which attempt to provide numerical simulation to reproduce living anatomy or
physiology of the specific patient. The main challenge is to combine numerical
models with data extracted from intra-operative images and deliver efficient per-
operative guidance to clinicians.

In this paper, we are mainly interested in the simulation of soft tissue, in the con-
text described above. Whether we consider augmented reality or simply real-time
elastic registration, the constraints are similar. Models that aim to mimic the
mechanical behavior of complex anatomical structures must be accurate enough
to predict the location of internal structures invisible in the intra-operative image
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while providing visual feedback in real-time. This makes the rise of simulation
constraints at several levels: mechanical modeling, equation discretization, and
linear solvers. As a result, any simulation attempt would be necessarily look-
ing for the best compromise between accuracy and computation time. At the
mechanical level, there are several instances in the literature of real-time simu-
lation of deformable object which rely on linear elasticity like in [3]. The first
limitation is inherent to the small strain assumption: to keep a linear model, the
magnitude of deformation must be very small. Non-linear models do not suffer
from this constraint but they introduce an extra computational cost. At the
time discretization level, one of the most know strategies to deal with real-time
computation of the liver tissue deformations is based on an explicit integration
scheme, as proposed in [14, 13]. Explicit integration methods are particularly
well suited for some applications like the real-time non-rigid registration of the
brain shift during surgery [9]. However, liver tissues are often very soft, but in
most of the pathologic cases, these tissues are much stiffer. That makes the criti-
cal time step very small (about 10−6sec) which would not correspond to the real
dynamics. Implicit integration allows the use of larger time steps (about 2 ·10−2

sec) without any stability issues. The counterpart is a heavier computation at
each time step.

In practice, implicit integration schemes require to solve large systmes of linear
or non-linear equations. In both cases, we need to use a solver of a linear sys-
tem in a successive manner to compute a solution that represents the state of
the simulated model. The computation time of this part is the most important
fold of the overall simulation computation time. The main interest which has
driven our work in this paper is the efficiency in solving a large algebraic linear
system in parallel computation. During these last few years, the computational
power available within the hardware of computers is evolving in a different way.
Due to frequency and heat-dissipation limits, the current trend is focused on
increasing the number of computation units rather than their individual speed.
Nowadays, one or two quadcore processors can be found in standard desktop
computers. Two families of methods are traditionally used to solve a large linear
system arising from discretization of mechanical models on a parallel machine:
direct and iterative solvers. Direct solvers are known to be very robust. However,
the memory requirement becomes significant with larger systems. On the other
hand, iterative solvers [15] e.g., GMRES, CG, are less memory consuming and
naturally parallel but they suffer from a lack of robustness. Domain Decompo-
sition method [19, 4] as well as multigrid [8] method are hybrid methods that
can take advantage of direct solvers and iterative solvers in the same algorithm.
These two groups of approaches are described as hybrid methods because they
are ultimately used as a preconditioner for the linear system during an iterative
method, but direct methods are also used within the definition of the global
preconditioner on some smaller subsystems or auxiliary problems. Such a hy-
bridization provides highly concurrent methods that are robust enough to solve
complex real-life problems [12, 6, 18].
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In this paper, we aim to assess and achieve performance gain in a typical case of
liver deformation simulation using a non-linear model with implicit integration
scheme. To this end, we propose to adopt a domain decomposition paradigm that
introduces parallelism at two different levels, first at the model assembling then
at equation solves. Such a strategy opens new opportunities to deal with accu-
rate real-time simulations of soft organs, in particular in the context of complex
interactions.

2 Method

In this section, we summarize the continuum framework, introduce a constitutive
model along with the boundary value problem, and its numerical discretization.

2.1 Biomechanical model

To describe the mechanical behavior of the liver, we use a total Lagrangian
formalism. In general, we consider a body whose reference configuration is Ω0 at
time t0, subjected to a force per unit mass f , its boundary surface ∂Ω is divided
into a Dirichlet part ΓD0 constrained by a displacement y and a Neumann part
ΓN0 subjected to a traction force T , the continuum equations stated in the strong
form are

ρ0ÿ −∇ ·Σ = ρ0f in Ω0,

Σ · n = T on ΓN0 ,

y = y on ΓD0 .

(1)

In these relations ρ0 is the density, Σ is the second Piola-Kirchhoff stress tensor,
and n is the unit surface normal in the reference configuration.

Space integration In order to discretize problem (1) by a finite element
method, consider a tetrahedral mesh {Th}h>0 of the computational domain Ω0.
The discretized finite element formulation results in a nonlinear system of alge-
braic equations

MŸ + F int(Y ) = F ext, ∀t ∈ [0, T ], (2)

where initial, internal and external forces are respectively given by

MŸ =

∫
Th
ρ0NiNjdV Ÿ ,

F inti =

∫
Th
Σ : ∇NidV,

F exti =

∫
Th
ρ0f ·NidV +

∫
ΓN
0h

T ·NS
i dS,

(3)

where M is the mass matrix, Ni is the conventional shape function corresponding
to node i ∈ [1, N ] with N the number of nodes. Y ∈ RN is the vector of the
current nodal positions.
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Time integration : We chose a conventional implicit integration scheme pro-
vided by Newmark [1]. To this end, we consider a positive integer N and define
∆t = T/N , tn = n∆t, for n = 0, 1, ..., N . We compute the approximation Y n by
using the following second-order Newmark scheme

Y n+1 =Y n +∆tẎ n + (1/4)∆t2Ÿ n,

Ẏ n+1 =Y n − (1/2)∆tŸ n,

MŸ n+1 + F int(Y n+1) = F extn+1.

(4)

In hyperelastic models, the internal forces are provided by a non-linear function
F int. Here, we use the Newton-Raphson method to address the non-linearity at
each time step.

The fully discretized problem (4) gives rise to a linear system of the form Au = b
which needs to be solved for each simulation time step and more than ones in
case of non-linear models. Solving such a linear system could become extremely
expensive from the computational point of view. Medical simulations are con-
strained by the need for real-time computation to enable interactivity of the
simulation, this requirement translates into solving concurrently multiple linear
systems under a very challenging time constraint.

Traditionally, to solve these linear systems, two types of approaches are used:
direct and iterative solvers. Direct solvers provide the solution in a fixed num-
ber of steps. It mainly involves two phases: first, the factorization phase, e.g.,
LU,LDLᵀ, then, the solving phase. The factorization phase is independent of the
right hand side and is computationally more expensive than the solving phase.
Iterative solvers, e.g., GMRES, on the other hand, do not modify the matrix and
rely solely on matrix-vector products and other basic algebra operations. How-
ever, for an iterative solver to be efficient, choosing a good preconditioner [15] is
imperative, but in some cases finding a good preconditioner is a difficult task.

To overcome the disadvantages of iterative solvers and to take advantage of the
desirable features of direct solvers in the framework of parallel computing, there
has been an increasing focus on the so-called hybrid methods such as domain
decomposition and multigrid methods. For this paper, we adopt in the numerical
implementation a parallel strategy based on domain decomposition method.

2.2 Domain decomposition solver

Domain decomposition methods are known to be a divide & conquer paradigm to
accelerate numerical simulations. In our simulation context, we choose to use an
overlapping Schwarz method. To describe it, we first divide the mesh {Th}h>0 in
N non-overlapping meshes (the sub-domains) {Ti}16i6N using standard graph
partitioners, e.g., METIS [11]. If δ is a positive integer, the overlapping decom-
position

{
T δi
}
16i6N

is defined recursively as follows: T δi is obtained by including
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all elements of T δ−1i plus all adjacent elements of T δ−1i . For δ = 0, T δi = Ti. Let{
Vδi
}
16i6N

be the local deformation FE spaces defined on
{
T δi
}
16i6N

.

Now, consider the restrictions {Ri}16i6N from Vh to
{
Vδi
}
16i6N

and a local

partitions of unity {Di}16i6N such that:

N∑
j=1

Rᵀ
jDjRj = Idn×n,

where Id denotes the identity matrix and n is the global number of unknowns
in the deformation space. Algebraically speaking, if n is the global number of
deformation unknowns and {ni}16i6N are the numbers of degrees of freedom in
each local deformation FE space, then Ri is a Boolean matrix of size ni×n, and
Di is a diagonal matrix of size ni × ni, for all 1 6 i 6 N .

Using the partition of unity, one can use the one-level preconditioner, Restricted
Additive Schwarz (RAS) method, proposed by Cai and Sarkis [2]:

M−1RAS =

N∑
i=1

Rᵀ
iDiA

−1
i Ri, (5)

where the {Ai}16i6N are local operators defined by the submatrices {RiARᵀ
i }16i6N .

In this case, we thus chose to use a more sophisticated multilevel domain de-
composition method using the GenEO approach [17, 6]. This preconditioner,
M−1GenEO, uses a spectral coarse grid to better couple all sub-domains.

3 Results

This section aims to assess the efficiency of linear solvers described in the pre-
vious section in the presence of non-linear deformation model. To this end, we
consider Saint-Venant Kirchhoff as a constitutive law to model the liver mechan-
ical response. The Saint-Venant Kirchhoff law is given by the following potential:

W (e) =
λ

2
(Tr(e))2 + µ(Tr(e2)), (6)

where e is the Green Lagrange tensor e = 1
2

(
∇y + (∇y)ᵀ + (∇y)ᵀ · ∇y

)
. Then

the second Piola stress tensor is given by Σ = ∂W
∂e . λ and µ are the Lamé coeffi-

cients that can be determined from the Youngs modulus E and Poissons ratio ν.

The geometry of the model is segmented from a patient pre-operative Com-
puted Tomography (CT) image. The domain is then meshed in a set of linear
tetrahedral elements using GMSH [5]. In all the following simulations, we use
two different mesh discretizations. An initial tetrahedral mesh with 3316 ele-
ments which yields a linear system A with 2000 unknowns. Then, we refine the
same mesh by splitting each element into multiple smaller elements to get a
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finer mesh with 22208 elements, which yields a linear system A with 12321 un-
knowns. For domain decomposition purpose, the mesh is decomposed using the
graph partitioner METIS [11] (figure 1). The resulting finite element linear sys-
tem is preconditioned with M−1GenEO, and the GMRES solver is stopped when
the relative preconditioned residual is lower than 10−6

To implement the physical model, we have employed the open source simulation
software FreeFem [7]. The linear solvers and the preconditioners are implemented
in HPDDM [10]. We used the PARDISO [16] library for direct solver. Results
were obtained on a standard desktop machine equipped with Intel with 6 Intel
cores clocked at 3.2 GHz.

(a) Liver domain decomposition in 4
sub domains.

(b) Liver deformation estimated by a
non linear model.

Fig 1: Left: liver computational domain decomposed in 4 sub-domains using the graph
partitioner METIS [11] - Right: Liver deformation estimated by the non-linear Saint-
Venant Kirchhoff law (the initial configuration is represented by blue points).

3.1 Static non-linear deformation

In this paragraph we evaluate the performances of pure direct solver versus
domain decomposition solver for static deformation using a Newton-Raphson
algorithm. We simulated an entire liver deformation. A volumic force of 100Pa
in the (x + y) direction is uniformly applied to the liver while several selected
vertices of a plane are fixed (representing the ligament and veins). We consid-
ered Young modulus E = 3 · 103 and Poisson ratio ν = 0.35. The simulated
deformation is shown in Fig. 1b, where the deformed mesh is ploted as well as
the intial liver configuration (represented by blue points).

In Table 1, we report the time spent in all subroutines included during the mul-
tiples Newton iterations solve with respect to the number of subdomains N . The
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N
# d.o.f
per sub. Prec(ms). Solves(ms). Total(ms). # Newton

iterations
# Iterations

per Newton it Speedup # of d.o.f.

1 1998 0.00 47.96 47.96 3 1 -
2.00 · 1032 1263 16.50 11.05 27.55 3 8 1.7

4 897 12.88 7.89 20.77 3 9 2.3
1 12321 0.00 421.97 421.97 4 1 -

12.32 · 1032 7056 142.68 105.86 248.54 4 10 1.7
4 4494 99.00 94.92 193.91 4 13 2.1

Table 1: Breakdown of the time spent in solver steps for 3D non-linear solver with
respect to the number of subdomains, the second column corresponds to the maximum
number of unknowns per subdomain, the third column is the time spent in building the
DDM preconditioner, and the fourth column corresponds to the time spent in solving
the multiple Newton inner linear systems.

case N = 1 corresponds direct solver case, where the system is first factorized
with and LDLᵀ than solved. For N ≥ 2, the system is solved using GMRES
with a domain decomposition preconditioner M−1GenEO. Very few Newton itera-
tions (column number 6) are needed for the solver to converge, independently
of the number of subdomains (first column). The scalability of the solving ap-
proach is reported in the table using the run of the direct solver (a.k.a N = 1) as
a reference. For each mesh, we ensure that we are calculating the same solution
regardless of the linear solver type (direct or domain decomposition solver). To
do that, we make sure that L2 norm of the final deformation is the same during
each scalbility test.

We notice that domain decomposition approach is already providing a reasonable
speedup with respect to the number of subdomains. Moreover, we observe that
using a simple direct solver approach requires to build the factorization again
for each inner Newton iteration with the same high cost. Whereas with domain
decomposition approach the same preconditioner is reused for all the Newton
iterations with no significant impact on the GMRES solver, thanks to the ro-
bustness of the DD preconditioner, the number of Krylov iterations remains
stable. This suggests that we can take more benefits in a scenario of dynamic
deformations, where we need to solve more linear systems successively through
both Newton iterations and time integration algorithm.

The scalability is impacted by the number of unknowns per subdomain, which
is not scaling linearly with the number subdomains. This fact is first due to the
load balancing provided by the graph partitioner and also due to the overlapping
regions between subdomains, which seems to be more critical in case of small
meshes. We also notice that the increase in the number of unknowns from 2000
to 12321 leads to the increase of the computation time. This happens because
the convergence of the iterative solvers is influenced by the condition number
of the stiffness matrix, and the condition number will increase with a decreased
element size for a given object.
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3.2 Dynamic non-linear deformation

The main objective of this paragraph is to show that the cost of the domain
decomposition preconditioner is quickly amortized in the scenario of successive
solutions of linear systems. Typically in case of stiff elastic deformation where the
implicit integration method is more appropriate. To this end, we solve the entire
discretized problem (4), where, a Newmark, implicit time integration scheme is
used with a time step of 0.01s, in this scenario, the same volume force as the one
used in the static case is again uniformly applied to the liver (Fig. 1b) for 0.03s
than released to let the system reaches the equilibrium state. We simulate the
liver deformation for both discretizations with coarse mesh yielding a system of
2000 unknowns and refined mesh yielding a system of 12321 unknowns. In Fig 2,
we show the behavior of computational time spent in solving the successive linear
system. The red and blue curves represent, respectively, the coarse and fine mesh
discretization. The global domain has been decomposed in 4 subdomains allowing
the simulation to run on 4 processors. For each time step, the Newton-Raphson
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Fig 2: Performances of domain decomposition solver during the simulation of a dy-
namic non-linear deformation liver response. Using the Saint-Venant Kirchhoff model.
Red and blue curves represent the computation time per Newton iteration over time
steps with resp to coarse mesh (2000 unknowns) and refined mesh (12321 unknowns).

algorithm is performed to update the deformation state. We use the domain
decomposition approach as a solver, where preconditioner M−1GenEO is built at
the first time step than used for preconditioning all the following Newton inner
linear systems

3.3 Contact & deformation

While keeping the context of simulating the behavior of soft tissues, we can point
out the importance of providing methods and models to simulate the mechanical
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interactions on the organ model: interactions with the surrounding anatomical
structures (i.e. contacts), interactions with different surgical instruments leading
to contacts or other types of complex interactions. Simulating these interactions
necessitate to detect them, to model them, and then to solve them with adapted
numerical methods. In practice the numerical system to solve is an augmented
version of linear systems that we have solved in previous paragraphs. If we
consider the case of a two-body interaction, the augmented system takes the
following form

AU = b+ JTλ (7)

which can be formulated asA1 0 JT1
0 A2 J

T
1

J1 J2 0

y1y2
λ

 =

 b1b2
−δ

 (8)

A1 and A2 correspond to the linear operators of each body J1, J1 model the
interaction, then the unknowns are the y1, y2 are respectively the displacement
of the two bodies and λ is the vector of contact forces. We believe that in such
case if interaction, domain decomposition approach has a tremendous potential
for solving problem (7). And more than accelerating the linear solves, domain
decomposition can be specifically designed to consider the interaction area as a
single sub-domain domain. This possibility would allow a partial updating of the
global operator, and is likely to lead to a substantial gain in simulation time.

4 Conclusion

In this work, we have investigated the computational expense of solving linear
systems resulting from a combination of non-linear model and dynamic inte-
gration. We showed that employing hybrid solver like a domain decomposition
method has a real potential to harness the capability of small parallel machines
since it takes full advantage in making the solving procedure fully parallel. On
the other hand, the robustness of domain decomposition preconditioners makes
it possible to reuse the preconditioner for successive solves. These two strategies
combined open up the possibility to significantly accelerate the computation for
complex simulation and meet the real-time feedback, which is a hard constraint
in surgical training or intra-operative guidance.

The next step will be to integrate the domain decomposition paradigm with fast
hyperelastic FEM models and implicit contact schemes. We will also investigate
further the limited scalability of the current approach when dealing with real-
time applications, which is likely due to load balancing. This can be improved
by a better tuning of the graph partitioner .
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