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ABSTRACT
We present an innovative approach to the methodology of dynamical modelling, al-
lowing practical reconstruction of the underlying dark matter mass without assuming
both the density and anisotropy functions. With this, the mass-anisotropy degener-
acy is reduced to simple model inference, incorporating the uncertainties inherent
with observational data, statistically circumventing the mass-anisotropy degeneracy
in spherical collisionless systems. We also tackle the inadequacy that the Jeans method
of moments has on small datasets, with the aid of Generative Adversarial Networks:
we leverage the power of artificial intelligence to reconstruct non-parametrically the
projected line-of-sight velocity distribution. We show with realistic numerical simu-
lations of dwarf spheroidal galaxies that we can distinguish between competing dark
matter distributions and recover the anisotropy and mass profile of the system.

Key words: galaxies: dwarf - galaxies: kinematics and dynamics - techniques: radial
velocities - methods: statistical - galaxies: statistics.

1 INTRODUCTION

Whilst dark matter represents the dominant mass compo-
nent of the universe, its true nature remains elusive. As-
trophysical probes of the properties of dark matter in large
galaxies and galaxy clusters are typically hampered by the
complexities of baryonic physics, and the complex coupling
of the properties of kinematic tracers and the underlying
form of the gravitational potential.

In recent years, considerable focus has been given to
dwarf spheroidal galaxies in the local universe. With a stel-
lar mass of ∼ 107M�, these are seen to be both devoid of
gas, limiting the impact of baryonic astrophysics, and suffi-
ciently simple to allow the determination of the gravitational
potential of the dominant dark matter component from the
stellar motions. However, traditional approaches of deter-
mining the distribution of dark matter in dSphs are limited
by both the influence of the observational uncertainties and
the mathematical complexity of deriving the properties of
the dark matter.

One such approach, the Schwarzschild (1979) method,
attempts to determine the underlying dark matter distri-
bution through the reconstruction of the observed luminos-
ity and kinematic properties of a galaxy using a library of

∗E-mail: foivos.diakogiannis@data61.csiro.au

precomputed orbits in trial potentials. Via the appropriate
weighting of the components of the library for a particular
mass model, the optimal fit to the data can be recovered and
the mass determined. However, the computational aspects
of the Schwarzschild method makes implementation highly
impractical. Building a high-resolution orbit library to sur-
vey the likelihood of millions of mass models is currently
computationally prohibitive.

Other approaches are based upon the Jeans equation
(Binney 1980), which relates the properties of kinematic
tracers to the form of the gravitational potential. When ap-
plying the Jeans equation, there are two key ingredients, the
distribution of dark matter, and a velocity anisotropy, β,
which describes the relationship between radial and tangen-
tial orbits within the structure. In established approaches,
it is typical to assume a functional form for the dark matter
distribution, such as a Navarro-Frenk-White (Navarro et al.
1996) or a Plummer (1911) profile, and a functional form for
β, optimizing the parameters of both based upon the obser-
vational data. Given the mathematical form of the Jeans
equation, however, the resultant determination of the mass
depends upon the assumed form for β, with various combi-
nations of the adopted mass profile and β providing equally
acceptable fits to the data. Known as the “mass-anisotropy
degeneracy” (hereafter MAD), this is generally accepted as
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2 Diakogiannis et al.

a fundamental limitation of Jeans-based approaches (Merri-
field & Kent 1990, see also Read & Steger 2017).

In this contribution, we present a new approach to
address the MAD in the Jeans formalism, relying upon a
parametrised functional form, known as a B-Spline, to ac-
count for the implicit relationship between the dark mat-
ter profile and the velocity anisotropy. In this latest ver-
sion of the JEAnS (Diakogiannis et al. 2017) approach, the
tight-JEAnS (hereafter t-JEAnS), we represent both the
unknown radial and tangential velocity dispersions as B-
splines. Then, we allow the data to give them the correct
geometric shape. In this way, we avoid having to assume the
functional form of all, but one, of the unknown functions
used in the modelling process. Then, even with competing
dark matter models that have equal numbers of unknown
coefficients, we end up with statistical fits of different qual-
ity. The key point is that by demanding that these curves
be as simple as possible, i.e. that they are represented by a
minimal number of variables, competing dark matter density
models give different qualitative fits to the data. This even-
tually allows us to statistically discriminate between com-
peting mass models and thus transform the MAD to a mere
model inference problem. For the case of small datasets (of
the order of 1000 tracer stars), we use Generative Adver-
sarial Networks (hereafter GANs, Goodfellow et al. 2014)
to reconstruct non-parametrically the underlying projected
line-of-sight (LOS) velocity distribution. With this, we aug-
ment artificially the data to arbitrarily large numbers, and
obtain reliable estimates for the moments of the LOS ve-
locity distribution with an unprecedented density of points.
The combination of t-JEAnS modelling with the GANs for
artificial data augmentation is a powerful approach for reli-
able mass estimates.

In Section 2 we present a short review of the Jeans
mass modelling method. In Section 3 we give the details of
the datasets we used as well as the preprocessing method we
followed. In Section 4 we give a detailed description of the t-
JEAnS algorithm. In Section 5 we present our findings and
in Section 6 we discuss the reasons behind the efficiency of
the t-JEAnS . Finally in Section 7 we present our concluding
remarks.

2 A REVIEW OF THE JEANS MODELLING
METHODOLOGY

In this section we present an overview and analysis of the es-
tablished (Binney & Tremaine 2008) methodology of Jeans
modelling. We continue by providing a proof for the unique-
ness of the anisotropy profile upon assuming a specific func-
tional form for the mass density profiles of stars, ρ?, and
dark matter, (hereafter DM), ρ•.

The Jeans modelling approach subject to the assump-
tion of spherical symmetry is fully contained in the following
two equations:

−dΦ

dr
=

1

ρ?

d

dr

(
ρ?σ

2
rr

)
+

2

r
β(r)σ2

rr (1)

σ2
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2

Σ?(R)

∫ rvir

R

(
1− β(r)

R2

r2

)
rρ?σ

2
rr√

r2 −R2
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Here, Φ is the total potential of the system, ρ? the stellar
tracer density, σ2

rr the radial velocity dispersion, Σ? is the

projected tracer surface density, σ2
los is the observed line-of-

sight velocity dispersion, β is the anisotropy profile defined
by β(r) = 1 − σ2

tt/(2σ
2
rr), and R and r are, respectively,

the projected and 3D distance radii from the centre of the
system. Although the integral in Eq. (2) usually has infin-
ity as its upper bound, here we define rvir as the distance
in which the DM mass density, ρ•, profile falls to approxi-
mately ρ•(rvir) ≈ 200ρcrit. For all practical purposes, this is
a useful numerical approximation that does not alter our
findings. With the exception of the observed LOS veloc-
ity dispersion, σ2

los, and the projected tracer density profile,
Σ?, all remaining functions (ρ?, ρ•, σ

2
rr, β) are unknown and

need to be determined from the data. Therefore, the system
is underdetermined1. In practice we can make a very good
approximation to the functional form of the tracer density
profile, ρ? given deep photometry of the dSph, and we are
thus left with three unknown functions, {ρ•(r), σ2

rr(r), β(r)}
in a system of two equations.

Although there are variations2 to the general method-
ology, the common established (Binney & Tremaine 2008)
starting point to solving this system of coupled integrodif-
ferential equations with respect to the unknowns ρ•(r), β(r)
and σ2

rr(r), is to assume parametric functional forms for the
DM mass density, ρ•, and the anisotropy profile, β(r). In
an iterative approach (assuming for simplicity we have full
knowledge of the tracer profile, ρ?), one proposes a set of
values for the parameters that define ρ• and β, then solves
the differential Equation (1) with respect to3 σ2

rr and sub-
stitutes the result in Eq (2). The validity of the numerical
values of the parameters that define ρ• and β is tested by
comparing the model σ2

los with the observables. This itera-
tive process is performed until some convergence criterion
is met. The rationale behind this approach is that when we
consider parametric forms for ρ• and β, the system becomes
overdetermined (since Equations (2) and (1) are evaluated in
various distinct locations, ri, Rj) and thus a solution exists.

It needs to be emphasized though that once we make
an assumption for the parametric form of one of the three
unknown functions, {ρ•, σ2

rr, β}, the system of two equations
with (the remaining) two unknowns is closed. That is, the
remaining two functions can be fully determined without
the need for their parametric representation. There exist
published (Binney & Mamon 1982; Solanes & Salvador-Sole
1990; Dejonghe & Merritt 1992; Mamon & Boué 2010) exact
solutions to the system of these equations (termed inversion
techniques) that make a parametric assumption for only one
of the three unknown functions. These prove that it is an un-

1 One though needs to be precise in the definition of the number

of “unknowns”. Usually, we make assumptions for the functional
form of these unknown functions that depend on some parame-

ters. It is the number of these parameters that define the necessary
number of equations to close the system. Then, for either exact
(numerical solutions) or overdetermined systems (statistical fit-

ting), we evaluate each of the Equations (1) and (2) in a set of
distinct locations, ri, Rj that are equal or greater in numbers to

the number of unknown parameters.
2 These include, e.g. using higher moments ( Lokas & Mamon
2003) of σ2

los, or different assumptions on the distribution function

of the system, i.e. different penalty functions when comparing the
LOS velocity dispersion with observables.
3 Subject to the boundary condition limr→rvir σ

2
rr ≈ 0.
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Reliable mass estimates 3

necessary assumption to assume two of the three unknown
functions in parametric form. Usually, assuming more para-
metric forms than necessary, increases the uncertainty in
the model parameters, thus making the distinction between
competing mass models even more difficult1 .

It is insightful to separate the process of solving the
system of coupled integrodifferential Equations (1) and (2),
in two distinct approaches: the exact numerical solution of
the equations to perfect noiseless data and the statistical fit-
ting to noisy data. Clearly, all conclusions we can draw from
knowledge gained in exact solutions of the system of Jeans
equations can be transferred to the case of statistical fitting,
while the converse is not always true. In the following, we
focus on the exact numerical solution.

2.1 Uniqueness of the anisotropy profile for a
given mass model

In this section, we provide a theorem that upon making
an assumption for the functional form of the tracer and DM
mass densities, ρ?, ρ•, and the LOS dispersion, σ2

los there ex-
ists a unique anisotropy profile, β. For our purposes, we con-
sider we have full knowledge of the above-mentioned func-
tions, ρ?, ρ• and σ2

los. We solve Eq (1) with respect to β(r)
and substitute it under the integral sign of Eq (2). Then we
end up with a single integrodifferential equation (subject to
the virial boundary condition limr→rvir σ

2
rr(r) ≈ 0), namely

σ2
los(R) =

2

Σ?(R)

∫ rvir

R

[
KA

(
d(ρ?σ

2
rr)

d r
+ ρ?

d Φ

d r

)
+KBρ?σ

2
rr

]
d r (3)

where KA and KB are kernel functions defined by:

KA(r,R) =
R2

√
r2 −R2

, KB(r,R) =
2r√

r2 −R2

This equation has one unknown, the radial velocity disper-
sion, σ2

rr. That is, assuming perfect knowledge of the LOS ve-
locity dispersion profile, σ2

los(R), if we could solve this equa-
tion for the unknown σ2

rr we would obtain for each assump-
tion of a mass model, {ρ?,Φ(r)}, a radial velocity dispersion,
σ2

rr. The question arises: is the solution with respect to σ2
rr

unique?

Theorem 1. The solution of Eq. 3 with respect to σ2
rr for

given σ2
los(R), ρ?(r) and Φ(r) profiles, is unique.

We provide the proof of Theorem 1 in Appendix A. This re-
sult, which complements the published inversion techniques,
has the following implication: we can assume only one of
the three unknown functions and thus reduce the uncer-
tainty of the modelling parameters (in comparison with the
uncertainty we get by assuming parametric forms for two
unknown functions, as is customary). For the case of sta-
tistical fitting, we can use hierarchical models (e.g. smooth-
ing splines) of varying complexity, that make model selec-
tion possible and this is the key for breaking statistically

1 In addition, there are well known methods for solving numer-

ically systems of coupled integrodifferential equations, such as
finite differences and finite element methods (Ŝoĺın 2005; Jalali &

Tremaine 2011), wavelets (Bertoluzza et al. 2008) and B-splines

discretization (Höllig 2003).

the Jeans degeneracy: the missing ingredient (an additional
equation) is replaced by the model selection criterion. Thus,
if we allow the total mass, M(r) to vary, i.e. if we assume
a different mass model for the same σ2

los profile, then the
anisotropy profile will generally be different. However there
is one important constraint we need to consider, namely,
the projected virial theorem (discussed in detail in Sec-
tion 4.5.1). The projected virial theorem does not depend on
the anisotropy, which implies that not all mass profiles are
consistent with the projected kinetic energy evaluated from
σ2

los. However, the projected virial theorem, on its own, is
not sufficient to break the degeneracy (it is a single scalar
equation, therefore the total number of equations is still less
than the unknowns). It can only further reduce the feasi-
ble solution space of where the M(r) function resides. We
will discuss this further in Section 6. In Section 5.1 we pro-
vide numerical examples of the uniqueness of the kinematic
profile for an assumed mass density.

It should be stated that we can choose equally well to as-
sume a functional form for the anisotropy profile, and leave
the mass density to be deduced by the data (Mamon &
Boué 2010, see also Read & Steger 2017): in this case, the
total mass of the system follows from the assumptions of the
anisotropy model, β, for a given data set of observables. This
can be very easily seen from the following: again, assuming
perfect knowledge of σ2

los profile, once we use a specific func-
tional form for the anisotropy β, the system of equations
that describes a stellar dynamical system is:

1

Σ?

∫ rvir

R

[
ρ?K1(r,R)σ2

rr + ρ?K2(r,R)σ2
tt

]
d r = σ2

los(R)

(4)

σ2
tt − 2(1− β(r))σ2

rr = 0 (5)

1

ρ?

d

dr

(
ρ?σ

2
rr

)
+

2σ2
rr − σ2

tt

r
= −GMtot(r)

r2

(6)

These are three equations with respect to the three un-
knowns σ2

rr, σ
2
tt and the total mass Mtot. The system of equa-

tions, Eq. 4, 5 is complete, i.e. we have a unique solution for
σ2

rr and σ2
tt. Then, from the last Eq. 6 we calculate the total

mass, Mtot, whose value depends solely on the tracer stel-
lar density, ρ?, and the kinematic profile, σ2

rr, σ
2
tt. Therefore,

when we model by assuming a specific anisotropy profile, β,
we effectively pre-specify the mass content of the system. In
this reasoning, we did not need to adopt any assumptions
for the parametric form of the DM mass density.

3 DATA

In this section we provide an overview of the datasets we
used to validate our methodology. We describe how we pre-
process the data and create validation and test data sets for
the t-JEAnS solver, as well as how we use GANs to generate
large artificial samples of data for the case of small datasets.

We test our algorithm with the Gaia Challenge 2

suite of mock simulations, in particular the spherically sym-
metric sets. The mock suites provide a snapshot of the full
6D information of the tracer profile, x, y, z, vx, vy, vz. For

2 http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php
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4 Diakogiannis et al.

modelling each of the systems, we used only the projected
positions, x, y and the LOS velocity, vz. Following the Gaia
Challenge guidelines, we used the data that include ve-
locity errors. For each datum we considered that this error
is equal to the 2% of the true vz velocity. Our training data
set, Dtrain, consists of the values, {x, y, vz}j , j = 1, . . . , N?,
as well as the second order moments, σilos, of the projected
LOS velocity.

As a sample of the various datasets, we chose the
PlumCuspOM, PlumCuspIso, PlumCuspTan and NonPlum-
CoreOM suites. For the first three we use the suites with 10k
targets, and for the last one we use both 10k and 1k datasets.
The Plummer-like family of tracer profiles was chosen based
on the knowledge that most Stellar profiles observed in na-
ture are cored; the latter three models were considered to
be representative by the curator of the Gaia Challenge
(Read & Steger 2017). In particular, the NonPlumCoreOM
is a notoriously difficult set to model, and this is the rea-
son why for this particular one we also include a set with
only 1k targets. Each of these datasets was modelled with
assumptions for the stellar and DM profiles only. We model
each system with two competing models: one with the true
parametric form (with parameters recovered from the fitting
process), and one with an incorrect parametric assumption
(again the parameters are fitted to the data). We report the
combinations of Stellar and DM models we used in Tables
2 and 6. In all model fits, the anisotropy profile is evaluated
from the data.

The reference anisotropy profiles that these data sets
were created from are two, namely constant and Ossipkov-
Merritt (Osipkov 1979; Merritt 1985):

β(r) =

β0, constant

r2

r2 + rαa
, OM

(7)

The mass density profile that these data sets follow, both
for the stellar and the DM components, is given by a power
law form Zhao (1996), for a variety of reference parameters:

ρ(r) = ρ0

(
r

rs

)−γ [
1 +

(
r

rs

)α](γ−β)/α

(8)

In addition, the Gaia Challenge datasets make the ap-
proximation that the stellar tracer mass is negligible in com-
parison to the DM mass component. In order to account
for this we normalized the total tracer mass to unity, i.e.
M tot
? = 1M�.

We report the reference model parameters for each of
the datasets used in Table 1. In Tables 2 and 6 we record
the combinations of Stellar and DM mass models we used
for the modelling process as well as the test error for the
various competing models.

3.1 Data preprocessing

In this section we describe the process that we followed in
order to create the LOS velocity dispersion, σilos, values, that
we use as training data.

Each bin contains Ntargets =
√
N?. For example, for

104 stars, we have Nbin = 102. This approach gives equal
Poisson error (Read & Steger 2017) for each datum. We
modelled the distribution of stars, within each i bin, as a

10−1 100 101

R (kpc)

100

200

300

400

σ
2 lo

s(
R

)
(k

m
2
s−

2
)

samples

data

Figure 1. Binned σ2
los (black solid line) data as well as validation

σ2
los dataset Dval for the PlumCuspTan model.

Gaussian centred at zero. The likelihood of this model, for
each bin i, is:

Pi(vj |s,D) =

Ntargets∏
j=1

exp{−v2
j (s2 + (δvj)

2)−1/2}√
2π(s2 + (δvj)2)

. (9)

where vj is the value of the LOS velocity of star j in bin
i, δvj is the associated error, and s the standard deviation
of the Gaussian distribution. For each bin i, we perform an
MCMC process using the likelihood Eq (9), to estimate the
marginalized distribution of the parameter s. It should be
clear that this MCMC process is used only in the data pre-
processing stage. It should not be confused with the MCMC
we perform later for the estimation of marginalized distribu-
tions for the stellar, θ?, and DM, θ•, parameters. The LOS
velocity dispersion data values, σilos, we use at each location
Ri (centre of the ith radial bin), is the mode value of the
histogram, ŝ2 = σilos. The associated error, δσilos, is the 1σ
uncertainty of s2. Thus, Dtrain = {x, y, vz}j ∪ {σilos, δσ

i
los},

j = 1, . . . , N? and i = 1, . . . , Nbin.
In addition to the above LOS moments, we draw 100

random samples, σijlos (j = 1, . . . , 100), from the marginal-
ized distribution of σ2

i , that we keep for a validation data
set, Dval, and 200 random samples that we use for test
sets, Dtest. During the Evolutionary Algorithm (hereafter
EA) training, the validation set is used for the selection of
the smoothing parameters, θsmooth (Section 4). During the
MCMC training phase, instead of using the mode value σilos

of the LOS dispersion as the moments data, in each itera-
tion of the solver, we select random realizations, σilos = σijlos

(random j), from the validation data set, Dval. In this way
we incorporate the uncertainty of the moments data as prior
information to the modelling process. The test set, Dtest, is
used for the model selection between competing models after
the EA phase. In Fig. 1 we plot for the case of the Plum-
CuspTan model the binned σilos values (black solid line), as
well as the validation values, σijlos ∈ Dval, for each bin i.

3.2 Data augmentation for small datasets using
GANs

In this section we briefly describe the application of GANs
for the numerical reconstruction of the 3D projected LOS ve-

c© 0000 RAS, MNRAS 000, 000–000



Reliable mass estimates 5

Table 1. Synthetic data sets: parameters α, β, γ are dimensionless numbers. Distance parameters r?,• are in kpc, while ρ0• in M�pc−3.

DataSet θ? = [r?, α?, β?, γ?] θ• = [ρ0•, r•, α•, β•, γ•] β(r) anisotropy

PlumCuspOM (10k) [0.1, 2, 5, 0.1] [0.064, 1, 1, 3, 1] βOM, ra = 0.1
PlumCuspIso (10k) [0.25, 2, 5, 0.1] [0.064, 1, 1, 3, 1] β0 = 0.0

PlumCuspTan (10k) [0.5, 2, 5, 0.1] [0.0239, 2, 1, 4, 1] β0 = −0.5

NonPlumCoreOM (1k, 10k) [0.25, 2, 5, 1] [0.400, 1, 1, 3, 0] βOM, ra = 0.25

Figure 2. The t-JEAnS algorithm.

Table 2. Competing mass models for the various 10k data sets.

We report the average error on unseen test data, Dtest. The true
models from which the data were produced are with bold fonts.

In all cases the test error, χ2
test, selects the correct model.

DataSet Stellar model DM model χ2
test

PlumCuspOM, 10k Plummer Burkert 223.972

PlumCuspOM, 10k gH NFW 217.337

PlumCuspIso, 10k Plummer Burkert 207.001
PlumCuspIso, 10k gH NFW 204.812

PlumCuspTan, 10k Plummer Burkert 192.115

PlumCuspTan, 10k gH gH 192.017

NonPlumCoreOM, 10k Plummer NFW 348.126

NonPlumCoreOM, 10k gH gH 340.255

locity distribution, f(x, y, vlos) from the NonPlumCoreOM
1k dataset. Our goal is to give an intuitive understanding
behind the reason that this method is so effective and not
to detail the GAN methodology (see Goodfellow 2017 for a
pedagogical introduction).

A fundamental limitation to the method of moments,
in the Jeans framework, is that it requires a wealth of data
to be successful. This is because the moments of the data,
as a product of the summary information of the underly-
ing distribution, are much fewer in number than the origi-
nal unbinned dataset. This is more evident especially when
the original dataset is small (from few hundred to 1k stars)
as is often the case in astronomical datasets (e.g. of dSph
galaxies). We overcome this difficulty by applying a prepro-
cessing step, where we create synthetic data from a genera-
tive model, that resembles the true underlying distribution.
That is, we create synthetic data to complement the original
dataset and thus acquire a large number of LOS velocity mo-
ments. We do so only for the 1k NonPlumCoreOM dataset

(although the method can be applied to the 10k as well for
higher quality results). For this task, artificial intelligence
actors (GANs) are excellent generative models, since they
learn by “looking” at the real data, i.e. by example, and are
not bound by assumptions of the mathematical form of the
underlying distribution.

The general framework of the GANs consists of a set of
two competing artificial neural networks (hereafter ANNs).
The first, the Generator (hereafter G), takes as input a vec-
tor of random numbers and tries to create fake (synthetic)
data whose distribution resembles the distribution of the
true training dataset. The second, the Discriminator (here-
after D), takes as input, true data, drawn randomly from the
training distribution, or fake data, created randomly from
G, and tries to predict whether the data that it was given
are genuine (real) or fake. During training, the goal of G is
to make D perform a mistake, i.e. the goal of G is to gen-
erate as authentic looking synthetic data as possible. The
goal of D is to discriminate the true data from the fake ones
and debunk the efforts of G. This framework is a minimax
two-player game. During training both players become pro-
ficient in their task. When this process reaches equilibrium,
G is a faithful approximator of the true underlying distri-
bution of the training dataset. This method is unsupervised
training which in practice means there is no upper bound
on the quality of the data approximation.

This method has been applied successfully, with impres-
sive results, in artificial intelligence generative tasks, such as
the creation of high quality images (Karras et al. 2017), for
the creation of synthetic MRI scans for enhanced deep neu-
ral network training (Shin et al. 2018), for motion transfer
in videos (Chan et al. 2018) and many more cases where the
data distribution is anything but “easy” to express mathe-
matically (if not impossible).

For our particular needs we construct a pytorch
(Paszke et al. 2017) implementation of Wasserstein GANs
with gradient penalty (hereafter WGAN-GP, Gulrajani
et al. 2017). We chose WGAN-GP because it is one of the
most reliable GAN frameworks for stability in training. The

c© 0000 RAS, MNRAS 000, 000–000



6 Diakogiannis et al.

architectures we used for the G and D ANNs are summa-
rized in Table 3. The input to the generator is a random 10
dimensional multinomial distribution, z ∼ N (0, 1)10 ∈ <10.
In Table 4 we detail the hyper parameter values we used
during GANs training. In addition, in order to avoid over-
fitting the NonPlumCoreOM 1k data set, we augmented the
data with random rotations on the x, y plane and reflec-
tions with respect to x and y axis. In particular we fol-
lowed the transformations (x, y, vlos) → (−x, y,−vlos) and
(x, y, vlos) → (x,−y,−vlos). For zero mean vlos stellar sys-
tems, these reflections are like observing the target from the
opposite direction of the initial observer: clearly the physics
of the system should not change. This type of information
should be viewed as “prior knowledge encoding” of the mod-
elling process with neural networks.

In Fig 3 we plot on the (R, vlos) plane the synthetic
data generated from the GANs against the 1k and 10k Non-
PlumCoreOM datasets. We generated ∼25k synthetic data
points by training the Discriminator, D, on the NonPlum-
CoreOM 1k dataset. This resulted in approximately 160 σ2

los

binned values for the LOS velocity dispersion profile. In Fig.
4 we plot the LOS velocity dispersion profile from the GAN
data as well as the true 1k and 10k dispersion profiles. In
all panels the reference profile (dashed curve) is overplot-
ted. Clearly, the GAN generated profile is of high quality.
In fact, the uncertainty of the data points around the ref-
erence profile is smaller than even the case of the original
10k dataset. This happens because the GAN system learns
more information of the underlying distribution from the
NonPlumCoreOM 1k dataset than what the moments of
the 10k sample can describe. As a result, with higher num-
ber of targets (25k) we end up with a LOS velocity dis-
persion profile of smaller uncertainty than the 10k original
dataset. A small bias is apparent in the last two σ2

los data
points, probably because the GANs overfit the outliers at
the edges of the radial distance of the 1k dataset. This bias
may also be due to the system of GANs not having reached
the optimum equilibrium when we terminated training. Fi-
nally in Fig 5 we compare the projected density (brightness
for ΥV = 1) of the tracer population. It should be noted
that we did not experiment with new architectures, train-
ing schemes or hyperparameter optimization. We just used
the proposed implementation scheme from Gulrajani et al.
(2017) for their toy model of 25 2D Gaussian distributions.
There is huge scope for improvement and adaptation for in-
dividual datasets of this technique for data augmentation
in astronomy in various sub-disciplines. Here, we are merely
scratching the surface of the potential of this technology.

4 THE t-JEAnS SOLVER

In this section we present an overview of the t-JEAnS al-
gorithm we developed for accurate mass estimates in spher-
ically symmetric self-gravitating systems.

The JEAnS (Diakogiannis et al. 2017) algorithm is a
numerical solver that estimates the mass content and the
kinematic profile of spherically symmetric gravitating sys-
tems. It models independent of anisotropy, β(r), assump-
tions and it requires parametric functional forms for the
mass density profiles. The best mass model is selected with
the use of model selection criteria (Diakogiannis et al. 2017)

Table 3. Generator and Discriminator network architectures. We

follow pytorch semantics to denote the dimensionality and type
of the layers and non-linear activations we used. Here LDIM=10

is the dimensionality of the latent space that we sample and feed

into the Generator, DIM=512 is the number of features in the
linear Layers and XDIM=dim(x, y, vlos) = 3 is the dimensionality

of the projected observation space.

Layer Generator Discriminator

1 Linear(LDIM,DIM) Linear(XDIM,DIM)

Activation LeakyReLU(α = 0.01) LeakyReLU(α = 0.01)

2 Linear(DIM, DIM) Linear(DIM, DIM)

Activation LeakyReLU(α = 0.01) LeakyReLU(α = 0.01)

3 Linear(DIM, DIM) Linear(DIM, DIM)

Activation LeakyReLU(α = 0.01) LeakyReLU(α = 0.01)

4 Linear(DIM, XDIM) Linear(DIM, 1)

Table 4. Training hyper parameters of the GANs system. NBATCH
is the batch size, NCRITIC is the number of training iterations the

D performs for a single G training iteration, LDIM is the dimen-

sionality of the input random number to the G. For the gradi-
ent descent we used the Adam optimizer (Kingma & Ba 2014).

The input dataset that the D was trained on was the NonPlum-

CoreOM 1k.

Parameter Value

NBATCH 128

NCRITIC 5

LDIM 10

Optimizer Adam (lr=1e-4,β1 = 0.5, β2 = 0.9)
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Figure 3. Comparison of NonPlumCoreOM 1k, 10k true
datasets against the GAN generated synthetic data on the
(R, vlos) plane.
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dataset only.
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Figure 5. Comparison of NonPlumCoreOM 1k, 10k true pro-
jected density profiles against the GAN generated projected den-

sity profile. Overplotted is the true reference profile.

(Akaike Information Criterion, Sugiura 1978; Burnham &
Anderson 2002, hereafter AICc). The radial velocity disper-
sion profile, σ2

rr, is represented as a “free form” B-spline
function, σ2

rr(r) =
∑
i a
iBi(r). The correct kinematic pro-

file is inferred from the data. The solver uses information of
brightness and line-of-sight velocity moments, σ2

los, to esti-
mate marginalized distributions of the mass model param-
eters as well as the coefficients, ai, that describe the radial
dispersion profile, σ2

rr.
The algorithm consists of three distinct phases. In the

first phase it evaluates the simplest kinematic profile that
gives a satisfactory representation1 to the data, as well as
the most probable mass model. This is achieved with the use
of evolutionary optimization and quadratic programming. In
the second phase, JEAnS evaluates the optimum smoothing
parameters from ideal theoretical models. Finally, in phase
three the algorithm performs MCMC inference, for the de-
termination of marginalized distributions of the model pa-
rameters.

The new version t-JEAnS is significantly modified com-
pared to the previously-published version (Diakogiannis
et al. 2017). In the first phase we again evaluate the opti-
mum B-spline basis, as well as the statistically most favoured
mass model. We introduce a new quadratic programming
formalism - the Dynamic Moments Solver (hereafter DMS)
- for the numerical solution of the system of coupled inte-
grodifferential Equations (1,2). In the latest version of the
JEAnS we expand both the radial, σ2

rr, and tangential, σ2
tt,

profiles in a B-spline basis of order k = 4 (degree = 3)2,
i.e. σ2

rr(r) = cirBi(r), σ
2
tt(r) = citBi(r). This allows us to

treat the Jeans equation as a local, ri, constraint in the
quadratic optimization problem of estimating the velocity
moments, σ2

rr, σ
2
tt. In combination with the local support of

B-spline functions, this translates to more equations for the
unknown coefficients cir, c

i
t that further reduce the feasible

solution space. In comparison with the old version of the
JEAnS, by solving the Jeans equation (Eq. 16) with respect
to σ2

tt and substituting under the integral sign of the σ2
los def-

inition (Eq. 14), we loose the local equations that cir and cit
coefficients participate after the last datum. By keeping the
Jeans equation as a constraint we can evaluate equations for
cir and cit in all space r ∈ [0, rvir]. This has a direct positive
impact on the quality of the recovered anisotropy profile,
β(r).

In a similar fashion to the first version of the JEAnS,
we do not invert the dynamical equations, thus we avoid the
problem of having to integrate/differentiate noisy numerical
functions. We also include additional global and local con-
straints that guarantee that the kinematic profiles lead to
physically acceptable solutions (σ2

rr, σ
2
tt > 0, ∀r ∈ [0, rvir)).

The fitness function is modified in order to include infor-
mation from the full line-of-sight kinematics. The optimum
smoothing parameters are now evaluated directly from the
data according to the best bias-variance tradeoff using a
validation data set, Dval. The model selection is performed
using a hold out test data set, Dtest. In phase two we per-

1 That is, the best B-spline basis, Bi(x), according to the bias-

variance trade-off (Hastie et al. 2001).
2 The lower the degree of the B-spline basis, the smaller the con-
dition number of the system of equations.
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8 Diakogiannis et al.

form MCMC inference for the unknown stellar and DM mass
model parameters, θ?, θ•. In this phase, the kinematic pro-
file is treated as a nuisance parameter. Finally in the third
phase, we perform stochastic programming (SP) in order
to determine confidence intervals for the velocity dispersion
profiles, σ2

rr, σ
2
tt, σ

2
los.

In more detail (Fig. 2), the distinct phases of the t-
JEAnS are the following:

(i) An evolutionary optimization (EA) phase. In this phase
we determine: a) the simplest (best) B-spline basis1 for the
representation of the unknown radial, σ2

rr, and tangential,
σ2

tt velocity dispersions, (b) the best candidate mass mod-
els and, (c), the best smoothing2 parameters, θsmooth =
{λ1, β1, λ2, β2}. For the evaluation of the smoothing param-
eters we use a validation data set, Dval, created from ran-
dom sampling from the LOS σilos marginalized distributions
(see Fig. 1). The optimum smoothing parameters are the
ones that minimize the validation error for all random sam-
ples, σilos. We give more details of this process in the section
where we describe the fitness function. For the model selec-
tion, we use a “hold-out” LOS moments test data set, Dtest

(Section 3.1), and we perform model selection (Section 4.8)
based on the out-of-sample prediction error (generalization
test error). This approach gives more robust model selection
(in comparison with predictive information criteria (Gelman
et al. 2014)), since it heavily penalizes models that do not
generalize well on unseen data. It should be stressed how-
ever, that the efficiency of the model selection process de-
pends crucially on the number of available data points.

(ii) A Markov Chain Monte Carlo (MCMC) analysis, keeping
the B-spline basis and the smoothing parameters fixed, for
the best mass model. In this scheme, the radial and tangen-
tial coefficients, cir, c

i
t are treated as nuisance parameters:

they are estimated at each iteration from the DMS. This
phase produces marginalized distributions of the parame-
ters of stellar, θ?, and DM, θ•, mass densities, {ρ?, ρ•}.

(iii) A stochastic programming (SP) phase, where the θ?, θ• pa-
rameters are used iteratively in the DMS. This produces
marginalized distributions for the radial and tangential co-
efficients, cir, c

i
t, subject to local and global dynamical con-

straints. This last phase gives the required uncertainty of
LOS and radial and tangential velocity dispersions.

4.1 Mass models

For our modelling purposes we used the following candidate
mass models:

ρ(r) =



ρ0

[1 + (r/rs)2]5/2
Plummer

ρ0

(1 + r/rs)[1 + (r/rs)2]
Burkert

r3
s ρ0

r(r2 + r2
s )2

NFW

Eq (8) generalized Hernquist

(10)

1 Equivalently, the knots ξi that define the simplest basis.
2 The description of each of the four smoothing parameters,

θsmooth, is given in section 4.6.

We model each dataset with two different mass model as-
sumptions, the correct one and an incorrect one. Our goal
is to demonstrate that given sufficient data it is possible,
in principle, to statistically infer the most probable model
using model selection criteria.

4.2 Dynamic Moments Solver (DMS)

In this section we describe the mathematical representation
of the problem, i.e. the dynamic equations that enable us
to recover the radial and tangential velocity moments, from
knowledge of the LOS velocity dispersion, σ2

los, the tracer,
ρ?, and the DM, ρ•, mass densities. The DMS solves the sys-
tem of coupled integrodifferential equations (Eq. 1,2) by dis-
cretizing the solution space using B-splines. This is achieved
by expanding the unknown radial, σ2

rr, and tangential, σ2
tt,

velocity moments in a B-spline basis3

σ2
rr(r) = cirBi(r) (11)

σ2
tt(r) = citBi(r) (12)

The DMS takes as input the knots, ξi, the stellar parame-
ters, θ?, the DM parameters, θ• and the smoothing penalty
variables, θsmooth = {λ1, β1, λ2, β2} and gives as output the
coefficients cir, c

i
t that fully describe the radial and tangen-

tial velocity moments. Using the approximation Eqs. (11)
and (12), the task is transformed to a convex optimization
problem (quadratic programming). The software library we
use in t-JEAnS for the quadratic optimization is IBM’s
CPLEX4.

For clarity in notation, it is convenient to represent the
DMS as a function:

DMS(θ|Dtrain)→ (cir, c
i
t),

where θ ≡ {ξ, θ?, θ•, θsmooth} are the parameters that define
the B-spline basis, the tracer and DM profiles, as well as the
smoothing penalty regularization. The goal of the DMS is to
minimize the training error of the LOS velocity dispersion:

χ2
train =

Nbins∑
i

(
σ2

los(Ri)− σilos

δσilos

)2

(13)

subject to various local and global dynamic equations (con-
straints). We separate these constraints into local, boundary
and global constraints. In addition we will impose some reg-
ularization conditions (smoothing) in the minimization pro-
cess, in order to reduce the condition number of the linear
system and avoid oscillatory solutions. We formally define
the objective function of the DMS in Section 4.6. In Table
5 we summarize the system of equations and the objective
function that fully describe the DMS. We proceed by stating
exactly the mathematical equations we use in the t-JEAnS.

The LOS velocity dispersion under the B-spline approx-
imation of the velocity moments is given by:

σ2
los =

1

Σ?(R)

(∫ rvir

R

ρ?K1σ
2
rr d r+

∫ rvir

R

ρ?K2σ
2
tt d r

)
(14)

3 We use Einstein summation convention, where double re-
peated indices indicate summation. E.g. σ2

rr(r) = aiBi(r) ≡∑nbasis
i=1 aiBi.

4 Free academic license.
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where

Σ?(R) =

∫ rvir

R

ρ?K3 dx

is the projected tracer mass density and

K1(r,R) =
2(r2 −R2)

r
√
r2 −R2

K2(r,R) =
R2

r
√
r2 −R2

K3(r,R) =
2r√

r2 −R2

are kernel functions. Applying the B-spline approximation
(Eq. 11 and 12) and defining:

Ir
i(R) =

1

Σ?

∫ rvir

R

ρ?K1(r,R)Bi(r) d r

It
i(R) =

1

Σ?

∫ rvir

R

ρ?K2(r,R)Bi(r) d r

the linearized LOS velocity dispersion takes the form:

σ2
los(R) = cirI

r
i(R) + citI

t
i(R) (15)

This is the model function that we compare with observ-
ables, subject to physical constraints. It is linear with respect
to the unknown coefficients, cir, c

i
t, something that simplifies

the solution and allows for convex optimization.

4.3 Local constraints

These constraints are termed local, because they are valid
in the whole extent of the system, r ∈ [0, rvir]. We evaluate
these at the positions of the Greville abscissae of the B-spline
basis.

4.3.1 Jeans constraints

The spherically symmetric Jeans equation (SSJE) is:

− ρ?
d Φ

d r
=

d(ρ?σ
2
rr)

d r
+ ρ?

(2σ2
rr − σ2

tt)

r
(16)

The linearized form of SSJE that results from the B-spline
approximation is:

− ρ?
d Φ

d r
=

(
d(ρ?Bi)

d r
+

2ρ?Bi
r

)
cir +

ρ?Bi
r

cit (17)

4.3.2 Sign constraints

We demand the velocity moments to be positive in all solu-
tion space:

σ2
rr(r) > 0

σ2
tt(r) > 0.

In terms of the kinematic coefficients:

cjrBj(r) > 0 (18)

cjtBj(r) > 0 (19)

4.4 Boundary constraints

These apply at the origin and at the virial radius of the
system.

σ2
rr(0) = σ2

tt(0)/2

σ2
rr(rvir) = σ2

tt(rvir) = 0

The reasoning for the σ2
rr(0) = σ2

tt(0)/2 boundary condition
is the following: we expect that all tangential motions at the
limit r → 0 become radial. That is, if we draw the tangent
line to a circle of radius r, as the radius approaches zero, the
tangent line approaches the origin r = 0 of the coordinate
system. In the limiting case where r → 0 the tangent line
passes from the origin (it is actually a degenerate case: all
directions are equivalent). In this respect it is our under-
standing that in this limit the tangential and radial motions
are indistinguishable. This is why we expect that their dis-
persions will be equal at r → 0. With regards to the second
boundary constraint, it is proven (Dejonghe & Merritt 1992)
that for a self consistent system in virial equilibrium the ra-
dial and tangential velocity dispersions vanish in the limit
of the virial radius.

4.5 Global constraints

In this category fall constraints of local functions integrated
over all space.

4.5.1 Projected virial theorem

The virial theorem states (Binney & Tremaine 2008; Merritt
2013) that if K is the total kinetic energy of a system, and
W its total potential energy, then for a system in dynamic
equilibrium:

2K +W = 0 (20)

For a sperically symmetric system,

W = 4π

∫ rvir

0

ρ?

(
−d Φ

d r

)
r3 d r

The total kinetic energy of a system, defined via the line-of-
sight velocity dispersion is:

K los =
3

2

∫ rvir

R=0

dR 2πRΣ?(R) σ2
los(R)

Substituting σ2
los(R) from Eq. (15), we have

K los = cirK
Rlos
i + citK

Tlos
i (21)

where

KRlos
i = 3π

∫ rvir

R=0

RΣ?(R)Ir
i(R) dR

KTlos
i = 3π

∫ rvir

R=0

RΣ?(R)It
i(R) dR

Substituting in Eq. (20) yields:

2(KRlos
i cir +KTlos

i cit) +W = 0. (22)

This is an additional constraint on the cjr , c
j
t coefficients.

From the perspective of linear/quadratic programming al-
gorithmic structure, Equation (22) is a hyperplane equation
with respect to the unknown coefficients, cjt , cjr , that further
reduces feasible solution space.

c© 0000 RAS, MNRAS 000, 000–000
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The projected virial theorem is also a hard bound on
the value of the total gravitational energy of the stellar and
dark matter (?•) interaction. Furthermore, it is clear that
since the K los value is independent of the anisotropy profile
(i.e. it is an observational fact), then it is impossible to have
only the stellar component with some peculiar anisotropy
profile to represent the observables. In other words, the total
gravitational energy of the system is fixed from the total
kinetic energy as this is estimated from the LOS dispersion,
σ2

los. That is, the constraint of virial equilibrium does not
allow one to vary the anisotropy profile β to fit any desired
mass profile.

4.6 Objective Function

The DMS objective function that relates observables, σ2
los,

with the model function (Eq. 15) is given by:

F =
∑
i

(
σ2

los(Ri)− σilos

δσilos

)2

+ λ1[β1

ncoeff−1∑
i=1

(∆1cir)
2 + (1− β1)

ncoeff−2∑
i=1

(∆2cir)
2]

+ λ2[β2

ncoeff−1∑
i=1

(∆1cit)
2 + (1− β2)

ncoeff−2∑
i=1

(∆2cit)
2] (23)

where the difference operators ∆1,2 are defined by:

∆1cir,t = ci+1
r,t − cir,t

∆2cir,t = ∆1(∆1cir,t) = ci+2
r,t − 2ci+1

r,t c
i
r,t + cir,t.

The coefficients, λ1,2 regulate the ammount of smoothing
penalty on each of the velocity dispersions. The coefficients
β1,2 regulate the relative contribution of the first and sec-
ond derivative penalties for each velocity dispersion. This
smoothing penalty is efficient and very fast to evaluate in
comparison with previous efforts (Diakogiannis et al. 2014b,
2017). It is the same penalty used in the P-splines (Eilers
et al. 1996) formulation in statistical smoothing.

4.7 Fitness function

The EA phase of the t-JEAnS solver evaluates the sim-
plest B-spline basis that best represents the observables.
This is a nested optimization: the EA parameters consist
of the stellar, θ?, the DM, θ• and the smoothing penalty
variables, θsmooth = {λ1, β1, λ2, β2}. Once these parame-
ters, θ = {θ?, θ•, θsmooth}, are proposed, then the problem
is a quadratic programming optimization problem, with re-
spect to the cir, c

i
t unknown constants. The optimal variables,

ĉr
i, ĉt

i for the proposed θ parameters are evaluated with the
DMS. The evaluation of the model though, takes into ac-
count information from both the DMS and the full kine-
matics. For the full kinematics, we use definitions (Mamon
et al. 2013) based on assumptions of a Gaussian distribu-
tion function for the velocities (in 3D space), truncated at
the escape velocity of the system.

The fitness function is defined with the usage of model
selection criteria (BIC, AICc) and the following penalty

functions:

AICc = 2
∑
i

1

2

(
σ̂2

los(Ri)− σilos

δσilos

)2

+ 2n+
2n(n+ 1)

Ndata − n− 1

χsmooth =
1

Nsample

Nsample∑
j=1

Nbins∑
i=1

(
σ̂2

los(Ri)− σijlos

δσilos

)2

χvirial =

∣∣∣∣2K los

W
− W

2K los

∣∣∣∣
BIC = −2

Nbatch∑
i=1

log q(Ri, v
i
los)) + n log(Nbatch)

where

q(R, vlos) =
2πR

M?
tot

g(R, vlos) (24)

g(R, vlos) =

∫ rvir

R

rρ?(r)√
r2 −R2

h(vlos|R, r)dr (25)

h(vlos|R, r) =
exp[− v2los

2σ2
z(R,r)

]√
2πσ2

z(R, r) erf{vesc(R)/
√

2σ2
z(R, r)}

(26)

σ2
z(R, r) = σ2

rr(1− (R/r)2) + σ2
tt(R/r)

2/2 (27)

are the full kinematics definitions from the MAMPOSSt
(Mamon et al. 2013) algorithm. The projected virial theo-
rem is satisfied by the quadratic programming solver, within
some numerical tolerance. We found that we got slightly
faster convergence by also penalizing this explicitly in the
EA solver, with the χvirial term.

The values σ̂2
los(Ri) are the solutions from the Dynam-

ical Modelling Solver (DMS) for the given input parame-
ters θ = {ξ, θ?, θ•, λ1,2, β1,2}. The data values, σilos and σijlos

are produced from a binning scheme as described in Sec-
tion 3.1. We remind the reader that the values σijlos ∈ Dval

are j sampled values for each bin i. They are used as a
validation set for determining the smoothing parameters,
θsmooth = {λ1, β1, λ2, β2}. Nbatch is the size of a random
sample (without replacement) of full kinematics data of stars
from the population. We use Nbatch = 1000: this provides
a good approximation to the full kinematics likelihood and
allows for faster convergence.

The fitness function, treated as a maximization prob-
lem, is the product of four components, namely:

fDMS =
1

1 + AICc

ffull kin =
1

1 + BIC

fsmooth =
1

1 + χsmooth

fvir =
1

1 + χvir
.

Then, the fitness function is:

ftot(θ) = fDMS ffull kin fsmooth fvir (28)

4.8 Model selection

Model selection takes place in two distinct processes inside
the t-JEAnS. Once we select a set of tracer and DM mass
densities, we use the EA in order to find the simplest B-
Spline basis for the radial and tangential velocity disper-
sions. This task is a hierarchical model selection problem

c© 0000 RAS, MNRAS 000, 000–000
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Table 5. Summary of the DMS solver (DMS(θ|D)→ (cr, ct)) in the JEAnS modelling approach.
Assumptions: (a) Spherical symmetry, (b) virial equilibrium, (c) parametric form for the stellar and DM mass profiles.

Input: θ ≡ {θ?, θ•, ξ, λ1,2, β1,2} and training data, D = {Ri, σilos, δσ
i
los}.

Output: σ2
tt = cirBi, σ

2
rr = citBi.

Mathematical formula

Objective function minF =
∑
i(σ

2
los(Ri)− σilos)

2 + λ1[
∑ncoeff−1
i=1 β1(∆1cir)

2 + (1− β1)(∆2cir)
2]

+λ2[
∑ncoeff−2
i=1 β2(∆1cit)

2 + (1− β2)(∆2cit)
2]

Model function σ2
los(R) = cirI

r
i(R) + citI

t
i(R)

Local constraints

Jeans: −ρ?
d Φ

d r
=

(
d(ρ?Bi)

dx
+

2ρ?Bi

x

)
cir +

ρ?Bi

x
cit

sign: cjrBj(x) > 0, cjtBj(x) > 0

boundary: σ2
rr(0) = σ2

tt(0)/2

σ2
rr(rvir) = σ2

tt(rvir) = 0

Global constraints

projected virial: 2(KRlos
i cir +KTlos

i cit) +W = 0

(where the various competing models are the ones that have
different number and locations of knots, but the same mass
density parametric form). For this task, AICc or BIC, based
on the training error measure (likelihood) prove to be good
choices.

However, when one needs to compare competing mass
models that were trained in distinct EA phases, it is best
to use out-of-sample data and test how well the model gen-
eralizes on unseen (during training) data (Section 3). Once
the EA phase is complete, for competing mass models, we
evaluate the best model using the hold-out LOS moments
test set in a cross-validation manner. The average error on
unseen moments test data that we use is:

χ2
test =

1

2Ntest

Ntest∑
j=1

Nbin∑
i=1

(
σ̂2

los(Ri)− σ̃ijlos

δσilos

)2

(29)

where σ̃ijlos are out of sample test data, created for each bin
i by random sampling from the marginalized distribution
of the data preprocessing MCMC chains. The model with
the smallest test error is selected as the best candidate. In
our experiments this method has proven to be more robust
than predictive training error methods (e.g. AICc), which
can have bias from overfitting (Gelman et al. 2014).

4.9 Likelihood function

In Phase II of the t-JEAnS we perform an MCMC explo-
ration using the following likelihood (Mamon et al. 2013;

Ibata et al. 2013; Diakogiannis et al. 2017, 2014a,b):

L =

N?
bin∏
j=1

exp{− (Σ?(Rj)−Σj)2

2(δΣ
j
?)2

}√
2π(δΣj?)2

×
Nbin∏
i=1

exp

{
− (σ̂2

los(Ri)−σ̃i
los)

2

2δ(σi
los

)2

}
√

2πδ(σilos)
2

× (30)

× λ1e
−λ1W1λ2e

−λ2W2

(
Nbatch∏
j=1

q(Rj , v
j
los)

)
(31)

where Σ?(Rj) is the projected tracer density at location Rj ,
Σj? and δΣj? the observed projected mass density and its
uncertainty, σ̃ilos is a random sampled value (at each itera-
tion, we use values from Dval) from the ith MCMC binned
histograms and W1,W2 are given by:

W1 = β1

ncoeff−1∑
i=1

(∆1cir)
2 + (1− β1)

ncoeff−2∑
i=1

(∆2cir)
2 (32)

W2 =

ncoeff−1∑
i=1

β1(∆1cit)
2 + (1− β1)

ncoeff−2∑
i=1

(∆2cit)
2 (33)

The B-spline knots, and the coefficients λ1,2, β1,2 are kept
fixed to the values of the best EA solution. The full kine-
matics likelihood is calculated on each iteration on a random
sample (without replacement) of Nbatch = 1000 stars. This
is sufficient for the algorithm to converge in an excellent
trade-off between computational efficiency and parameter
constraints. We use random samples, σ̃ilos, as data in each
MCMC iteration in order to avoid overoptimistic constraints
for the marginalized distributions of parameters. In this way
we incorporate the uncertainty of the binned LOS dispersion
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Figure 6. Exact numerical solution of the system of Jeans equa-

tions for the PlumCuspOM model using the Dynamic Moments

Solver (DMS, see Table 5). In order to obtain this solution we
assumed perfect knowledge of the σ2

los, ρ? and ρ• profiles.

values in the marginalized distributions of the θ?, θ• param-
eters.

4.10 Stochastic Programming

Once we have clean (after burn-in phase) MCMC chains of
the θ?, θ• parameters, we estimate distributions of cr, ct by
applying the DMS solver iteratively to each pair of MCMC
values θj?, θ

j
•. Here, the index j indicates the jth MCMC

chain. For this computation we keep the smoothing penalty
parameters, as well as the B-spline basis, fixed to the best
EA values. In functional form:

PDF(cir, c
i
t) = DMS

(
θj?, θ

j
• ∼ PDF(θ?, θ•)|D

)
(34)

where the symbol θj?, θ
j
• ∼ PDF(θ?, θ•) denotes that θj?, θ

j
•

are sampled at random from their marginalized distribution
PDF(θ?, θ•) (estimated from the MCMC chains). Finally,
from the marginalized distributions of cr, ct, θ?, θ•, we can
estimate 1σ uncertainty intervals for the velocity moments
and the various mass model functions.
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Figure 7. As Fig. 6 for the PlumCuspIso reference profile.

5 RESULTS

In this section we summarize our findings for both the exact
solution of the Jeans system of equations and the statistical
fitting of the Gaia Challenge dataset.

5.1 Exact solutions

In Figures 6 and 7 we plot the exact solutions of the sys-
tem of the Jeans equations (Table 5) using the DMS solver,
for the case of the PlumCuspOM and PlumCuspIso refer-
ence profiles. Our aim here is to provide numerical “proof
of concept” examples of Theorem 1. That is, by assuming
full knowledge of the LOS velocity dispersion profile, the
tracer ρ? and ρ• mass densities, we recover a unique kine-
matic profile as this is described by the second order radial,
σ2

rr, and tangential, σ2
tt, velocity moments. In this approach

we are not using smoothing penalty coefficients (λ1,2 = 0 in
the objective function Eq 23) since we have a wealth of data
points. For the exact solution we use a large number of B-
Spline basis, dim{Bi(r)} ∼ 150. For each of the two figures,
from top to bottom panels: data σ2

los and recovered solution,
reference and recovered tangential velocity dispersion (σ2

tt)
and reference and recovered radial velocity dispersion profile
(σ2

rr).
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Figure 8. Fit and true reference profiles for the GAIA Challenge dataset PlumCuspOM, for 10k targets. In the left panels we plot

(top) the DM mass, (middle) the ratio of the estimated mass over the true mass and (bottom) the anisotropy profile. In the right panels
we plot (top) the fit to the LOS observables, (middle and bottom) the recovered radial and tangential profiles. Overplotted are the true

σirr, σ
i
tt dispersions, as estimated from the data; these were not used in the fitting process. The blue region corresponds to 1σ uncertainty

for all of the quantities.
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Figure 9. Same as Fig 8 for the PlumCuspIso 10k dataset.

5.2 Statistical fitting

5.2.1 10k datasets

Our results are summarized in Figures 8, 9, 10 and 11
and Table 2. We fully recover the mass content and the

anisotropy profiles in a representative sample of synthetic
data sets from the Gaia Challenge 1 suite of mock simu-
lations. In Fig. 8 we plot the best fitting model, as well as

1 http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php
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Figure 10. Same as Fig 8 for the PlumCuspTan 10k dataset.
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Figure 11. Same as Fig 8 for the NonPluCoreOM 10k dataset.

the 1σ uncertainty interval for a data set with Plummer like
tracer profile, a Cuspy DM halo and Ossipkov-Merritt (Os-
ipkov 1979; Merritt 1985) velocity anisotropy profile (Plum-
CuspOM), for 10k stars. In all panels, the vertical dashed
lines designate the values of the first and last datum. The
reliable region for making predictions is within these lines.
Everything outside this region is extrapolation and cannot
be trusted. Left panels, from top to bottom: estimated DM

mass, the ratio of the fitted to the true DM mass and the
normalized (Read & Steger 2017) velocity-anisotropy. Right
panels, from top to bottom: LOS velocity dispersion fit and
the data we used. The radial (middle), σ2

rr, and tangential
(bottom), σ2

tt, velocity moments. The data in the middle and
bottom panels were not used in the fitting process. They are
produced from the true 3D kinematic information and are
shown for comparison with the fitted models.
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Figure 12. Same as Fig 8 for the NonPluCoreOM 1k dataset. In the top right panel the σ2
los data are from the GAN synthetic data

generator. In the two bottom right panels the σ2
rr and σ2

tt moments are from the true NonPlumCoreOM 10k dataset (we do not have 3D

motions for the GAN generated data).

Figures 9, 10 and 11 are as Fig. 8 for the Gaia Chal-
lenge datasets with: a Plummer like tracer profile with
cuspy dark matter halo and isotropic velocity anisotropy
(PlumCuspIso), a Plummer like tracer profile with cuspy
DM halo and tangential velocity anisotropy (PlumCuspTan)
and a cuspy like (non-Plummer) tracer profile with a cored
halo and Ossipkov-Merritt (Osipkov 1979; Merritt 1985) ve-
locity anisotropy profile (NonPlumCoreOM) datasets. In all
four cases, our algorithm selects the correct model and re-
constructs robustly the mass content and kinematic profile
of the underlying stellar distributions from LOS data only.

In Table 2 we report the results of the mass model se-
lection during Phase I of the t-JEAnS. The model selection
is performed using the average test error on unseen (during
training) data (Eq 29) as it has proven to be a more ro-
bust discriminator (in comparison with AICc or BIC). We
perform model selection after Phase I, in order to reduce
computation time. In general, better discrimination results
between competing models can be achieved by performing
the MCMC process (Phase II) for both competing models
and then evaluating the test error, χ2

test (Eq 29). In Table
2 we report the average error, χ2

test, on unseen test data,
Dtrain (section 3). In all four cases, the t-JEAnS finds the
true underlying models from which the synthetic data were
created. In Figures 8 – 11 we plot the best candidate mod-
els as these were selected from the t-JEAnS. The plotted
results were obtained after Phase III of the t-JEAnS. In
all cases, our algorithm achieves excellent performance and
reconstructs the true underlying profiles.

5.2.2 The 1k NonPlumCoreOM dataset

In this section we discuss our findings for the 1k NonPlum-
CoreOM dataset as well as the efficiency of the GANs for
synthetic data generation. The latter is judged by the qual-
ity of the fits.

The NonPlumCoreOM 1k dataset, besides being a very
difficult dataset due to its strong radial anisotropy profile
(Read & Steger 2017), also presents a challenge for all Jeans
moments based solvers due to its small number of data. Bin-
ning 1k data, we end up with as few as 30 binned LOS veloc-
ity dispersion values. For a small model, with only 3 knots
for the definition of the B-spline basis, we end up with 5
(σ2

rr) +5 (σ2
tt)+ 4(smoothing penalty)+2 (DM) +2 (Stellar)

= 18 unknown parameters. In addition, the uncertainty of
the σ2

los binned values is much larger, as is evident from Fig
4.

For these reasons, we fit both the true 1k profile, as
well as the augmented GAN profile. For the case of the 1k
dataset, the test error based on the sampled mcmc values
of the σ2

los bins fails to recover the correct model. The aug-
mented GAN dataset (approximately 160 binned values) se-
lects the correct model, thus underlining the importance of
this data augmentation approach. We summarize the results
of the model selection, during the EA phase, in Table 6.

In Fig. 12 we present the fit to the GAN generated data.
In the top right panel the σ2

los data values are the ones cre-
ated from the 25k GAN generated synthetic data. In the
middle and bottom right panels, the σ2

rr and σ2
tt data values

were not used in the fit. They were estimated from the true
NonPlumCoreOM 10k dataset and they are placed there for
reference only. We used these because the GAN data do not
have the full 3D information for us to create these data val-
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Table 6. Competing mass models for the NonPlumCoreOM 1k

data set, with (GAN) and without (1k) data augmentation. We
report the average error on unseen test data, Dtest. The true

models from which the data were produced are with bold fonts.

The lower test error is also designated with a bold font.

DataSet Stellar DM χ2
test

NonPlumCoreOM, 1k Plummer NFW 67.4542

NonPlumCoreOM, 1k gH gH 69.8274

NonPlumCoreOM, GAN Plummer NFW 497.068
NonPlumCoreOM, GAN gH gH 492.709

ues for reference. The recovery of the dataset is much better
than what we would get by using only the NonPlumCoreOM
1k dataset. The recovered profile is of lower uncertainty than
the one with the NonPlumCoreOM 10k dataset, especially
close to the outer regions of the data. That is, the GAN
generated dataset gives a better fit than the original True
NonPlumCoreOM 10k dataset (note that a different range
is displayed on the vertical axis in all right panels of Figures
11 and 12). This can be quantified, as can be seen in Fig.
13: in the left panel we plot the true σirr profile as this is
estimated from the 10k NonPlumCoreOM dataset, as well
as the highest likelihood fitted profiles, for the GAN data
and the 10k NonPlumCoreOM datasets. In the right panel
we do the same for the tangential dispersion, σ2

tt. In order
to quantify the quality of the fits in the unseen latent space
of radial and tangential dispersions we estimate the mean
square error for the radial and tangential profiles, between
the best fitted profiles and the data:

χ2
rr,10k =

1

Nbin

Nbin∑
i=1

(
[σ2

rr10k(ri)− σir]/δ(σir)
)2

χ2
rr,GAN =

1

Nbin

Nbin∑
i=1

(
[σ2

rrGAN(ri)− σir]/δ(σir
)2

and similarly for the tangential profile, σ2
tt. We find for the

ratios:

χ2
rr,10k/χ

2
rr,GAN = 0.99, χ2

tt,10k/χ
2
tt,GAN = 54.26

Therefore, the quality of the σ2
rr fit is similar if we train t-

JEAnS with either the 10k dataset, or the GAN generated
synthetic data. However, the quality of the σ2

tt fit is much
worse when t-JEAnS is trained with moments from the true
10k dataset. This should not come as a surprise. What this
means, is that from the 1k of data, the GAN system man-
ages to recover more information than what is hidden in the
moments of a 10k dataset. Then, with ∼160 binned σ2

los data
points, it passed more information to the t-JEAnS solver,
than the moments of the 10k dataset can.

The principal criticism that is levelled at the Jeans ap-
proach is that one may find solutions to the Jeans equations
that require a distribution function that is not positive at all
phase-space locations, and is hence unphysical. However, one
can always check that the results of our algorithm give a pos-
itive DF by testing the solution with a single Schwarzschild
model. Since the solutions presented above recover the cor-

rect input dynamical models from the Gaia Challenge ,
this step is not necessary here.

6 DISCUSSION

We suspect that the astronomy community’s definition of
the Jeans degeneracy would be: many choices of functional
forms for M(< r) and β(r) (or equivalently σ2

rr) result in a
σ2

los profile that is arbitrarily close to the data. Therefore
it is not possible to derive a unique mass and anisotropy pro-
file. This is indeed the case, the system of equations is not
closed (we need additional constraints that we do not have).
However, when it comes to statistical model selection the sit-
uation is different. We can provide the additional necessary
condition that closes the system of equations by selecting the
“simplest” solution that describes well the observable data.
The point of emphasis above in bold, that the profile should
be arbitrarily close to the data, resembles a χ2 “selection”
criterion, which is, however, not a proper model selection
method. The key point in t-JEAnS to statistically break
the degeneracy is the realization that we can use hierarchi-
cal1 models that eventually result in different quantitative
fits to the data (i.e. different test error). In other words, dif-
ferent assumptions of functional forms for mass, M(r), and
anisotropy, β, are no longer quantitatively equivalent.

A special note needs to be made about the fact that the
notion of the mass anisotropy degeneracy, when it comes to
statistical fitting, is reinforced by the fact that for the ma-
jority of stellar systems, the observables are few in number.
This makes model selection even more difficult and sustains
the belief that, given the availability of data, it is not al-
ways possible to discriminate between competing mass mod-
els. This is more evident for moment-based mass estimators
that rely on summary statistics of the initial dataset. The
modern semi-supervised machine learning techniques that
are actively being developed by the community, such as the
Generative Adversarial Networks for synthetic data genera-
tion, are a remedy to this problem.

Some of the main differences of the t-JEAnS that al-
low more efficient treatment of the degeneracy problem, as-
suming sufficient available data, in comparison with other
approaches are:

(i) We do not assume two unknown parametric functional
forms for both the DM mass density profile, ρ•(r), and the
anisotropy profile, β(r). This reduces the uncertainty of the
parameters and allows for more robust model selection.

(ii) With our choice of hierarchical parametric models (B-
splines) for σ2

rr and σ2
tt we can better statistically discrim-

inate between competing models. This is achieved because
hierarchical models find a trade-off between test and train
error, and are thus more resilient to over-fitting.

(iii) We incorporate a set of physically plausible constraints

1 With the term hierarchical we mean models that result from

the same general equation, but with possibly different complex-

ity. Examples of hierarchical models are a Fourier expansion
of a function: f(x) =

∑n
i=1 cn, cos(nx), or a B-spline basis,

f(x) =
∑n
i=1 cnBn(x). As n increases we get models of increasing

complexity that are derived from the same general equation.
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Figure 13. Difference in fitted profiles in latent profiles σ2
rr, σ

2
tt for the models trained on the GAN generated synthetic dataset and

the 10k dataset, for the NonPlumCoreOM model.

(Section 4.2) that further reduces the feasible solution space
and pushes to the limit the model selection process.

(iv) For the moments solver (DMS, Section 4.2), we are not us-
ing a single σ2

los value for each bin. In contrast, we are using
the full MCMC chains to get additional information from
the binning scheme. This allows for the estimation of train,
validation and test error, as it is used in modern machine
learning supervised training techniques.

Although we have not performed a detailed numerical
comparison by switching on and off all the constraints we
used, we have the following understanding of the effect of
each as well as our modelling approach:

(i) The choice of the assumed DM mass model: as with all
model selection processes, our effort relies on the assump-
tion that, if we try a large set of competing mass models,
then one (or some) of them will not be very far from the
truth. Then our best solution should approximate reality
at a satisfactory level. Our contribution is demonstrating
that with the use of a hierarchical basis, satisfactory model
selection is possible. Obviously, if our mass model assump-
tions are away from the truth, we expect that the kinematic
fits will also be away from the true anisotropy profile. In
our numerical experiments, even with different mass model
assumptions, the kinematic profiles tend to be similar. How-
ever we cannot conclude, due to the limited number of mass
models and data sets we tried, that this is a general feature.
In addition, we cannot quantify the “anisotropy similarity”
in terms of similarity between competing DM mass mod-
els. This is something that requires further investigation.
We also note that we have found that the choice of tracer
profile affects significantly the derived anisotropy profile.

(ii) The boundary condition at the origin σ2
rr(r = 0) = σ2

tt(r =
0)/2 can result as a limiting case of the Jeans Eq. (1), as

r → 0, for non divergent DM potentials. However, it helps
numerically inside the solver to keep it separate. The bound-
ary condition at the virial radius was used mainly for the
domain of definition of the B-spline basis (it requires a closed
finite interval). As we cannot deduce the profile further than
the last datum, this constraint contributes in combination
with the projected virial theorem.

(iii) The MAMMPOST-style LOSVD helps to constrain more
robustly the kinematic profile beyond the half light radius. It
proved helpful in the case of the difficult NonPlumCoreOM
dataset. In the other three datasets, even without it, the
recovered fits were excellent.

(iv) The projected virial theorem can alter the solution space
significantly, for a given mass model assumption. For exam-
ple we find that if we run an MCMC exploration with and
without it the parameter chains for the same model converge
at different non-overlapping regions. It should also be noted
that this is a very difficult constraint to implement numeri-
cally in an MCMC scheme, because it is a hard bound and
does not allow efficient mixing of the chains. It is possible
that there is a connection between the projected virial theo-
rem constraint, and the approach of the virial shape param-
eters taken by Read & Steger (2017, see also Richardson &
Fairbairn 2014), however we have not verified this. It is also
interesting to note that despite the fact that the kinematic
profile is essentially “free” after the last datum, the virial
theorem still helps reducing the feasible solution space.

A special note needs to be made on the particular choice
of representation: in t-JEAnS we represent the kinematic
profile with the variables σ2

rr and σ2
tt instead of σ2

rr and β.
This is because in the former representation, with the use of
B-splines, we can linearize the system of equations (thereby
greatly simplifying the solution). In contrast if we use σ2

rr

and β, then from Equations (1) and (2) it is apparent that
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due to the product term, σ2
rrβ, the system of equations is not

linear. It should be emphasized that the choice of represen-
tation on its own is not adequate to statistically break the
degeneracy. By linearizing the system of equations, however,
we gained additional insight to the problem. The linearized
equations were the key ingredient that led us to seek addi-
tional constraints (e.g. virial theorem) that further reduce
the feasible solution space.

Finally, we need to emphasize again the importance of
using large datasets for model selection. When these are
not available, GANs can be one starting point towards the
correct solution. t-JEAnS — or any other algorithm — will
fail in the absence of sufficient data.

6.1 The case of multiple stellar population
dynamics

The linearization of the system of equations in the Jeans
formalism yields some useful insights for the case of multiple
stellar populations. When it is feasible to separate the stellar
population into multiple stellar sub-populations (assuming
two for simplicity) that are evolving under the influence of
the same DM potential, the system of equations describing
the system becomes:

σ2
1los =

1

Σ1?(R)

(∫ rvir

R

ρ1?K1σ
2
1rr d r +

∫ rvir

R

ρ1?K2σ
2
1tt d r

)
σ2

2los =
1

Σ2?(R)

(∫ rvir

R

ρ2?K1σ
2
2rr d r +

∫ rvir

R

ρ2?K2σ
2
2tt d r

)
and the corresponding Jeans equations are:

−ρ1?
d Φ

d r
=

d(ρ1?σ
2
1rr)

d r
+ ρ1?

(2σ2
1rr − σ2

1tt)

r

−ρ1?
d Φ

d r
=

d(ρ2?σ
2
2rr)

d r
+ ρ2?

(2σ2
2rr − σ2

2tt)

r
.

This is a set of four equations, with five unknowns (assum-
ing, for simplicity, that the stellar tracer densities, ρ(1,2)?,
are known), namely, σ2

(1,2)rr,tt, ρ•(r). The system of equa-
tions is still not closed (in fact, irrespective of the number
of sub-populations, we will always have one more unknown
function than equations). However, from the insight we get
from the linearized equations (say, using B-splines), we un-
derstand that if the profiles of the stellar populations are
significantly different (i.e. the determinant of the linearized
system is not zero), then the solution space is reduced sig-
nificantly. Depending on the statistical uncertainty of the
observables, this may be enough to accurately describe the
underlying DM structure. In contrast, if the profiles of the
sub-populations are identical, the linear systems are identi-
cal (their determinant is zero) and no additional reduction of
the feasible solution space is possible. Clearly, the lineariza-
tion of the equations with the use of B-splines (or other
suitable complete bases, e.g. wavelets), besides being a use-
ful numerical scheme, also allows us to gain further insight
into the degeneracy problem.

For systems with multiple stellar populations where we
are trying to deduce more than one kinematic profile from
scarce data, the GAN synthetic data generation can be a
game changer for the estimation of the different brightness
and LOS velocity dispersion profiles. The reason being that
it can construct robust velocity dispersion data with small

uncertainties over the extent of the system under investiga-
tion.

7 CONCLUSIONS

In this work we describe a new method for reliable mass
determination independent of the mass-velocity anisotropy
degeneracy. The efficiency of our method is tested on syn-
thetic data from the Gaia Challenge suite of mock simula-
tions. In all cases our algorithm reconstructs accurately the
underlying kinematic profile as well as the mass content of
the datasets. Our method includes: a) a new way of solving
numerically the Jeans equations, subject to physically plau-
sible local and global constraints, using quadratic program-
ming. b) a new way for performing supervised learning in
the framework of Jeans mass modelling, using samples from
line-of-sight velocity dispersion MCMC chains as “unseen”
validation and test data sets. Based on this, we present a
new approach in performing regularization and model selec-
tion. c) The application of Generative Adversarial Networks
for augmenting datasets, thereby making the t-JEAnS mo-
ments solver method reliable in situations where the avail-
able samples possess a relatively small number of stars.
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APPENDIX A: PROOF OF THEOREM 1

Let us assume that there exist two radial profiles, σ2
1rr and

σ2
2rr that give the same LOS dispersion profile. Then:

σ2
los(R) =

2

Σ?(R)

∫ rvir

R

[
KA

(
d(ρ?σ

2
1rr)

d r
+ ρ?

d Φ

d r

)
+KBρ?σ

2
1rr

]
d r

σ2
los(R) =

2

Σ?(R)

∫ rvir

R

[
KA

(
d(ρ?σ

2
2rr)

d r
+ ρ?

d Φ

d r

)
+KBρ?σ

2
2rr

]
d r

Subtracting the above equations, yields:∫ rvir

R

[
KA

(
d ρ?∆σ

2
rr

d r

)
+KBρ?∆σ

2
rr

]
d r = 0 (A1)

where ∆σ2
rr = σ2

2rr−σ2
1rr. In order for this integral to be iden-

tically zero for all values of the parameter R, the integrand
must be zero, i.e.

KA

(
df

dr

)
+KBf = 0 (A2)

where we have set f(r) = ρ?∆σ
2
rr. For the case of R = 0

the result is trivial f = 0, i.e. σ1rr = σ2rr. For the case
r > R > 0, we manipulate Eq (A2):

df/dr +KB/KAf = 0→

df/dr +
2r

R2
f = 0→

df/f = −2r/R2dr →

f = A exp{−r2/R2}

where A is the constant of integration, that will be deter-
mined from the virial boundary condition: since the last
equation holds for all r,R, it will also hold for r = rvir

and R = rvir/2, where rvir is the virial radius of the system.
However for r = rvir, it is

lim
r→rvir

σ2
rr(r) = lim

r→rvir

σ2
tt(r) = 0

Hence, limr→rvir σ
2
1rr(r) = limr→rvir σ

2
2rr(r) = 0, i.e.

f(rvir) = 0. Then A exp(−4) = 0, i.e. A = 0, then f(r) = 0
and σ1rr = σ2rr for all r.

This proof is also valid for spherically symmetric sys-
tems subject to an external gravitational field: in this case
as r → rvir both the radial and tangential velocity disper-
sions approach the same constant value (Dejonghe & Merritt
1992), thus again at the virial radius of the system f → 0.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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