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Promoting experiences to develop the so-called number sense since early school years has become 

a focus of interest in mathematics education research. By number sense we mean a broad concept 

that refers to a deep understanding of the decimal number system, the relationships between 

numbers and operations, and the development of capabilities such as flexible mental calculation, 

numerical estimation and quantitative reasoning. This paper is an exploratory study (25 pupils), 

part of an on-going research, where a methodological approach, based on the use of manipulative 

materials for developing in six-year-old students’ number sense is explored. Particularly, in this 

study, we present and analyse two activities, in which a jumping frog and a kangaroo are used as 

conceptual metaphors for the acquisition of calculation strategies that encourage number sense 

development.  
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Introduction. 

Expressions such as "number sense", "numerical consciousness" or "numerical thinking" are being 

imposed with force in the current studies on mathematical knowledge. In general terms it refers to 

several important abilities that involve mastering a wide range of skills with numbers. For 

McIntosh, Reys and Reys (1992) numerical thinking is a person's overall understanding of numbers 

and operations along with the ability and inclination to use this understanding in flexible ways to 

make mathematical judgments and to develop useful strategies for managing numbers and 

operations. 

In the Curriculum and Evaluation Standards for Mathematics Education of the National Council of 

Teachers of Mathematics (NCTM, 1989), five components that characterize numerical sense were 

identified: (1) correctly understand the meaning of numbers; (2) be aware of the multiple 

relationships that exist between numbers; (3) recognize the relative magnitude of the numbers; (4) 

know the relative effect of numerical operations; (5) have reference points for measurements of 

common objects and situations in the environment. In the same line, Sowder (1992) expresses that 

number sense is developed when students understand the size of numbers, they think about them 

and represent them in different ways, they use numbers as references and develop accurate insights 

into the effects of operations with numbers. 

Although there is still no general consensus on the concept and operation of numerical thinking, 

many authors (Berch, 2005; Godino, Font, Konic, & Wilhelmi, 2009) are trying to define it, identify 

the keys to its development, establish criteria to evaluate it and analyse its repercussions on 

children's learning. 



 

 

   

 

The school context is a privileged place to work with the possibilities offered by this powerful tool. 

Teachers must consider the number sense as an essential objective and articulate the resources and 

activities necessary to develop it.  

Manipulative resources provide us with very advantageous visualizations to present, know and 

materialize both numbers and operations. To the visual properties of the resources must be added 

their sensory and motor properties, as they invite manipulation and movement. In this sense, 

another way of teaching and learning mathematics appears, because it is recognized that 

mathematical cognition is embodied and is intimately linked to our sensorimotor functioning 

(Gallese & Lakoff, 2005).  

The matching of symbolic mathematics, initially quite abstract and apparently less close for 

students, with insights from the real world, helps to forge links between conceptual and procedural 

knowledge, which is critical to success in mathematics (Siegler, 2003). Conceptual metaphors are, 

among others, methodological strategies that facilitate neurological mechanisms that allow us to 

adapt the activated neuronal systems through the sensory-motor experience, making possible the 

seemingly complicated journey from the concrete to the abstract (Lakoff & Johnson, 2003). Thus, 

there arises a new way of conceiving the teaching and learning of mathematics associated with 

embodied mathematical cognition linked to sensory-motor functioning, departing from Piaget's 

theory of cognitive development, which separated motor-sensory development from conceptual 

development, basing the second on the first, but without the parallel development that we defend.  

Conceptual metaphors provide a transition from one mode of representation to another or from a 

concept that is part of our knowledge to a more abstract one. Consequently, they value the three 

levels of representation of Bruner (1972): enactive, iconic and symbolic, putting into play and 

relating the four dimensions of mathematical thought (mathematical contents, non-rational 

processes, strategies and procedures and perception). Of course, this journey between the three 

types of representation does not have to be unidirectional and without return, from the enactive to 

the symbolic representation, passing through the iconic, but it can go back or advance through the 

levels on its way to conceptual consolidation. Conceptual metaphors do not only respond to a final 

objective of a cognitive nature, but also contribute to a didactic enrichment by providing resources 

and useful tools to address complex problem situations (Soto-Andrade, 2007), which makes them 

even more valuable for the construction of mathematical knowledge and the development of the 

competences associated with it.  

This paper is part of an on-going research, where a methodological approach for developing six-

year-old students’ number sense is explored. The proposal is based on the use of manipulative 

materials, rigorously structured (García-Pérez & Adamuz-Povedano, 2016), that keep the 

relationship number-space very present, giving students a numerical support for the learning of the 

decimal numbering system, as well as an arithmetic support for operations. Here we present two 

activities, as specific examples of the use of a variety of conceptual metaphors (maps, routes, 

characters...) that play an important role for number sense development, as motivating and 

facilitating elements, both in the teaching and learning processes. In the design of these activities 



 

 

   

 

we take into account the limits that Cole and Sinclair  (2017) show relative to the use of conceptual 

metaphors. 

Teaching materials 

As we mentioned before, this proposal is based on the use of manipulative materials, rigorously 

structured, which we describe: 

- Number line: it is a tape in which part of the set of natural numbers is presented. It starts with zero, 

a number that we will need to represent different situations: starting point, absence of counting 

elements, total loss, etc., and it ends in 100 example see figure 1.  

 

Figure 1: Detail of the number line 

With it we can practice progressive and regressive recitation, form the first series and perform 

simple addition and subtraction operations. We can also compare positions on both sides of the 10 

to begin the observation of regularities and changes. 

The tape shows, with great consistency, the numerical order, the pattern that generates numbers and 

distances. The numbers colored in red, in addition to meaning exact tens, are privileged positions, 

strategic enclaves when planning routes that take us from one number to another. 

- Numerical panel: it presents the numbers from zero to ninety-nine by families (figures 2 and 3). 

This format enhances the display of numbers on the tape expanding the possibilities of analysis and 

relation. 

  

Figure 2: Collective numerical panel Figure 3: Individual numerical panel 

As in the case of the tape, the complete tens are highlighted with a red background, facilitating their 

location and indicating they are essential elements within our numbering system. The number-space 

association in the panel shows very clearly the patterns and regularities of our decimal number 

system. On this "precise map of the numbers" it is also possible to perform many addition and 

subtraction operations by tracing horizontal paths (we move forward or backward through the rows) 

and vertical (we raise or lower the columns by multiples of ten). 

- Numbering box: this material facilitates full exploration and manipulation of numbers, favoring a 

correct understanding of decimal numeration system. It consists of abundant plastic sticks and red 

and green rubber bands, see figure 4 below. The work with the numbering box produces a 

qualitative leap in the understanding of the decimal structure of the number and its size, since it 



 

 

   

 

provides a concrete and faithful model to the visible reality, which gives meaning to the use of 

written symbols and concepts. Regarding place value, in addition, we should move from that 

understanding to much more flexible forms. We can achieve this by removing the tens and units 

from the box and exploring other groups with total freedom, leaving or removing the rubber bands 

of the tens. Regarding the calculation, the numbering box directly connects with breakdown 

strategies and facilitates the graphic transcription that is derived from the manipulation of 

quantities. 

 

Figure 4: Numbering box 

Selected activities 

In this paper we only show two activities focused on the number line resource. However, the 

methodology implies the implementation of other activities based on the use of the other resources. 

This provides students with greater flexibility in reasoning about numbers, an aspect directly related 

to the quality of their numerical sense. 

Activity 1: Saltarina, the frog 

The convenient breakdown of numbers is a fundamental skill to give agility and efficiency to 

thought calculation, so let children show some characteristics of development of their number 

sense. Young children find it difficult to acquire because they require complex skills such as 

observation and analysis of the complete operation, reflection and planning of the tactics to be used, 

and also a good handling of numbers at the mental and written level. To work on this awareness of 

what may be suitable for the proposed calculation we use the conceptual metaphor of the jumping 

frog, it is a frog that jumps forward and backwards through the number line. In addition, Saltarina 

has a fixation with the colour red: whenever she can, she boots in the numbers coloured in red (see 

figure 5 below). 

Teacher: This is Saltarina, a very funny frog that comes and goes on the number tape jumping 

without stopping. Do you know what her favourite colour is? ... It's red! ... and the numbers that 

have this colour look like springboards to take energy to jump higher. You can be sure that 

whenever she has the opportunity she bounces on them. Today, Saltarina jumps eight, do you 

know how she will do that if she is on thirty-six? 

 

Figure 5: Saltarina is on 36 

Student 10: She will jump four to land on forty and later she will jump another four. 

Teacher: Very good! Let's check it! 



 

 

   

 

The real movement is made, taking the clamp with the frog that bounces onto forty and ends the 

jump on forty-four. 

Teacher: She has reached forty-four! Now let's say in writing what has happened. 

Teacher: Say with me, please. 

Teacher and students: Saltarina was on thirty-six [she writes 36 on the blackboard figure 6], 

first she has made a leap forward of four to reach forty [she writes +4] and then she has made 

another leap of four [she writes+4]. It has reached forty-four. 

 

Figure 6: Saltarina's jump 

Teacher: She has reached forty- four! ... What if she now adds eight again? 

Student 10: Now she has to jump six to fifty and then two. 

Teacher: And how do we express it with numbers and signs? 

On the board, teacher writes the jump in two movements and the arrival number: 44 + 8 =, and 

below 44 + 6 + 2 = 52 

In Figure , we have examples of two students’ activities, one in which Saltarina adds eight and 

another which goes back six. In both, the empty number line has been used as a scheme for the 

representation of forward and backward: 

 

Figure 7: Saltarina's worksheet 

Next, we analyse some examples showing different strategies that take part of what we have 

denominated tactical calculation (Adamuz-Povedano & Bracho-López, 2017), shows the operation 

63-24 see figure 8, the student rewrites the operation explaining the plan he will follow, removing 

three units, then two tens and finally one unit. Since he is not still self-confident in mental 

calculation he makes partial annotations. 

 
 



 

 

   

 

Figure 8: Work out 63-24 Figure 9: Work out 45+29 

 

In Figure  the student rewrites the followed mental route to get the result, again Saltarina’s strategy 

appears adding 5 to get 50 and then adds 24 in a convenience way. 

Activity 2. Skip Kangaroo! 

In this activity we will use the number tape as if it were a numbered track in which a kangaroo 

makes jumps of different magnitude passing from one family to another. The objective is to 

reinforce operations in which there is change of tens, i.e. operations of adding and subtracting with 

taken. The kangaroo should overcome a fence that is placed in an exact ten and can jump 

progressing in the numerical sequence (we will relate it to the expression "+") or going backwards 

(expression " -"). The connection between movement in space and numerical operation is being 

established. This activity places students in front of the control of phenomena and develops their 

relational thinking. With the tape and the Kangaroo, we configure a "mathematical scenario" in 

which we can experiment with different possibilities to relate the numbers of two families. Children 

should determine the starting point, the direction and magnitude of the jump, and the arrival 

number. They should then insert these data into an arithmetic structure. Very important processes 

such as estimation, decision making and the translation of each specific situation into the language 

of numbers and signs, which favour the development of the numerical sense, are involved in all this 

work.  

 

Figure 7: Kangaroo on the number tape 

In this episode, see figure 10 above, the kangaroo is at number seventy-eight and it will jump until it 

reaches some number in the family of the eighties. First, we analyse the situation from a broader 

perspective, asking the group questions such as: What jumps shall not exceed the fence? It means, 

how far can he go without going over 80? What will be the minimum jump length? And the 

maximum? 

Student 1: At least he has to jump three, up to eighty-one. 

Student 1: And the most you can give is a jump from eleven to eighty-nine. 

Then, with the contributions of all, we will be expressing verbally each of the possible solutions and 

their corresponding written expression. 

Student 3: If it takes a jump of five, it reaches eighty-three. 

We check on the number tape whether this is a correct solution 

Teacher: How will we express this by writing what you have just said? (We write on the board at 

the same time we relate) 

Teacher and Students: it begins at seventy-eight (78), jumps forward five (+5) and reaches 

eighty-three (= 83).  



 

 

   

 

On the board will be written: 78 + 5 = 83. We will continue exploring other possibilities from the 

same starting position. So, we will collect all the arithmetic structures on the board: 78+3=81, 

78+6=84, 78+9=87, 78+4=82, 78+7=85, 78+10=88, 78+5=83, 78+8=86 and 78+11=89. Then, we 

will observe them as a whole, becoming aware that with them we have translated each event into 

the language of numbers and signs. Moving forward with this observation, the teacher can bring the 

attention to the amounts that remain and to which they change, thus intuitively introducing the 

concept of a variable: 

Teacher: From what number has the kangaroo always jumped? What jumps has it made? With 

what jumps did it stay close to the start? With which did it get very far? ... 

Two sessions were developed with the dynamics showed; the kangaroo was introduced, working 

only with components in a sensorimotor and verbal level until we were sure that the whole group 

understood the proposal. In each participation, the student had to decide first the direction of the 

jump and the magnitude of the jump; then choose the exit number. These decisions inform the 

teacher about the students’ number sense much more than the calculation itself. Then, the 

movement was actually made on the number tape verifying that it was feasible and, finally, the 

operation explaining the jump was verbalized. In the third session this activity is made on written 

level. To ensure the accessibility of all the students, an image of the tape with the corresponding 

numerical section was included in the worksheet. Below, we show two cases with interesting 

results. In figure 11 it is appreciated that the student discovers how to control the situation, the 

control of phenomena that is so present in the relational thinking, so that the number of arrival is 

always 41. In figure 12, the student ends, according to his own words, with "a jump from end to 

end"(that it is to say from 49 to 31) 

 

Figure 8: Example of Kangaroo’s worksheet 

 

Figure 9: Example of Kangaroo’s worksheet 

The number tape section showed in this activity is a great help for students with difficulties because 

it reduces anxiety about the calculations (they can do the count directly) and focuses attention on 

the reflection and written expression of events. On the other side, there are students that are soon 

aware of ways to control numerical relationships (i.e. the student who experiments with the arrival 

at 41 from different positions in Figure 8). The implementation of these activities shows that the 

sensorimotor experience is very positive since practically the whole group correctly identifies the 

operation (addition or subtraction) that corresponds to each jump. Although there are students who 



 

 

   

 

work more slowly and do not manage to complete the twelve required possibilities, those that do, do 

it correct. 

Final comments 

This work is a first approach to the development of number sense by using conceptual metaphors. 

Authors are aware that evidences should be tested empirically through wider research, but some 

interesting aspects already arise from this work. Among others, it may be said that (1) the activities 

proposed develop the relational thinking. They imply an active behaviour of children, provoking 

reflection on what they should do, and how they are going to solve it. This way of acting involves 

the knowledge that children have of numbers and how numbers relate to each other through 

operations, fostering relational thinking in flexible contexts that admit more than one solution to the 

challenge posed. (2) It also promotes transparent algorithms for calculation. Our approach, the 

tactical calculation, shows the reflection and planning designed by the student. (3) A 

communicative approach is given to mathematical language. The classroom becomes a place where 

students can talk, expose their plan and discuss the decisions they are making. This oral language 

gives shape and meaning to expressions with numbers and signs. Children are building an 

interactive dictionary full of meanings that all share. (4) Working memory is reinforced. Having the 

number line and the position of the characters in view gives confidence to the students and helps 

them to concentrate on the choice of tactics and graphic representation. Then, in the absence of 

resources, these visualizations (already in the mental plane) will be fundamental to solve problems 

and calculations. 
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