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ABSTRACT
Interactions between amino acids that are close in the spatial structure, but not
necessarily in the sequence, play important structural and functional roles in pro-
teins. These non-local interactions ought to be taken into account when modeling
collections of proteins. Yet the most popular representations of sets of related protein
sequences remain the profile Hidden Markov Models. By modeling independently
the distributions of the conserved columns from an underlying multiple sequence
alignment of the proteins, thesemodels are unable to capture dependencies between the
protein residues. Non-local interactions can be represented by using more expressive
grammatical models. However, learning such grammars is difficult. In this work, we
propose to use information on protein contacts to facilitate the training of probabilistic
context-free grammars representing families of protein sequences. We develop the
theory behind the introduction of contact constraints in maximum-likelihood and
contrastive estimation schemes and implement it in a machine learning framework for
protein grammars. The proposed framework is tested on samples of protein motifs
in comparison with learning without contact constraints. The evaluation shows high
fidelity of grammatical descriptors to protein structures and improved precision in
recognizing sequences. Finally, we present an example of using ourmethod in a practical
setting and demonstrate its potential beyond the current state of the art by creating a
grammatical model of a meta-family of protein motifs. We conclude that the current
piece of research is a significant step towards more flexible and accurate modeling
of collections of protein sequences. The software package is made available to the
community.

Subjects Bioinformatics, Mathematical Biology, Computational Science, Data Mining and
Machine Learning
Keywords Structural constraints, Syntactic tree, Maximum-likelihood estimator, Probabilistic
context-free grammar, Contrastive estimation, Protein contact map, Protein sequence

INTRODUCTION
Grammatical modeling of proteins
The essential biopolymers of life, nucleic acids and proteins, share the basic characteristic
of the languages: an enormous number of sequences can be expressed with a finite number
of monomers. In the case of proteins, merely 20 amino acid species (letters) build millions
of sequences (words or sentences) folded in thousands of different spatial structures
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playing various functions in living organisms (semantics). Physically, the protein sequence
is a chain of amino acids linked by peptide bonds. The physicochemical properties of
amino acids and their interactions across different parts of the sequence define its spatial
structure, which in turn determines biological function to a great extent. Similarly to words
in natural languages, protein sequences may be ambiguous (the same amino acid sequence
folds into different structures depending on the environment), and often include non-local
dependencies and recursive structures (Searls, 2013).

Not surprisingly the concept of protein language dates back to at least the 1960s (Pawlak,
1965), and since early applied works in the 1980s (Brendel & Busse, 1984; Jiménez-
Montaño, 1984), formal grammatical models have gradually gained importance in
bioinformatics (Searls, 2002; Searls, 2013; Coste, 2016). Most notably, profile Hidden
Markov Models (HMM), which are weakly equivalent to a subclass of probabilistic
regular grammars, became the main tool of protein sequence analysis. Profile HMMs are
commonly used for defining protein families (Sonnhammer et al., 1998; Finn et al., 2016)
and for searching similar sequences (Eddy, 1998; Eddy, 2011; Soeding, 2005; Remmert et al.,
2012). The architecture of a profile HMM corresponds to the underlying multiple sequence
alignment (MSA). Thus, the model perfectly suits modeling single-point mutations and
supports insertions and deletions, but cannot account for interdependence between
positions in the MSA. Pairwise correlations in a MSA can be statistically modeled by
a Potts model (a type of Markov Random Field or, more generally, of an undirected
graphical model). This has been highly successful to predict 3D contact between residues of
a protein (Hopf et al., 2017), but computing the probability of new (unaligned) sequences
with such a model is untractable (Lathrop, 1994). An alternative to MSA-based modeling,
is to use formal grammars. Protomata (Coste & Kerbellec, 2006; Bretaudeau et al., 2012) are
probabilistic regular models that can capture local dependencies for the characterization of
protein families. Yet, as regular models, they are not well suited to capture the interactions
occurring between amino acids which are distant in sequence but close in the spatial
structure of the protein. In that case, formal grammars beyond the regular level are
needed. Specifically, the context-free (CF) grammars are able to represent interactions
producing nested and branched dependencies (an example is given in Fig. 1), while the
context-sensitive (CS) grammars can also represent overlapping and crossing dependencies
(Searls, 2013). The sequence recognition problem is untractable for CS grammars, but it is
polynomial for CF and mildly context-sensitive grammars (Joshi, Shanker & Weir, 1990).
However, grammatical models beyond the regular level have been rather scarcely applied
to protein analysis (a comprehensive list of references can be found in Dyrka, Nebel &
Kotulska (2013). This is in contrast to RNA modeling, where CF grammatical frameworks
are well-developed and power some of the most successful tools (Sakakibara et al., 1993;
Eddy & Durbin, 1994; Knudsen & Hein, 1999; Sükösd et al., 2012).

One difficulty with modeling proteins is that interactions between amino acids are often
less specific andmore collective in comparison to RNA.Moreover, the larger alphabet made
of 20 amino acid species instead of just four bases in nucleic acids, combined with high
computational complexity of CF and CS grammars, impedes inference, which may lead
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Figure 1 A toy example of application of the probabilistic CFG to protein sequences. (A) Fictitious
subfamily of beta-hairpins (Milner-White & Poet, 1986) represented with a sample of sequences in a sim-
plified notation (h-hydrophobic, l-loop-friendly, x-any), and with an idealized schematic structure. (B)
Rules of a probabilistic context-free grammar modeling the subfamily. Set of terminal symbols of the
grammar (the alphabet) consists of 20 amino acid identities. Lexical non-terminals h,l and x correspond
to symbols of the simplified notation. They are mapped to terminal symbols (amino acids) through lexi-
cal rules (here, they have uniform probabilities for the sake of simplicity). Rules rewriting structural non-
terminals s (the start symbol), t and umodel the ladder of the hairpin, and the two-residue loop (t → ll).
The grammar allows for bulges using non-terminal b and associated rules. (C) Fictitious query sequence
(and its contact map) to be tested against the grammar. Possible mappings from amino acids to lexical
non-terminals are shown below the sequence. Spatial proximity of residues is marked in the contact map
with a circle. Empty circles denote trivial contacts between adjacent residues; filled circles denote spatial
contacts between residues distant in the sequence. (D) Two possible derivations of the query sequence us-
ing the grammar. In each step, the left-most structural non-terminal is rewritten with a grammar rule. Fi-
nal steps from lexical non-terminals to terminal symbols are combined for the sake of brevity. First deriva-
tion is apparently ca. 1,000 times more probable given the grammar. (E) Parse trees corresponding to the
two derivations. Nodes representing terminal symbols and their incoming edges are omitted for the sake
of clarity. If application of the rule s→ hth is identified with generating hydrogen bonds between the two
hydrophobic residues, the parse trees correspond to the two schematic structures. Note that only the left-
hand-side tree captures all three distant contacts present in the contact map.

Full-size DOI: 10.7717/peerj.6559/fig-1
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to solutions which do not significantly outperform HMMs (Dyrka & Nebel, 2009; Dyrka,
Nebel & Kotulska, 2013). However, some studies hinted that CF level of expressiveness
brought an added value in protein modeling when grammars fully benefiting from CF
nesting and branching rules were compared in the same framework to grammars effectively
limited to linear (regular) rules (Dyrka, 2007; Dyrka, Nebel & Kotulska, 2013). Good
preliminary results were also obtained on learning sub-classes of CF grammars to model
protein families, showing the interest of taking into account long-distance correlations
in comparison to regular models (Coste, Garet & Nicolas, 2012; Coste, Garet & Nicolas,
2014). An important advantage of CF and CS grammars is that grammars themselves, and
especially the syntactic analyses of the sequences according to the grammar rules, are human
readable. For CF grammars, the syntactic analysis of one sequence can be represented by a
parse tree showing one hierarchical application of grammar rules enabling to recognize the
sequence (see Figs. 1B and 1E example). In RNA modeling, the shape of parse trees can be
used for secondary structure prediction (Dowell & Eddy, 2004). In protein modeling, it was
suggested that the shape of parse trees corresponded to protein spatial structures (Dyrka &
Nebel, 2009), and that parse trees could convey biologically relevant information (Sciacca
et al., 2011; Dyrka, Nebel & Kotulska, 2013).

Grammar estimation with structural constraints
In this piece of research the focus is on learning probabilistic context-free grammars
(PCFG) (Booth, 1969). This represents a trade-off between expressiveness of the model and
computational complexity of the sequence recognition, which is cubic in time with regard
to the input length.

Learning PCFG aims at shifting the probability mass from the entire space of possible
sequences and their syntactic trees to the target population, typically represented by a
sample. The problem is often confined to assigning probabilities to fixed production rules
of a generic underlying non-probabilistic CFG (Lari & Young, 1990). Typically, the goal is
to estimate the probabilistic parameters to get a grammar maximizing the likelihood of the
(positive) sample, while, depending on the target application, other approaches also exist.
For example, the contrastive estimation aims at obtaining grammars discriminating the
target population from its neighborhood (Smith & Eisner, 2005).

The training sample can be made of a set of sequences or a set of syntactic trees. In the
former case, all derivations for each sentence are considered valid. For a given underlying
non-probabilistic CFG, probabilities of its rules can be estimated from sentences in the
classical Expectation Maximization framework, e.g., the Inside-Outside algorithm (Baker,
1979; Lari & Young, 1990). However, the approach is not guaranteed to find the globally
optimal solution (Carroll & Charniak, 1992). Heuristic methods applied for learning PCFG
from positive sequences include also iterative biclustering of bigrams (Tu & Honavar,
2008), and genetic algorithms using a learnable set of rules (Kammeyer & Belew, 1996;
Keller & Lutz, 1998; Keller & Lutz, 2005) or a fixed covering set of rules (Tariman, 2004;
Dyrka & Nebel, 2009).

Much more information about the language is conveyed when syntactic trees,
constraining the set of admissible parse trees, are given. (Throughout this paper the notion
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of parse tree is reserved for syntactic trees generated by parsing with a specific grammar.)
If available, a set of trees (a treebank) can be directly used to learn a PCFG (Charniak,
1996). Usability of information on the syntactic structure of sequences is highlighted
by the result showing that a large class of non-probabilistic CFG can be learned from
unlabeled syntactic trees (called also skeletons) of the training sample (Sakakibara, 1992).
Algorithms for learning probabilistic CF languages, which exploit structural information
from syntactic trees, have been proposed (Sakakibara et al., 1993; Eddy & Durbin, 1994;
Carrasco, Oncina & Calera-Rubio, 2001; Cohen et al., 2014). An interesting middle way
between plain sequences and syntactic trees are partially bracketed sequences, which
constrain the shape of the syntactic trees (skeletons) but not node labels. The approach
was demonstrated to be highly effective in learning natural languages (Pereira & Schabes,
1992). It was also applied to integrating uncertain information on pairing of nucleotides
of RNA (Knudsen, 2005), by modifying the bottom-up parser to penalize probabilities of
inconsistent derivations with respect to available information on nucleotide pairing and
adjusting the amount of the penalty according to certainty of the structural information.

Protein contact constraints
To our knowledge, constrained sets of syntactic trees have never been applied for estimating
PCFG for proteins. In this research we propose to use spatial contacts between amino acids,
possibly distant in the sequence, as a source of constraints. Indeed, an interaction forming
dependency between amino acids usually requires a contact between them, defined as
spatial proximity. Until recently, extensive contact maps were only available for proteins
with experimentally solved structures, while individual interactions could be determined
through mutation-based wet experiments.

Currently, reasonably reliable contact maps can also be obtained computationally from
large collective alignments of evolutionary related sequences. The rationale for contact
prediction is that if amino acids at a pair of positions in the alignment interact then a
mutation at one position of the pair often requires a compensatory mutation at the other
position in order to maintain the interaction intact. Since only proteins maintaining
interactions vital for function successfully endured the natural selection, an observable
correlation in amino acid variability at a pair of positions is expected to indicate interaction.
However, standard correlations are transitive and therefore cannot be immediately used as
interaction predictors. A break-through was achieved recently by Direct Coupling Analysis
(DCA) (Weigt et al., 2009), which disentangles direct from indirect correlations by inferring
a model on the alignment which can give information on the interaction strength of the
pairs. There are different DCA methods based on how the model, which is usually a type
of Markov Random Field, is obtained (Morcos et al., 2011; Jones et al., 2012; Ekeberg et al.,
2013; Kamisetty, Ovchinnikov & Baker, 2013; Seemayer, Gruber & Söding, 2014; Baldassi et
al., 2014). The state-of-the-art DCA-based meta-algorithms achieve mean precision in the
range 42–74% for top L predicted contacts and 69–98% for top L/10 predicted contacts,
where L is the protein length (Wang et al., 2017). Precision is usually lower for shorter
sequences and especially for smaller alignments, however a few top hits may still provide
relevant information (Daskalov, Dyrka & Saupe, 2015).
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Contributions of this research
In the broader plan, this research aims at developing a protein sequence analysis method
advancing the current state of the art represented by the profile HMMs in being not limited
to alignment-defined protein sequence families, and capable of capturing interactions
between amino acids. The ideal approach would be based on the probabilistic (mildly)
context-sensitive grammars, however their computational complexity significantly hampers
practical solutions. Therefore, an intermediate approach based on the probabilistic
context-free grammars is considered here, which is computationally cheaper and can
represent the non-crossing (and non-overlapping) interactions between amino acids.
Still, the main difficulty is efficient estimation of the grammars. Our solution is to
accommodate information of protein contacts as syntactic structural constraints for the
model estimation and, if possible, for the sequence analysis. The first contribution of this
work consists on developing a theoretical framework for defining the maximum-likelihood
and contrastive estimators of PCFG using contact constraints (‘Estimation schemes using
contact constraints’). Building on this general framework, the second contribution of this
work is extension of our previous probabilistic context-free grammatical model for protein
sequences (Dyrka, 2007; Dyrka & Nebel, 2009; Dyrka, Nebel & Kotulska, 2013), proposed
in ‘Application to contact grammars’. The extended model is evaluated with reference
to the original one in the same evolutionary framework for inferring probabilities of
grammar rules (Dyrka & Nebel, 2009), as described in ‘Evaluation’ (part of the ‘Methods’).
The assessment focuses on capability of acquiring contact constraints by the grammar
(descriptive performance), and its effect on discriminative performance (‘Results’). After the
evaluation, an example using this method in a practical setting is presented. Finally, the
potential of our approach beyond the current state of the art is demonstrated by creating
a grammatical model of a meta-family of protein motifs. This piece of work finishes with
discussion of the results (‘Discussion’), followed by conclusions with analysis of limitations
and perspectives for future work (‘Conclusions’).

METHODS
We first show in ‘Estimation schemes using contact constraints’ how contact constraints can
formally be introduced to get new generic maximum-likelihood and contrastive estimation
schemes, and present then in ‘Application to contact grammars’ a practical implementation
of these schemes on a simple generic form of grammars representing contacts.

Estimation schemes using contact constraints
This section provides the mathematical basis for our method for training probabilistic
context-free grammars (PCFG) from protein sequences annotated with pairwise contacts.
Standard notations used in the field of grammar inference are introduced, complemented
with a less common notion of the unlabeled syntactic tree which is the syntactic tree
stripped from the syntactic variables (‘Basic notations’). We propose to define the syntactic
tree of a protein sequence as consistent with the contact map if for each pair of positions in
contact, the path between corresponding leaves in the tree is shorter than given threshold
(Eq. (1) in ‘Contact constraints’). Finally, the maximum-likelihood and the contrastive
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estimators formulæ are derived for training PCFG over the sets of unlabeled syntactic trees
consistent with contact maps (Eqs. (2)–(4) in ‘Estimation’).

Basic notations
Let 6 be a non-empty finite set of atomic symbols (representing for instance amino acid
species). The set of all finite strings over this alphabet is denoted by 6∗. Let |x| denote the
length of a string x . The set of all strings of length n is denoted by 6n

={x ∈6∗ : |x| = n}.
Let x = x1 ...xn be a sequence in 6n.

Unlabeled syntactic tree. An unlabeled syntactic tree (UST) u for x is an ordered rooted
tree such that the leaf nodes are labeled by x , which is denoted as yield(u)= x , and
the non-leaf nodes are unlabeled. Let U∗ denotes the set of all USTs that yield a
sequence in 6∗, let Un = {u ∈ U∗ : yield(u) ∈6n

}, where n is a positive integer, and let
Ux = {u ∈ U∗ : yield(u)= x ∈6∗}. Note that ∀(x,w ∈6∗, x 6= w) Ux ∩Uw =∅ and
U∗=∪x∈6∗Ux . Moreover, let U denotes an arbitrary subset of U∗.

Context-free grammar. A context-free grammar (CFG) is a quadruple G= 〈6,V ,v0,R〉,
where6 is defined as above, V is a finite set of non-terminal symbols (also called variables)
disjoint from 6, v0 ∈V is a special start symbol, and R is a finite set of rules rewriting
from variables into strings of variables and/or terminals R= {ri : V → (6∪V )∗} (see
Fig. 1B). Let α = α1 ...αk be a sequence of symbols in (6∪V )k for some natural k. A
(left-most) derivation for G is a string of rules r = r1 ...rl ∈Rl , which defines an ordered
parse tree y starting from the root node labeled by v0. In each step, by applying a rule
ri : vj→ α1 ...αk , tree y is extended by adding edges from the already existing left-most
node labeled vj to newly added nodes labeled α1 to αk . Therefore, there is a one-to-one
correspondence between derivation r and parse tree y (see Figs. 1D, 1E). Derivation r
is complete if all leaf nodes of the corresponding (complete) parse tree y are labeled by
symbols in 6. Sets Y∗, Yn and Yx denote parse tree sets generated with G analogously as
for the USTs. For a given parse tree y , u(y) denotes the unlabeled syntactic tree obtained
by removing the non-leaf labels on y . Given a UST u, let YG(u) be the set of all parse trees
for grammar G such that u(y)= u. For a set of USTs U , YG(U )=∪u∈UYG(u). Note that
∀(u,v ∈U , u 6= v) YG(u)∩YG(v)=∅.

Probabilistic context-free grammar. A probabilistic context-free grammar (PCFG) is a
quintuple G = 〈6,V ,v0,R,θ〉, where θ is a finite set of probabilities of rules: θ = {θi =
θ(ri) : R→[0,1]}, setting for each rule vk→ α its probability to be chosen to rewrite vk
with respect to other rules rewriting vk (such that ∀(vk ∈V )

∑
vk→αθ(vk→α)= 1, see Fig.

1B). Let PCFG G that enhances the underlying non-probabilistic CFG G= 〈6,V ,v0,R〉
is denoted by G = 〈G,θ〉. The probability of parse tree y using the probability measure
induced by G is given by the probability of the corresponding derivation r = r1 ...rl :

prob(y|G)= prob(r |G)=
l∏

i=1

θ(ri).
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G is said to be consistent when it defines probability distribution over Y∗:

prob(Y∗|G)=
∑
y∈Y∗

prob(y|G)= 1.

The probability of sequence x ∈6∗ given G is:

prob(x|G)= prob(Yx |G)=
∑
y∈Yx

prob(y|G),

and the probability of UST u∈Ux given G is:

prob(u|G)= prob(YG(u)|G)=
∑

y∈YG(u)

prob(y|G).

Since Yx and YG(u) define each a partition of Y∗ for x ∈6∗ and for u∈U∗, a consistent
grammar G defines also a probability distribution over 6∗ and U∗.

Contact constraints
Most protein sequences fold into complex spatial structures. Two amino acids at positions
i and j in the sequence x are said to be in contact if distance between their coordinates in
spatial structure d(i,j) is below a given threshold τ . A full contact map for a protein of
length n is a binary symmetric matrix mfull

= (mi,j)n×n such that mi,j = [d(i,j)<τ ], where
[x] is the Iverson bracket (see Fig. 1C). Usually only a subset of the contacts is considered
(see ‘Protein contact constraints’). A (partial) contact map for a protein of length n is a
binary symmetric matrix m= (mi,j)n×n such thatmi,j = 1H⇒ d(i,j)<τ . Let du(i,j) be the
length of the shortest path from ith to jth leaf in UST u for x . Given a threshold δ, UST u
is said to be consistent with a contact map m of length n if

mi,j = 1H⇒ du(i,j)<δ. (1)

For a contact map m of length n, let Um
n denotes the subset of Un consistent with m,

and Um
x denotes the subset of Ux consistent with m. Note that Um

x =Um
n ∩Ux . Analogous

notations apply to parse trees.

Estimation
Learning grammar G = 〈6,V ,v0,R,θ〉 can be seen as inferring the unfixed components
of G with the aim of shifting the probability mass from the entire space of unlabeled
syntactic trees U∗ to the set of unlabeled syntactic trees for the target population Utarget. In
practice, only a sample of the target population can be used for learning, hence estimation
is performed on Usample⊆Utarget. Note that even in the most general case the set of terminal
symbols6 is implicitly determined by the sample; moreover the start symbol v0 is typically
also fixed. A common special case considered in this work confines learning grammar G
to estimating θ for a fixed quadruple of non-probabilistic parameters 〈6,V ,v0,R〉 (which
fully determine the non-probabilistic grammar G underlying G). Given inferred grammar
G∗ and a query set of unlabeled syntactic trees Uquery, probability prob(Uquery|G∗) is an
estimator of the likelihood that Uquery belongs to population Utarget.
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Maximum-likelihood grammar. Let X be a sample set of sequences in 6∗, and let M be a
set of corresponding contact matrices. The sample set S = [XM] consists of a set of tuples
(x,m), where x ∈X and m∈M. Let UM

X be the corresponding set of compatible USTs:

UM
X ={Um

x : (x,m)∈S}.

Grammar G that concentrates probability mass on UM
X can be estimated using the classical

Bayesian approach:

G∗= arg max
G

prob(G|UM
X )= arg max

G

prob(G) ·prob(UM
X |G)

prob(UM
X )

.

Noting that prob(UM
X ) does not influence the result and, in the lack of prior knowledge,

assuming prob(G) uniformly distributed among all G, the solution is then given by the
maximum likelihood formula:

G∗= arg max
G

prob(G|UM
X )'GML= arg max

G
prob(UM

X |G).

Assuming independence of Um
x s:

GML= arg max
G

∏
Um
x ∈U

M
X

prob(Um
x |G)= arg max

G

∏
(x,m)∈S

∑
y∈Ym

x

prob(y|G). (2)

In the absence of contact constraints, the maximization problem becomes equivalent to
the standard problem of estimating grammar G given the sample X :

Gm=0
ML = arg max

G

∏
Ux∈UX

prob(Ux |G)= arg max
G

∏
x∈X

∑
y∈Yx

prob(y|G),

where m = 0 denotes a square null matrix of size equal to the length of the corresponding
sequence, and UX ={Um=0

x : x ∈X}.

Contrastive estimation. Occasionally, it is reasonable to expect that Uquery comes from
a neighborhood of the target population N (Utarget)⊂ U∗. In such cases it is practical to
perform contrastive estimation (Smith & Eisner, 2005), which aims at shifting the probability
mass distributed by the grammar from the neighborhood of the of sample N (Usample) to
the sample itself Usample, such that:

GCE= arg max
G

∏
Ux∈Usample

prob(Ux |G)
prob(N (Ux)|G)

.

Consider two interesting neighborhoods. First, assume that contact map m is known and
shared in the entire target population and hence in the sample: Um

X = {Um
x : x ∈X}. This

implies the same length n of all sequences. Then Um
n is a reasonable neighborhood of the

target population, so

GCE(m)= arg max
G

∏
Um
x ∈U

m
X

prob(Um
x |G)

prob(Um
n |G)

= arg max
G

∏
x∈X

∑
y∈Ym

x
prob(y|G)[∑

y∈Ym
n
prob(y|G)

]|X | . (3)
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Second, assume that sequence x is known to be yielded by the target population. Now, the
goal is to maximize likelihood that the shapes of parse trees generated for sequences in the
target population are consistent with contact maps. Then UX is a reasonable neighborhood
of the sample UM

X , so

GCE(X)= arg max
G

∏
(x,m)∈S

prob(Um
x |G)

prob(Ux |G)
= arg max

G

∏
(x,m)∈S

∑
y∈Ym

x
prob(y|G)∑

y∈Yx
prob(y|G)

. (4)

Application to contact grammars
We introduce here in ‘Definitions’ a simple form for context-free grammars, referred
to as the Chomsky Form with Contacts (CFC), that supplements the classical Chomsky
Normal Form (CNF) with contact rules to enable representing non-overlapping pairwise
contacts between amino acids. The toy grammar in Fig. 1B provides an example CFC,
with one contact rule s→ hth generating a pair of amino acids in contact through lexical
rules rewriting the h symbols (e.g., h→ V , h→ I ). The shortest path in the syntactic
tree between such a pair of residues is then of length 4, the minimal path length between
terminals for CFC grammars. We propose to use that threshold for defining the consistency
of a syntactic tree with a contact map. This natural choice allows for computing Eqs. (2),
(3) and (4) in polynomial (cubic) time with regard to the sequence length, as demonstrated
in ‘Parsing’ and ‘Calculating prob(Um

n |G̈)’.

Definitions
Let G̈ = 〈6,V ,v0,R,θ〉 be a probabilistic context-free grammar such that V =VT ]VN ,
R=Ra]Rb]Rc , and

Ra={ri :VT→6},

Rb={rj :VN→ (VN ∪VT ) (VN ∪VT )},
Rc ={rk :VN→VT VN VT }.

Subsets Ra, Rb and Rc are referred to as lexical, branching, and contact rules, respectively.
Joint subset Rb ∪Rc is referred to as structural rules. Grammars which satisfy these
conditions are hereby defined to be in the Chomsky Form with Contacts (CFC). It happens
that the toy grammar in Fig. 1B is in CFC. When a CFC grammar satisfies Rc =∅, it is in
the Chomsky Normal Form (CNF).

Non-terminal symbols in VT , which can be rewritten only into terminal symbols are
referred to as lexical non-terminals, while non-terminal symbols in VN are referred to
as structural non-terminals. Comparing the CFC grammar with the profile HMM, each
match state of the latter can be identified with a unique lexical non-terminal, and emissions
from a given state—with a set of lexical rules rewriting the non-terminal corresponding to
the state.

Let m be a contact matrix compatible with the context-free grammar, i.e., no pair of
positions in contact overlaps nor crosses boundaries of other pairs in contact (though pairs
can be nested one in another):

∀(i,j) mi,j = 1∧ (i≤ k ≤ j⊕ i≤ l ≤ j)⇒mk,l = 0,
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where ⊕ denotes the exclusive disjunction, and positions in contact are separated from
each other by at least 2:

∀(i,j) i< j+2.

Let distance threshold in tree δ = 4. Then a complete parse tree y generated by G̈ is
consistent with m only if for all mi,j = 1 derivation

α1,i−1 vk αj+1,n
∗
⇒α1,i−1 xi vl xj αj+1,n

is performed with a string of production rules

[vk→ vt vlvu][vt→ xi][vt→ xj],

where αi,j ∈ (6∪V )j−i+1, vk,vl ∈VN and vt ,vu ∈VT .
According to this definition, the left-hand (right-hand) side parse tree in Fig. 1E is

consistent (not consistent) with the contact map in Fig. 1C.

Parsing
Given an input sequence x of length n and a grammar in the CFC form G̈, prob(x|G̈)≡
prob(Yx |G̈) =

∑
y∈Yx

prob(y|G̈) can be calculated in O(n3) by a slightly modified
probabilistic Cocke-Kasami-Younger bottom-up chart parser (Cocke, 1969; Kasami, 1965;
Younger, 1967). Indeed, productions in Ra]Rb conforms to the Chomsky Normal Form
(Chomsky, 1959), while it is easy to see that productions in Rc requires only O(n2). The
algorithm computes prob(x|G̈)= prob(Yx |G̈) in chart table P of dimensions n×n×|V |,
which effectively sums up probabilities of all possible parse trees Yx . In the first step,
probabilities of assigning lexical non-terminals VT for each terminal in the sequence x are
stored in the bottommatrixP1=P[1,:,:]. Then, the tableP is iteratively filled upwardswith
probabilities P[j,i,v] = prob(v ∗⇒ xi ...xi+j−1|v ∈V ,G̈). Finally, prob(Ym

x |G̈)=P[n,1,v0].
New extended version of the algorithm (Fig. 2) computes prob(Ym

x |G̈), i.e., it considers
only parse trees Ym

x which are consistent with m. To this goal it uses an additional table
C of dimensions

∑
(m)/2×n×|VT |. After completing P1 (lines 10–12), probabilities of

assigning lexical non-terminals VT at positions involved in contacts are moved from P1

to C (lines 13–21) such that each matrix Cp =C[p,:,:] corresponds to p-th contact in
m. In the subsequent steps C can only be used to complete productions in Rc ; moreover
both lexical non-terminals have to come either from P1 or C, they can never be mixed
(lines 35–40). The computational complexity of the extended algorithm is still O(n3) as
processing of productions in Rc has to bemultiplied by iterating over the number of contact
pairs in m, which is O(n) since the cross-serial dependencies are not allowed.

Calculating prob(Um
n |G̈)

This section shows effective computing prob(Um
n |G̈), which is the denominator for the

contrastive estimation of GCE(m) (cf. ‘Estimation’). Given a sequence x of length n, a
corresponding matrix m of size n×n and a grammar G̈, the probability of the set of trees
over any sequence of length n consistent with m is

prob(Um
n |G̈)≡

∑
x∈6n

prob(Um
x |G̈)=

∑
x∈6n

∑
y∈Ym

x

prob(y|G̈).
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01: function parse_cky_cm(x, m, Ra, Rb, Rc, Vt, Vn, v0)

02: # input:

03: # x - sequence, m - contact map

04: # Ra - lexical, Rb - branching, Rc - contact rules

05: # Vt - set of lexical, Vn - set of non-lexical non-terminals

06: # v0 - start symbol

07: n = length(x)

08: P[n, n, |Vn|+|Vt|] = 0.0

09: C[sum(m)/2, n, |Vt|] = 0.0

10: for i=1 to n

11: for r in Ra

12: if x[i]==r.rhs[1] P[1,i,r.lhs] = r.prob

13: num_p=0

14: for i=1 to n-2

15: for j=i+2 to n

16: if m[i,j]==1

17: for r in Ra

18: P[1,i,r.lhs] = P[1,j,r.lhs] = 0.0

19: if x[i]==r.rhs[1] C[p,i,r.lhs] = r.prob

20: if x[j]==r.rhs[1] C[p,j,r.lhs] = r.prob

21: num_p=num_p+1

22: for j=2 to n

23: for i=1 to n-j+1

24: for k=1 to j-1

25: for r in Rb

26: P[j,i,r.lhs] += r.prob

27: * P[ k,i, r.rhs[1]]

28: * P[j-k,i+k,r.rhs[2]]

29: if (j>=3)

30: for r in Rc

31: P[j,i,r.lhs] += r.prob

32: * P[1, i, r.rhs[1]]

33: * P[j-2,i+1,r.rhs[2]]

34: * P[1, i+j,r.rhs[3]]

35: for c=0 to num_p-1

36: for r in Rc

37: P[j,i,r.lhs] += r.prob

38: * C[p, i, r.rhs[1]]

39: * P[j-2,i+1,r.rhs[2]]

40: * C[p, i+j,r.rhs[3]]

41: return P[n, 1, v0]

Figure 2: Pseudocode of the modified CKY parser
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Figure 2 Pseudocode of the modified CKY parser.
Full-size DOI: 10.7717/peerj.6559/fig-2
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Given grammar G̈, any complete derivation r is a composition r = ṙ ◦ r̃ , where ṙ ∈ (Ra)∗

and r̃ ∈ (Rb∪Rc)∗. Let y be the parse tree corresponding to derivation r , and let ỹ be an
incomplete parse tree corresponding to derivation r̃ . Note that for any y corresponding
to r = ṙ ◦ r̃ there exists one and only one ỹ corresponding to r̃ . Let Ỹm

x denote the set of
such incomplete trees ỹ . Note that labels of the leaf nodes of ỹ are lexical non-terminals
∀(i) αi,i ∈VT , and that ṙ represents the unique left-most derivation yield(ỹ) ∗⇒ x . Thus,∑
x∈6n

∑
y∈Ym

x

prob(y|G̈)=
∑
x∈6n

∑
ỹ∈Ỹm

x

prob(ỹ|G̈) ·prob(yield(ỹ) ∗⇒ x|G̈).

Note that value of the expression will not change if the second summation is over ỹ ∈ Ỹm
n

since ∀(ỹ 6∈ Ỹm
x ) prob(yield(ỹ) ∗⇒ x|G̈)= 0. Combining with observation that prob(ỹ|G̈)

does not depend on x , the expression can be therefore rewritten as:∑
x∈6n

∑
y∈Ym

x

prob(y|G̈)=
∑
ỹ∈Ỹm

n

prob(ỹ|G̈) ·
∑
x∈6n

prob(yield(ỹ) ∗⇒ x|G̈).

However, if G̈ is proper, then ∀(ỹ ∈ Ỹm
n )

∑
x∈6nprob(yield(ỹ)

∗
⇒ x|G̈)= 1, as:

∑
x∈6n

prob(yield(ỹ) ∗⇒ x|G̈)=
∑
x∈6n

n∏
i=1

θ(αi,i→ xi)=∑
x∈6n

θ(α1,1→ x1) · ··· ·θ(αn,n→ xn)=

θ(α1,1→ a1) ·θ(α2,2→ a1) · ··· ·θ(αn−1,n−1→ a1) ·θ(αn,n→ a1) +
θ(α1,1→ a1) ·θ(α2,2→ a1) · ··· ·θ(αn−1,n−1→ a1) ·θ(αn,n→ a2) +
...

θ(α1,1→ a|6|) ·θ(α2,2→ a|6|) · ··· ·θ(αn−1,n−1→ a|6|) ·θ(αn,n→ a|6|)=
θ(α1,1→ a1) ·θ(α2,2→ a1) · ··· ·θ(αn−1,n−1→ a1) +
θ(α1,1→ a1) ·θ(α2,2→ a1) · ··· ·θ(αn−1,n−1→ a2) +
...

θ(α1,1→ a|6|) ·θ(α2,2→ a|6|) · ··· ·θ(αn−1,n−1→ a|6|)

 ·
|6|∑
s=1

θ(αn,n→ as),

where as ∈6. Since G̈ is proper then ∀(v ∈VT )
∑|6|

s=1θ(v→ as)= 1 and therefore the entire
formula evaluates to 1, which can be easily shown by iterative regrouping. This leads to the
final formula:

prob(Um
n |G̈)=

∑
ỹ∈Ỹm

n

prob(ỹ|G̈).

Technically,
∑

ỹ∈Ỹm
n
prob(ỹ|G̈) can be readily calculated by the bottom-up chart parser by

setting ∀(rk ∈Ra) θ(rk)= 1.

Evaluation
The present approach for learning PCFGs with the contact constraints was evaluated using
our evolutionary framework for learning the probabilities of rules (Dyrka & Nebel, 2009;
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Dyrka, Nebel & Kotulska, 2013). The underlying non-probabilistic CFGs were based on
grammars used in our previous research (Dyrka & Nebel, 2009), which conformed to the
Chomsky Normal Form (CNF) and consisted of an alphabet of twenty terminal symbols
representing amino acid species

6={A,C,D,E,F ,G,H ,I ,K ,L,M ,N ,Q,P,R,S,T ,V ,W ,Y },

a set of non-terminals symbolsV =VT ]VN , whereVT ={l1,l2,l3} andVN ={v0,v1,v2,v3},
and a set of rules R= Ra]Rb, which consisted of all possible allowed combinations of
symbols, hence |Ra| = 60,|Rb| = 196. In addition, extended grammars G̈ in the Chomsky
Form with Contacts (CFC) were constructed with added contact rules, R=Ra]Rb]Rc ,
again with all combinations of symbols ( |Rc | = 144). For the sake of transparent evaluation,
combinations of symbols in the rules were not constrained beyond general definition of
the CNF or CFC model, respectively, to avoid interference with the contact constraints.
The number of non-terminal symbols was limited to a few in order to keep the number of
parameters to be optimized by the genetic algorithm reasonably small. The small number
of non-terminals implied relatively high generality of the resulting model, for example,
only three distinct emission profiles of amino acids were defined by the lexical rules.
The number of three lexical non-terminals was assumed from our previous research
(Dyrka & Nebel, 2009; Dyrka, Nebel & Kotulska, 2013), in which lexical rule probabilities
were fixed according to representative physicochemical properties of amino acids. In
that setting, it seemed justified to have distinct symbols for the low, medium and high
levels of the properties. Clearly, this has to be expected to confine specificity and limit
attainable discriminatory power of the grammars. Although adjusting proportion of lexical
and structural non-terminals could potentially improve performance of the grammatical
model, it was not explored here, since the focus of evaluation was on the added value of the
contact constraints for learning rule probabilities, rather than on the optimal set of rules.

Learning
Our evolutionary learning framework used the genetic algorithm where each individual
represented a whole grammar, the approach known as the Pittsburgh style (Smith, 1980).
For a given underlying non-probabilistic CFG G̈ and the positive training sample, the
framework estimated probabilities θ of the corresponding PCFG G̈ = 〈G̈,θ〉. Unlike
previous applications of the framework in which probabilities of the lexical rules were fixed
according to representative physicochemical properties of amino acids (Dyrka & Nebel,
2009; Dyrka, Nebel & Kotulska, 2013), in this research probabilities of all rules were subject
to evolution. The objective functions were implemented for the maximum-likelihood
estimator G̈ML, and for the constrastive estimators G̈CE(X) and G̈CE(m). Besides, the setup of
the genetic algorithm closely followed that of Dyrka & Nebel (2009).

Performance measures
Performance of grammars was evaluated using a variant of the 8-fold Cross-Validation
scheme in which 6 parts are used for training, 1 part is used for validation and parameter
selection, and 1 part is used for final testing and reporting results (the total of 56
combinations). The negative set was not used in the training phase. For testing, protein
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sequences were scored against the null model (a unigram), which assumed global
average frequencies of amino acids, no contact information, and the length of query
sequence. The amino acid frequencies were obtained using the online ProtScale tool for
the UniProtKB/Swiss-Prot database (Gasteiger et al., 2005).

Discriminative performance. Grammars were assessed on the basis of the average precision
(AP) in the recall-precision curve (RPC). The advantage of RPC over the more common
Receiver Operating Characteristic (ROC) is robustness to unbalanced samples where
negative data is much more numerous than positive data (Davis & Goadrich, 2006). AP
approximates the area under RPC.

Descriptive performance. Intuitively, a decent explanatory grammar generates parse trees
consistent with the spatial structure of the analyzed protein. Therefore, the descriptive
performance of grammar can be quantified as the amount of contact information encoded
in the grammar and imposed on its derivations. In other words, it is expected that the
grammar ensures that residues in contact are close in the parse tree (Pyzik, Coste & Dyrka,
2019). The most straightforward approach to measure the descriptive performance is to use
the skeleton of the most likely parse tree as a predictor of spatial contacts between positions
in a given protein sequence, parameterized by the cutoff δ on path length between the
leaves. The natural threshold for grammar in the CFC form is δ = 4 meaning that the
pair of residues is predicted to be in contact if they are parsed with a contact rule. The
precision at this threshold was reported for CFC grammars since the precision is the usual
measure of contact prediction performance (Wang et al., 2017). In addition, AP of the
RPC, which sums up over all possible cutoffs, was computed to allow comparison with
grammars without pairing rules. Our recent research suggests that the measure is suitable
for the contact-map-based comparison of the overall topology of parse trees generated
with various grammars (Pyzik, Coste & Dyrka, 2019). Since our definition of consistency
between the parse tree and the contact map imposes that inferred grammars maximize the
recall rather than the precision of contact prediction, the learning process was assessed
using the recall measured with regard to the partial contact map used in the training for
δ= 4. Local variants of the measures of descriptive performance can be defined to focus
only on residues that are in contact with k-th residue. This can be obtained by using only
respective row of the contact map mk,• when calculating the value of a measure for the
residue at position k. The local measures of descriptive performance can be used to assess
the location of a residue in the parse tree (Pyzik, Coste & Dyrka, 2019).

Implementation. The PCFG-CM parser and the Protein Grammar Evolution framework
were implemented in C++ using GAlib (Wall, 2005) and Eigen (Guennebaud & Jacob ,
2010). Performance measures were implemented in Python 2 (Van Rossum & De Boer,
1991) using Biopython (Cock et al., 2009), igraph (Csardi & Nepusz, 2006), NumPy (Van
der Walt, Colbert & Varoquaux, 2011), pyparsing (McGuire, 2008), scikit-learn (Pedregosa
et al., 2011) and SciPy (Jones, Oliphant & Peterson, 2001).

Source code of PCFG-CM is available at https://git.e-science.pl/wdyrka/pcfg-cm under
the GPL 3 license.
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Table 1 Datasets. sim—maximum sequence similarity, npos/nneg—number of positive/negative se-
quences, len—sequence length in amino acids, ncon—total number of non-local contacts (sequence sepa-
ration 3+),msiz—number of contacts selected for training.

id Type Sim npos nneg len pdb ncon msiz

CaMn binding-site 71% 24 28,560 27 2zbj 41 6
NAP binding-site 70% 64 47,736 16 1mrq 11 2
HET-s amyloid 70% 160 33,248 21 2kj3 10 3

RESULTS
Basic evaluation
Materials
Probabilistic grammars were estimated for three samples of protein fragments related to
functionally relevant gapless motifs (Sigrist et al., 2002; Bailey & Elkan, 1994). Within each
sample, all sequences shared the same length, which avoided sequence length effects on
grammar scores (this could be resolved by an appropriate null model). For each sample,
one experimentally solved spatial structure in the Protein Data Bank (PDB) (Berman et al.,
2000) was selected as a representative. The three samples included amino acid sequences of
two small ligand binding sites (already analyzed in Dyrka & Nebel (2009) and a functional
amyloid (Table 1):

• CaMn: a Calcium and Manganese binding site found in the legume lectins (Sharon &
Lis, 1990). Sequences were collected according to the PROSITE PS00307 pattern (Sigrist
et al., 2013) true positive and false negative hits. Original boundaries of the pattern were
extended to cover the entire binding site, similarly to Dyrka & Nebel (2009). The motif
folds into a stem-like structure with multiple contacts, many of them forming nested
dependencies, which stabilize anti-parallel beta-sheet made of two ends of the motif
(Fig. 3A based on pdb:2zbj (De Oliveira et al., 2008));
• NAP : the Nicotinamide Adenine dinucleotide Phosphate binding site fragment found in
an aldo/keto reductase family (Bohren et al., 1989). Sequences were collected according to
the PS00063 pattern true positive and false negative hits (four least consistent sequences
were excluded). The motif is only a part of the binding site of the relatively large ligand.
Intra-motif contacts seem to be insufficient for defining the fold, which depends also on
interactions with amino acids outside the motif (Fig. 3B based on pdb:1mrq (Couture et
al., 2003));
• HET-s: the HET-s-relatedmotifs r1 and r2 involved in the prion-like signal transduction
in fungi identified in a recent study (Daskalov, Dyrka & Saupe, 2015). The largest subset
of motif sequences with length of 21 amino acids was used to avoid length effects
on grammar scores. When interacting with a related motif r0 from a cooperating
protein, motifs r1 and r2 adopt the beta-hairpin-like folds which stack together. While
stacking of multiple motifs from several proteins is essential for stability of the structure,
interactions between hydrophobic amino acids within a single hairpin are also important.
In addition, correlation analysis revealed strong dependency between positions 17 and
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Figure 3 Representative structures of the sample motifs. (A) Legume lectin Calcium and Manganese
binding site; (B) Aldo/keto reductase NAP binding site fragment; (C) HET-s prion motif r2. Backbones
are plotted with J(S)mol using the ‘‘amino’’ color scheme (Herraez, 2006; Hanson et al., 2013). Calculated
hydrogen bonds are shown with dashed lines colored according to the interaction partners. Hydrogen
bonds not used for defining contact maps are dimmed. Other contacts used for defining contact maps are
shown with black dotted lines. Some side chains are shown for better visibility of selected bonds and con-
tacts. For each structure, only a subset of interactions was chosen for defining the context-free-compatible
partial contact map based on spatial proximity, hydrogen bonds (CaMn), and mutual correlation (HET-
s). For example the pair of V264 and I277 in the HET-s structure conforms to definition of contact, how-
ever it was omitted since it crosses another contact between L276 and E280.

Full-size DOI: 10.7717/peerj.6559/fig-3

21 (Daskalov, Dyrka & Saupe, 2015) (corresponding to L276 and E280 in Fig. 3C based
on Van Melckebeke et al. (2010)).

Negative samples were designed to roughly approximate the entire space of protein
sequences. They were based on the negative set from (Dyrka & Nebel, 2009), which
consisted of 829 single chain sequences of 300–500 residues retrieved from the Protein
Data Bank (Berman et al., 2000) at identity of 30% (accessed on 12th December 2006). For
each positive sample, the corresponding negative sample was obtained by cutting the basic
negative set into overlapping subsequences of the length of positive sequences.

All samples were made non-redundant at level of sequence similarity around 70% using
cd-hit (Li & Godzik, 2006), which significantly reduced their cardinalities. The threshold
balanced the size of positive samples, distribution of their variability, and inter-fold
diversity. Overall diversity of samples ranged from the most homogeneous CaMn (average
identity of 49%) to the most diverse HET-s, which consisted of 5 subfamilies (Daskalov,
Dyrka & Saupe, 2015) (average identity of 21%). The ratio between negative and positive
samples was high and varied from 1190:1 for CaMn to 207:1 for HET-s. Contact pairings
were assigned manually and collectively to all sequences in each set based on a selected
representative spatial structure in the PDB database (Fig. 3).
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Table 2 Discriminative performance of grammars in terms of AP.

Grammar CNF CFC CFC CFC
Estimation ML ML ML CE(m)
Train w/contacts n/a no yes yes
Test w/contacts no no yes no yes no yes
CaMn 0.94 0.96 0.67 0.95 0.95 0.79 0.98
NAP 0.78 0.86 0.28 0.75 0.79 0.24 0.91
HET-s 0.46 0.43 0.24 0.60 0.81 0.23 0.94

Performance
The implementation of the framework for learning PCFGs for protein sequences using
contact constraints, presented in ‘Application to contact grammars’ and ‘Evaluation’, is
evaluated with reference to learning without the constraints. For grammars with the contact
rules (CFC), probabilities of rules θ were estimated either using training samples made of
sequences coupled with a contact map, or using sequences alone. For grammars without
the contact rules (CNF), probabilities of rules were estimated using sequences alone, since
these grammars cannot generate parse trees consistent with contact maps for the distance
threshold δ= 4.

Discriminative power. For evaluation of the discriminative power of the PCFG-CM
approach, the rule probabilities were estimated using the maximum-likelihood estimator
(denoted ML) and the contrastive estimator with regard to a given contact map (denoted
CE(m)). The discriminative performance of the resulting probabilistic grammars for test
data made of sequences alone and sequences coupled with a contact map is presented in
Table 2 in terms of the average precision (AP).

The baseline is the average precision of CNF and CFC grammars estimated without
contact constraints tested on sequences alone, which ranged from 0.43–0.46 for HET-s to
0.94–0.96 for CaMn. The scores show negative correlation with diversity of the samples
and limited effect of adding contact rules (though the latter may result from more difficult
learning of increased number of parameters with added rules). Grammars with the contact
rules estimated without a contact map performed much worse when tested on the samples
coupled with a contact map. This indicated that, in general, parses consistent with the
constraints were not preferred by default when grammars were trained on sequences alone.

For all three samples, not surprisingly, the highest AP (0.91–0.98) achieved grammars
obtained using the contrastive estimationwith regard to a contactmap tested on the samples
with the same map. The improvement relative to the baseline was most pronounced for
HET-s, yet still statistically significant (p< 0.05) for NAP. As expected, the contrastively
estimated grammars performed poorly on sequences alone except for the CaMn sample.

The maximum-likelihood grammars estimated with a contact map and tested on
sequences coupled with the same map performed worse than the contrastively estimated
grammars but comparably or significantly better (HET-s) than the baseline. The average
precision of these grammars was consistently lower when tested on sequences alone, yet
still considerable (from 0.60 for HET-s to 0.95 for CaMn). It is notable that in the HET-s
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Table 3 Descriptive quality of the most likely parse trees derived from sequences alone. In terms of
recall at the distance threshold δ = 4 w.r.t. the training contact map m, and precision at δ = 4 (and AP
over thresholds δ) w.r.t. the full contact map of the reference pdb structure for sequence separation 3+.
Note that the shortest length of any path between leaves in the most likely parse trees of the CNF grammar
equals 5, which makes measures using δ= 4 unutile.

Grammar CNF CFC CFC CFC
Estimation ML ML ML CE(X)
Train w/contacts n/a no yes yes
Reference pdb m pdb m pdb m pdb
CaMn (0.24) 0.45 0.69 (0.53) 0.92 0.87 (0.66) 0.98 0.84 (0.66)
NAP (0.16) 0.00 0.14 (0.12) 0.96 0.64 (0.29) 0.96 0.64 (0.29)
HET-s (0.08) 0.02 0.13 (0.14) 0.79 0.52 (0.24) 0.97 0.57 (0.27)

case, the maximum-likelihood grammars estimated with a contact map achieved better AP
on sequences alone than the maximum-likelihood grammars estimated without a contact
map.

Universally high AP for CaMn can be contributed to the relatively strong pairing signal
from the long stem-like part of the motif particularly suitable for modeling with the contact
rules.

Descriptive power. For evaluation of the descriptive power of the PCFG-CM approach, the
rule probabilities were estimated using the maximum-likelihood estimator (denoted ML)
and the contrastive estimator with regard to the sequence set (denoted CE(X)). Descriptive
value of the most probable parse trees generated using the resulting probabilistic grammars
for test sequences without contact information is presented in Table 3. Efficiency of the
learning was measured on the basis of the recall at the distance threshold δ= 4 with regard
to the context-free compatible contact map m used in the training. Consistency of the
most likely parse tree with the protein structure was measured on the basis of the precision
of contact prediction at the distance threshold δ = 4 with regard to all contacts in the
reference spatial structure with separation in sequence of at least 3. Both measures are not
suitable for assessing grammars without contact rules. Therefore, average precision over all
thresholds δ was used as a complementary measure of consistency of the most likely trees
with the protein structure. Note that the AP scores achievable for a context-free parse tree
are reduced by overlapping of pairings.

The baseline is the result for grammars with the contact rules estimated without contact
constraints. Themost likely parse trees generated using these grammars conveyed practically
no information about contacts for NAP and HET-s (recall w.r.t. contact map m close to
zero) and limited information about contacts for CaMn (moderate recall of 0.45), see
Fig. 4. Learning with the contact constraints resulted in increase of the recall to 0.79–0.98,
which testified efficiency of the process.

Importantly, consistency of the most likely parse trees with the protein structure
measured by the precision followed a similar pattern and increased from 0.13 for HET-s,
0.14 for NAP, and 0.69 for CaMn when grammars with the contact rules were estimated
without a contact map, to 0.52–0.57, 0.64, and 0.84–0.87, respectively, when grammars
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Figure 4 Skeletons of most likely parse trees for selected positive test sequences obtained using gram-
mars in the CFC form trained without and with the contact constraints. (A) CaMn tree according to
grammar trained without contacts; (B) CaMn tree according to grammar trained with contacts; (C) NAP
tree according to grammar trained without contacts; (D) NAP tree according to grammar trained with
contacts; (E) HET-s tree according to grammar trained without contacts; (F) HET-s tree according to
grammar trained with contacts. For each case, the tree of themedian AP over all test runs and sequences is
shown. Contact maps were not used for testing. Nodes corresponding to lexical non-terminal symbols are
merged with terminal nodes (leaves of the trees) for the sake of simplicity. Terminal nodes are annotated
with local AP calculated for each position (from 0.0 (bad, red) to 1.0 (perfect, green)). The minimum se-
quence separation of residues in contact of three or more is assumed; leaves with no intra-motif contacts
outside this range are not scored.

Full-size DOI: 10.7717/peerj.6559/fig-4

were estimated with a contact map. Accordingly, evaluation in terms of the average
precision over distance thresholds indicated that distances in the most likely parse trees
better reflected the protein structure if grammars were trained with the contact constraints,
as illustrated in Fig. 4.
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Sample applications
Searching for related motifs
In this section probabilistic grammars for HET-s r1 and r2 motifs, learned in the proposed
estimation scheme, are applied to solving a practical problem of searching for related r0
motifs in a limited-size dataset (around 1,000–5,000 sequences) based on (Dyrka et al.,
2014; Daskalov, Dyrka & Saupe, 2015).

Materials. HET-s motifs r1 and r2 adopt the beta-hairpin-like fold when templated with
the related motif r0 in the N-terminus of a cooperating NLR protein (Seuring et al., 2012).
While the r0 motifs share a considerable sequence similarity with the interacting r1 and
r2 motifs (average identity of around 30%), they contain significantly less aspartic acid,
glutamic acid and lysine, and more histidine and serine (Daskalov, Dyrka & Saupe, 2015).
A set of 98 HET-s r0 motifs was previously manually extracted from genes of NLR proteins
adjacent to genes encoding proteins containing the r1 and r2 motifs (Daskalov, Dyrka &
Saupe, 2015). Its subset of 77 non-redundant 21-residue long r0 motifs is later referred here
as HET-s/r0. It can be reasonably expected that the r0 motifs can be automatically extracted
from NLR proteins using grammars learned for the r1 and r2 motifs. As a proxy of this
practical scenario, performance of discriminating the HET-s/r0 motifs against a set of 849
full-length NLR proteins with N-terminal known to contain a non-prion forming domain
(Dyrka et al., 2014) was evaluated. (According to the current understanding of NLRs, it
is highly unlikely that their N-terminal domain contains both a (possibly unnoticed)
prion-forming motif and domain of other type (Daskalov et al., 2015).) In addition, the
entire set of known 5765 fungal NLRs (Dyrka et al., 2014) was scanned for HET-s r0 motifs
using the HET-s grammars. The results were compared with hits obtained using a profile
HMM trained on the same data as the HET-s grammars, and the inhouse HET-s profile
HMM fromDyrka et al. (2014). Several variants of sets of grammar rules were investigated.
Moreover, an alternative contact map with the pairing of positions 5 and 18 instead of
17 and 21 was tested (see Fig. 3). Each setup was run six times to account for expected
randomness in the learning process.

Evaluation. The best fitting to the training sample was achieved with grammars which
consisted of three lexical non-terminals, the start structural non-terminal rewritable into the
branching and contact rules, two structural non-terminals rewritable into the branching
rules, and four structural non-terminals rewritable into the contact rules (total of 10
non-terminals and 675 rules), and were estimated to optimize the maximum-likelihood
using the alternative contact map. Importantly, learning with the alternative contact map
substantially improved fitness to the training data in comparison to learning without any
contact constraints (probability mass over the training set increased roughly 300 times on
average over six runs).

The single best grammar achieved the average precision of 0.74 when used for
discriminating HET-s/r0 motif from non-prionic NLR sequences (parsing without the
contact map). The performance improved to AP of 0.82 when the mean score from six
grammars was used for classifying. For the arbitrary threshold of 4 (or 5) of the mean log
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probability ratio between the grammars and the null model (meaning that a given sequence
is 10,000 (resp. 100,000) times more probable with the HET-s grammars than with the
null), the precision was 0.59 (1.00) and the recall was 0.77 (0.58). While these scores are
acceptable, especially taking into account simplicity of the grammars, they were below AP
of 0.92 achieved with the profile HMM estimated on the same data using hmmer 3.1b2
with the standard parameters of training (Eddy, 2011). Yet, the recall for 100% precision
was similar as for the grammars (0.79 at the bit score of 9.7). Scoring with the profile HMM
was performed with the –max flag and effectively no E-value threshold, and separately for
each overlapping 21-amino acid long fragment of the negative set.

Next, the six grammars were used for scanning the set of full-length fungal NLR
sequences. With the threshold of the mean log probability ratio of 5, matches were found
in 33 sequences. Out of them, 29 matches started within first twenty residues of relatively
short N-terminal domains (up to 116 amino acids), as expected for the prion-forming
domain. This included 18 HET-s r0 motifs from Daskalov, Dyrka & Saupe (2015). Among
the remaining 11 sequences with candidate r0 motifs, the corresponding r1 and r2 patterns
were identified in adjacent genes in 6 cases (with the HET-s grammars or manually). The
set of 33 sequences extracted with the grammars included 14 out of 15 HET-s annotations
assigned with the inhouse profile HMM in Dyrka et al. (2014).

Making generalized descriptors
In this section the generalizing potential of PCFG descriptors is illustrated by learning a
single grammar for two non-homologous but functionally related Calcium-binding motifs.

Materials. Calcium-binding sites, which are widely spread across many functional families
of proteins, are formed by multiple various structural folds (Bindreither & Lackner,
2009). Two prominent families are the lectin legume beta-loop-beta motif (already
described in ‘Materials’ under designation CaMn) and the EF hand alpha-loop-alpha
motif (Kawasaki & Kretsinger, 1995). While apparently different, they are both continuous
and involve the central loop (yet very different) participating in coordination of the
Calcium ion (Bindreither & Lackner, 2009). These features made them an appealing target
for investigating capability of the current grammatical framework for generalizing beyond
a single family of sequences.

Our training set consisted of the entire CaMn sample (24 sequences), and the subset of
EF hand motifs extracted—on the basis of the contact pattern—from the Calcium binding
proteins of known spatial structure prepared for training the FEATUREmodel (Zhou, Tang
& Altman, 2015). Boundaries of the EF hand motifs were specified to include the residues
coordinating the Calcium ion, according to Ligplot (Wallace, Laskowski & Thornton, 1995),
plus the envelope of five residues each side. The resulting samples had the uniform length
of 22 amino acids, which partially covered two helices surrounding the central loop of
the motif. Based on the spatial distance and the direct coupling analysis using Gremlin
(Ovchinnikov, Kamisetty & Baker, 2014), only one pair of residues (between positions 8 and
17) was chosen for the training contact map. Redundancy reduction at level of sequence
similarity of around 65% (using cd-hit) and pruning from corrupted sequences (due to
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artifacts in pdb files) resulted in the sample of 37 sequences. (Later, it was discovered that
a single false positive sequence was mistakenly included in the EF hand training set.)

Grammatical descriptors. Due to presumed higher complexity of themodel, several variants
of grammar rules were again used for training. The best fitting to the training sample was
achieved with the same variant as in the previous example. Also in this case, learning with
the contact constraints significantly improved fitness to the training data (probability mass
distributed over the training set increased roughly 20 times on average over six runs).

The diagram showing the 36 most significant rules (all with probability of at least 0.05)
and dependencies between structural non-terminals (possible derivations) of the single
best grammar are shown in Fig. 5A. Of note is a pair of structural non-terminal symbols u
and v (orange), which can be used to generate paired stretches of hydrophobic (u→ ava)
and other residues (v→ buc). The feature was used to model the pair of beta-strands in
the stem part of CaMn (Figs. 5B, 5C). By extending the cooperation between u and v with
the derivation path through the structural non-terminal t (pink, v→ atb, t→•u•), the
grammar generates hydrophobic residues with periodicity of 3, typical to helices, as used
in modeling the pair of alpha-helices of the EF hand (Figs. 5D, 5E). To finish a derivation,
it is typically necessary to use the structural non-terminal w (green), which is likely to
generate lexical non-terminals b and c which emit amino acids with high propensity to
binding Calcium (aspartic and glutamic acids, aspargine, serine, and threonine (Bindreither
& Lackner, 2009).

Clearly, the grammar has its limitations. The number of only three lexical non-terminals
is likely insufficient, as suggested by the unusual merging of hydrophobic alanine with
the charged amino acids in one group emitted through symbol b. Also detailed analysis of
parse trees reveal inaccuracies possibly resulting from over-generalization. Most notably,
the beta-hairpin generating rules (orange) were used to model a part of the binding loop
of CaMn (Fig. 5B). Moreover, the residues directly involved in the Calcium binding in
1gsl, according to Ligplot (D130, W133, N135 and D140), were not generated with the
non-terminal w . Finally, contact rules used to model the loop of the EF hand did not
generate pairs of residues which are actually in contact. Yet, the overall topologies of the
trees were rather consistent with the structures.

Quantitative evaluation. The grammar was used for scanning full sequences matching the
EF hand and legume lectin Prosite patterns and profiles (PS00018, PS50222; PS00307)
from the aforementioned set of the Calcium binding proteins (Zhou, Tang & Altman,
2015). Sequences with missing residues, non-canonical amino acid types and interfering
ligands (except Manganese in the legume lectin set) were excluded. In 38 out of 40
sequences with the EF hands, and in all six sequences with the CaMn motif, the threshold
of the log probability ratio of 3 between the grammar and the null model (meaning that
a given sequence is 1,000 times more probable with the grammar than with the null) was
exceeded in at least one position when scanned with the window ranging from 20 to 30
amino acids. In all EF hand and 5 CaMn hits, the highest score matched the position of
the corresponding Calcium-binding Prosite motif (in one CaMn and one EF hand case
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Figure 5 Generalized grammar and parse trees for two calcium-binding motifs, the legume lectin
CaMnmotif and the EF hand. (A) The diagram showing the 36 most significant rules (all with probability
at least 0.05) and dependencies between structural non-terminals (possible derivations) of the single best
grammar. Boxes with lexical rules are not connected for the sake of clarity. Colors indicate structural non-
terminal symbols apparently used to model a pair of beta-strands (orange), a pair of helices (orange/pink),
and the Calcium-binding loop (green). The graphical representation of the grammar has been partially in-
spired by Unold, Kaczmarek & Culer (2017). (B) The most likely parse tree and (C) the cartoon structure
of a highly scored training sequence from the CaMn family. (D) The cartoon structure and (E) the most
likely parse tree of a highly scored training sequence from the EF hand family. Residue numbering is rel-
ative. Derivations of lexical symbols are represented using rules for the sake of brevity. Rule probabilities
are shown in parentheses. Note that occasionally less probably rules, not shown in (A) are used. Colors
correspond to structural non-terminals used to generate the residue according to the grammar. Structures
were plotted using JSmol.

Full-size DOI: 10.7717/peerj.6559/fig-5

it was off center). In the remaining CaMn case, the highest score was at the position of
another beta-loop-beta pair containing the characteristic alpha-chain signature PS00308.
In terms of descriptive performance, the median average precision with regard to the full
contact map was 0.23 for the EF hand and 0.65 for the legume lectin binding site using the
sequence separation 3+ and the spatial distance cutoff of 8 Å. (The median AP increased
to 0.43 and 0.72, respectively, for the distance cutoff of 10 Å.)

Eventually, the grammar was used to scan the representative set of all sequences in the
PDB database at identity level of around 40% made with cd-hit (Fu et al., 2012) (25,145
sequences in total). Out of 48 hits which exceeded the log ratio of probability of six, the
best matches in 15 sequences contained the low complexity regions made of stretches
of amino acids with high affinity to binding Calcium (aspartic and glutamic acids, and
aspargine). In the remaining part, 13 matches contained the PS00018 motif (out of 116
sequences with the motif in the set) and two matches contained the PS00307 motif (out
of 18 in the set). In addition, experimental structures of four more sequences included the
Calcium ion (out of 1,081 in the set), in three cases close to the grammar-defined match.
To summarize, excluding matches to the low complexity fragments, there was an external
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support for 18 out of 33 best hits in the scan with the grammar. Furthermore, assuming the
log ratio of probability of three, candidate motifs were found in 4,419 sequences, including
114 matches to the low complexity regions, 72 matches to the PS00018 motif, five matches
to the PS00307 motif and 340 matches to other Calcium-binding chains.

DISCUSSION
Added value of contact constraints
The primary evaluation of the PCFG-CM framework was conducted using samples of
gapless alignments, which were based on datasets studied in our previous research (Dyrka
& Nebel, 2009; Daskalov, Dyrka & Saupe, 2015) to limit potential confounding factors.
(However, it has to be emphasized that, in general, training PCFG in our framework does
not require alignment of sequences, as demonstrated in ‘Making generalized descriptors).
These initial tests focused on validating the proposed method for accommodating contact
constraints in the training scheme for probabilistic context-free grammars.

The evaluation showed that the most effective way of training descriptors for a given
sample was the contrastive estimation with reference to the contact map. This approach
is only possible when a single contact map that fits all sequences in the target population
can be used with the trained grammar. The maximum-likelihood estimators were effective
when contacts were relevant to structure of the sequence (HET-s, CaMn). This is expected,
as use of the contact rules is likely to be optimal for deriving a pair of amino acids in contact
if they are actually correlated. Interestingly, in the case of HET-s, the maximum-likelihood
grammar trained with the contact constraints compared favorably with the maximum-
likelihood grammar trained without the constraints even when tested on sequences alone
(AP 0.60 versus 0.43). This indicates that if contacts are relevant for the structure of
sequence, the PCFG-CM approach can improve robustness of learning to local optima
(similar effect was observed in both examples in ‘Sample applications’). Of note is very
good performance of grammars achieved for CaMn despite a tiny size of the positive set
(18 training sequences in each fold), which can be attributed to high homogeneity of the
sample (50% identity on average).

The most likely parse trees, derived for inputs defined only by sequences, reproduced a
vast majority of contacts (recall of at least 0.79 at δ= 4) enforced by the contact-constrained
training input. Moreover, precision of contact prediction at δ= 4 and sequence separation
3+ was above 0.50, up to 0.87. This translated to the overall overlap with the full contact
maps in the range of 0.27–0.39. Note that only a fraction of contacts can be represented in
the parse tree of context-free grammar, and not even all of them were enforced in training.
The benefit of the contrastive estimation with reference to the sequence set was limited in
comparison to the maximum-likelihood grammars. However, it should be noted that the
shape of the most likely parse tree, which was used in the evaluation, does not necessarily
reflect the most likely shape of parse tree. Unfortunately, the latter cannot be efficiently
computed (Dowell & Eddy, 2004).
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Towards practical applications
The first experiments mainly served assessing intuitions which led to development of the
PCFG-CMapproach. The next task of searching theHET-s/r0motifs showed goodprecision
and recall, which indicated that in the current form our tool can be potentially useful for
finding candidate sequences for further analysis in datasets ofmoderate sizes (‘Searching for
relatedmotifs’). However, the average precision of evolved PCFGs was lower in comparison
to profile HMMs. Therefore, improving specificity of the method is necessarily a premier
goal for further research. The full-scale practical application to bioinformatic problems,
such as sequence search, would certainly require several enhancements. This may include
scoring inputs with the product of probabilities obtained using grammars with the lexical
rule probabilities fixed according to representative physicochemical properties of amino
acids (Dyrka & Nebel, 2009), and the appropriately adjusted null model to accurately
account for various sequence lengths and amino acid compositions. In addition an
extension of the PCFG-CM framework to account for uncertain contact information
(Knudsen, 2005) can be obtained through introducing the concept of the fuzzy sets of
syntactic trees.

The key challenge is, however, to enable learning grammars with increased number
of non-terminal symbols. Currently implemented inference of rule probabilities using
genetic algorithm worked well up to roughly half thousand rules, which translated to
just a couple of non-terminal symbols for generic covering sets of rules. This necessarily
imposed substantial level of generalization, which has advantages (simplicity of model
and lower risk of over-fitting), but also drawbacks when the resulting grammar is too
simple to capture complexity of the data. The low number of non-terminal symbols
also effectively limits the length of modeled sequences, since longer fragments typically
have more complex structures, which require more non-terminals to obtain a reasonable
grammatical description. As the size of covering set of grammar rules is determined by
the number of non-terminal symbols, therefore, the longer the sequence, the larger is the
number of probabilities to be assigned. Sometimes, the problem can be partially overcome
with generic constraints on the covering set of rules, as shown in sample applications
(‘Making generalized descriptors’). In this case, a meta-family of motifs was modeled using
a grammar with 10 non-terminal symbols, which was trained starting from the constrained
covering set of 675 rules. Yet, in general, more efficient estimation of probabilities of
numerous rules and/or added capability of inferring rules during learning is required
(Unold, 2005; Unold, 2012; Coste, Garet & Nicolas, 2012; Coste, Garet & Nicolas, 2014).

The potential of our approach beyond current state of the art was highlighted with
the example of grammatical descriptor of a meta-family of Calcium binding sites. The
PCFG evolved by our tool correctly generalized some common features of two distinctive
folds and exhibited reasonable discriminative power. Both of the folds represented the
loop-like structure, which can be modeled with the context-free grammar rules. As a result,
parse trees generated by the grammar could directly correspond to the spatial structure of
protein. However, it can be noted that every full graph of interactions can be decomposed
to a set of trees consisting of the branching and nesting interactions. Thus, contact maps
based on such trees can be used to train a set of context-free grammars, together covering

Dyrka et al. (2019), PeerJ, DOI 10.7717/peerj.6559 26/35

https://peerj.com
http://dx.doi.org/10.7717/peerj.6559


a large fraction of contacts. Another appealing solution is to modify the definition of
consistency of the parse tree with the contact map, so that it requires that only residues
in contact can be generated with the contact rules (instead of the definition used in this
work that all residues in contact must be generated with the contact rules). The modified
definition would allow using contact maps including crossing and overlapping contacts in
the grammar learning. Indeed, multiple valid parse trees generated with the grammar for a
sequence can potentially represent various branching and nesting subsets of dependencies.
Nevertheless, the capability of capturing even only a fraction of non-local contacts, as in
the current version of the framework, is already a step forward from the profile HMM, or
probabilistic regular grammars.

CONCLUSIONS
The complex character of non-local interactions between amino acids makes learning
the languages of protein sequences challenging. In this work we proposed a solution
consisting of using structural information to constrain syntactic trees, a technique which
proved effective in learning probabilistic natural and RNA languages. We established a
framework for learning probabilistic context-free grammars for protein sequences from
syntactic trees partially constrained using contacts between amino acids. Within the
framework, we implemented the maximum-likelihood and contrastive estimators for the
rule probabilities of relatively simple yet practical covering grammars. Computational
validation showed that additional knowledge present in the partial contact maps can be
effectively incorporated into the probabilistic grammatical framework through the concept
of a syntactic tree consistent with the contact map. Grammars estimated with the contact
constraints maintained good precision when used as classifiers, and derived the most likely
parse trees, displaying improved fidelity to protein structures compared to the baseline
grammars estimated without the constraints.

Though tested in the learning setting consisting of optimizing only rule probabilities,
the estimators defined in the present PCFG-CM framework can be used in more general
learning schemes also inferring grammar structure. Indeed, such schemes may benefit even
more from constraining their larger search space. It is also interesting to consider extending
the framework beyond context-free grammars, as contacts in proteins are often overlapping
and thus context-sensitive. In this case however, the one-to-one correspondence between
the parse tree and the derivation breaks, therefore it may be advisable to redefine the
grammatical counterpart of the spatial distance in terms of derivation steps in order to
take advantage of higher levels of expressiveness.
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