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Abstract

We investigate adaptive density estimation in the additive model Z = X + Y , where X and
Y are independent d-dimensional random vectors with non-negative coordinates. Our goal is
to recover the density of X from independent observations of Z, assuming the density of Y
is known. In the d = 1 case, an estimation procedure using projection on the Laguerre basis
have already been studied. We generalize this procedure in the multivariate case: we establish
non-asymptotic upper bounds on the mean integrated squared error of the estimator and we
derive convergence rates on anisotropic functional spaces. Moreover, we provide data-driven
strategies for selecting the right projection space (for d = 1, we improve the previous projection
procedure). We illustrate these procedures on simulated data, and in dimension d = 1 we
compare our procedure with the previous adaptive projection procedure.

Keywords: anisotropic multivariate projection estimator, laguerre basis, model selection,
nonparametric density estimation
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1. Statistical model and motivations

In this article, we study the problem of recovering the distribution of a random vector X
when we only observe its sum with a noise vector Y with known distribution. This is a classical
problem in nonparametric statistics (see references below), but we focus on the particular case
where both X and Y have non-negative coordinates.

This assumption is quite unusual in deconvolution problems but is relevant for instance in
reliability fields: we observe the failure times of several components in a system, each failure
time being the sum of the lifetimes of two sub-components. In survival analysis, for d = 1, X
would be the time of infection of a disease and Y the incubation time. The multivariate case
can then be used to study the time of infection for multiple diseases.

More precisely, we consider the following statistical model:

Zi = Xi + Yi, i = 1, . . . , n, (1)

where the Xi’s, the Yi’s and Zi’s are random vectors in Rd with non-negative coordinates. We
assume that the Xi’s are i.i.d. with unknown density f on Rd+, and that the Yi’s are i.i.d. with
known density g on Rd+. Moreover, we assume that the Xi’s and the Yi’s are independent.
Our goal is to provide an adaptive procedure to estimate the density f from the observations
Z1, . . . , Zn.
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In the univariate case, there are a lot of papers about recovering the density of a random
variable when it is observed with an additive known noise. Many authors use a kernel estimator
introduced by Stefanski and Carroll (1990). Fan (1991) first introduced the notion of ordinary
smooth and supersmooth noise (rate of decay of the characteristic function) to study optimal
rates of convergence on Hölder spaces. When f is supersmooth and the noise is ordinary
smooth, Butucea (2004) showed that the kernel estimator achieves a good rate of convergence
and that this rate is optimal. When both f and the noise are supersmooth, the problem is more
complicated and have been studied by Butucea and Tsybakov (2008a,b) from lower bound point
of view.

To provide an adaptive estimator, different procedures were proposed. When f belongs to a
Sobolev space, Pensky and Vidakovic (1999) proposed a wavelet strategy that is adaptive and
achieves optimal rates of convergence. For kernel estimators, Delaigle and Gijbels (2004) esti-
mated the optimal bandwidth with a bootstrap procedure and showed its consistency. Hazelton
and Turlach (2009, 2010) proposed a weighted kernel estimator with a data-driven way to choose
the weights. Moreover, their weighted kernel estimator can be used in a multivariate setting.
For projection with penalization strategies, Comte et al. (2006) used a Shannon type basis to
construct an adaptive estimator that is minimax in most cases. More recently, non-compact
supported bases were used by Mabon (2017) (Laguerre basis), by Comte and Genon-Catalot
(2018) (Laguerre basis and Hermite basis), and by Sacko (2019) (Hermite basis) to construct
adaptive estimators on suitable functional spaces.

The Laguerre basis was also used in a regression setting to study the problem of Laplace
deconvolution, see Comte et al. (2017) and Vareschi (2015), or more recently Benhaddou et al.
(2019).

The multivariate deconvolution literature is more sparse. Masry (1991) generalizes the kernel
estimator for stationary random processes, with a dependence structure between the variables.
The noise is assumed to have i.i.d. coordinates (isotropic noise) and no adaptive strategy is
proposed, the author focuses on the problem of dependency between the variables. Youndjé
and Wells (2008) propose a cross-validation strategy to estimate the optimal bandwidth of the
kernel estimator in the multivariate setting, and show it is asymptotically optimal under the
assumption that the noise is isotropic and ordinary smooth. Comte and Lacour (2013) use
a bandwidth selection procedure inspired by Goldenshluger and Lepski (2011). Their proce-
dure allows anisotropic noises, with both ordinary smooth and supersmooth components, and
they derive rates of convergence for the pointwise risk and the L2 risk, when f belongs to
anisotropic Hölder, Nikol’skii or Sobolev classes. For ordinary smooth noise and when f belongs
to anisotropic Nikol’skii classes, Rebelles (2016) provides an adaptive kernel estimator which is
minimax for the Lp-loss. Recently, Lepski and Willer (2019) studied a more general model (with
direct and indirect observations of X) and provided an adaptive kernel estimator on anisotropic
Nikol’skii classes, under the Lp-loss.

Concerning our specific case of deconvolution with non-negative noise, the case d = 1 has
already been studied by Mabon (2017) using a projection strategy on the Laguerre basis. We
also use a projection strategy in the multivariate case. The main tool we use to construct our
estimator is the theory of hypermatrices. Using the contraction product of hypermatrices, we
show that it is possible to recover the coefficients of f from the observations. We recall the
definitions of these objects in Section 2.

We provide rates of convergence for the MISE of our estimator on anisotropic functional
spaces: Sobolev–Laguerre spaces and smooth Laguerre spaces. We propose a model selection
procedure to produce an adaptive estimator, under mild assumptions on the noise density g.
This procedure is inspired by the work of Goldenshluger and Lepski (2011) concerning band-
width selection. It was introduced for model selection by Chagny (2013b) for estimation of
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conditional density, in a two-dimensional setting. We show this procedure can be applied to
our deconvolution problem, in a d-dimensional setting, and we establish an asymptotic oracle
inequality for this procedure. Moreover, the proof is written to provide general steps that can
be applied to other contexts.

Outline of the paper. In Section 2, we provide the notations and the key facts about hyper-
matrices we will use in the rest of the paper. In Section 3, we construct the estimator. In
section 4, we provide non asymptotic MISE bounds and we derive convergence rates on Sobolev–
Laguerre balls and smooth Laguerre balls. In Section 5, we give model selection procedures to
construct an adaptive estimator and we establish oracle inequalities. In Section 6, we illustrate
the procedures on simulated data. All the proofs are gathered in Section 7.

2. Preliminary on hypermatrices

Let α, β ∈ Nd be multi-indices and x ∈ Cd. We will use the following notations:

α+ β := (α1 + β1, . . . , αd + βd), α× β := (α1β1, . . . , αdβd),
α

β
:=
(
α1

β1
, . . . ,

αd
βd

)
, xα := xα1

1 · · ·x
αd
d ,

|α| := α1 + · · ·+ αd, β 6 α ⇐⇒ ∀q ∈ {1, . . . , d}, βq 6 αq,

m ∧m′ := (m1 ∧m′1, . . . ,md ∧m′d) where mi ∧m′i := min(mi,m
′
i).

We denote 0 := (0, . . . , 0) and 1 := (1, . . . , 1). If k ∈ Nd and ` ∈ Np are two multi-indices, we
denote (k, `) ∈ Nd+p their concatenation.

Proposition 2.1 (Multibinomial theorem). If α ∈ Nd is a multi-index and if x, y ∈ Rd are
vectors, then (x+ y)α =

∑
β6α

(
α
β

)
xβyα−β where

(
α
β

)
:=
(
α1
β1

)
× · · · ×

(
αd
βd

)
.

We recall some facts about hypermatrices; see Hogben (2013) for more details. A hyper-
matrix is a multi-dimensional array of numbers. The order of a hypermatrix is its number of
dimensions : an order-1 hypermatrix is a vector, an order-2 hypermatrix is matrix, and so on.
If m = (m1, . . . ,md) ∈ (N∗)d is multi-index, we denote by Rm = R(m1,...,md) the set of order-d
hypermatrices with mj components according to the j-th dimension. Moreover, if m ∈ (N∗)d
and r ∈ (N∗)p are two multi-indices, since (m, r) denotes the concatenation of m and r, we
denote R(m,r) := R(m1,...,md,r1,...,rp). We choose to index the hypermatrix components starting
from 0. So if T ∈ Rm is a hypermatrix, its components are Tk for k ∈ Nd such that k 6 m− 1.

Definition 2.2. Let m ∈ (N∗)d, we make Rm a Euclidean vector space, defining the addition
and the scalar multiplication by [T + U ]k := Tk + Uk and [λT ]k := λTk, and defining the scalar
product and the associated norm by 〈T,U〉Rm :=

∑
k6m−1 Tk Uk and ‖T‖2

Rm :=
∑
k6m−1 T

2
k .

For vectors (d = 1), we get the usual `2 norm and for matrices (d = 2), we get the Frobenius
norm.

Definition 2.3 (Contraction product). Let m, p and r be multi-indices (with possibly different
lengths) and denote d the length of p. Let T ∈ R(m,p) and U ∈ R(p,r) be two hypermatrices,
their d–contraction product is the hypermatrice T ×d U ∈ R(m,r) defined by:

[T ×d U ](k,`) :=
∑
j6p−1

Tkj Uj`. (2)

The contraction product generalizes the matrix product: if T , respectively U , are matricesm×p,
respectiely p× r, their 1–contraction product is their matrix product.
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Definition 2.4 (Frobenius norm and spectral norm). Let m ∈ (N∗)d be a multi-index. If
T ∈ R(m,m) is a hypermatrix, then T induces a linear map (still denoted by T ):

T : Rm −→ Rm
x 7−→ T ×d x

.

We denote T ∗ ∈ R(m,m) the hypermatrix defined by [T ∗]k` = T`k. The linear map induced by
T ∗ is the adjoint linear map of the one induced by T :

∀x, y ∈ Rm, 〈y, Tx〉Rm = 〈T ∗y, x〉Rm .

We define the Frobenius norm and the spectral norm of T in the same way we define them for
any endomorphism: ‖T‖2

F := Tr(T ∗T ) and ρ2(T ) := λmax(T ∗T ).

It is easy to check that:

‖T‖2
F =

∑
k,`6m−1

T 2
k`, ρ(T ) = sup

x∈Rm\{0}

‖Tx‖Rm
‖x‖Rm

.

Lastly, we recall the classical inequalities between the Frobenius and the spectral norm:

1
m1 · · ·md

‖T‖2
F 6 ρ2(T ) 6 ‖T‖2

F . (3)

Finally, we introduce the following definition that generalizes the concept of triangular ma-
trices.

Definition 2.5. A hypermatrix T ∈ R(m,m) is said to be lower triangular if apart from multi-
indices `, k 6 m− 1 such that k 6 `, we have T`k = 0.
An infinite hypermatrix T ∈ RNd×Nd is said to be lower triangular if apart from multi-indices
`, k ∈ Nd such that k 6 `, we have T`k = 0.

3. The estimation procedure

In the model (1), the Zi’s are i.i.d. random vectors on Rd+, and they admit a density we
denote by h. This density function is given by the convolution product of f and g:

(f ∗ g)(x) :=
∫
Rd
f(u) g(x− u) du =

∫
· · ·
∫

[0,x1]×···×[0,xd]

f(u) g(x− u) du.

We assume that f , g and h belong to L2(Rd+) and we expand them in the multivariate Laguerre
basis. We recall that the one-dimensional Laguerre functions (ϕk)k∈N are defined by:

∀x ∈ R+, ϕk(x) :=
√

2Lk(2x) e−x, where Lk(x) :=
k∑
j=0

(
k

j

)
(−x)j

j! ,

and that they form an orthonormal basis of L2(R+). In the multivariate case, we tensorize the
Laguerre basis. For k = (k1, . . . , kd) ∈ Nd a multi-index, we define the multivariate Laguerre
function ϕk on Rd+ as the tensor product of one-dimensional Laguerre functions:

ϕk(x1, . . . , xd) :=
(
ϕk1 ⊗ · · · ⊗ ϕkd

)
(x1, . . . , xd) = ϕk1(x1)× · · · × ϕkd(xd). (4)
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The multivariate Laguerre functions (ϕk)k∈Nd form a basis of L2(Rd+), and we expand the
functions f , g and h in this basis:

f =
∑
k∈Nd

ak ϕk, g =
∑
j∈Nd

bj ϕj , h =
∑
`∈Nd

c` ϕ`. (5)

The use of the Laguerre basis is relevant in this context, as the one-dimensional Laguerre
functions verify the relation:

∀k, j ∈ N, ϕk ∗ ϕj = 2−1/2(ϕk+j − ϕk+j+1), (6)

see (Abramowitz and Stegun, 1972, formula 22.13.14). Using this relation and h = f ∗ g, by
expanding the functions f , g and h on the Laguerre basis, we get a relation between their
coefficients.

Proposition 3.1. If a, b and c are the coefficients defined in (5), then the following relation
holds:

∀` ∈ Nd, c` = 2−d/2
∑

ε∈{0,1}d
(−1)|ε|(a ∗ b)`−ε,

where a ∗ b is the discrete convolution product of a and b defined by (a ∗ b)k :=
∑
j6k ajbk−j if

k ∈ Nd and (a ∗ b)k = 0 if k /∈ Nd.

This relation can be written as a discrete convolution product c = β ∗ a with β ∈ Nd defined
by:

βk := 2−d/2
∑

ε∈{0,1}d
(−1)|ε| bk−ε, (7)

where by convention bj = 0 if j /∈ Nd. Thus, we have a linear relation between the coefficients c
and a:

∀` ∈ Nd, c` =
∑
k6`

G`k ak, where G`k :=
{
β`−k if k 6 `,

0 else.
(8)

If we consider G as an infinite hypermatrix [G`k]`,k∈Nd ∈ RNd×Nd , then it is lower triangular
according to Definition 2.5.

In the next proposition, we show that the linear relation between a and c is invertible.

Proposition 3.2. Let G be the infinite hypermatrix defined in (8). For every k ∈ Nd, there
exists [Hk`]`6k such that for every a, c ∈ Nd statisfying the relation (8), we have:

a` =
∑
`6k

H`k ck. (9)

We denote H`k =: (G−1)`k.

We can write the linear relations between a and c using hypermatrices and contraction
products. For m ∈ (N∗)d, we denote by am (resp. cm) the hypermatrix [ak]k6m−1 ∈ Rm
(resp. [c`]`6m−1 ∈ Rm), and we denote by Gm and G−1

m the hypermatrices [G`k]`,k6m−1 and
[(G−1)`k]`,k6m−1 in R(m,m). Then, we have:

cm = Gm ×d am, am = G−1
m ×d cm, (10)

where “×d” stands for the contraction product defined by (2).

5



Estimation procedure. For m ∈ (N∗)d, let Sm be the vector space spanned by the functions ϕk
for k 6 m− 1, and let Dm := m1 · · ·md be its dimension. We estimate f by estimating fm the
projection of f on Sm. This projection is given by fm =

∑
k6m−1 akϕk, so the problem reduces

to the estimation of am. Because am is related to cm by (10) and since c` = E[ϕ`(Z1)], we
estimate f by:

f̂m :=
∑

k6m−1

âk ϕk where âm := G−1
m ×d ĉm and ĉ` := 1

n

n∑
i=1

ϕ`(Zi).

4. Non-asymptotic error bounds

We quantify the quality of the estimator f̂m by its MISE (Mean Integrated Squared Error):
E‖f − f̂m‖2

L2 . In the next proposition, we decompose the MISE in a bias term and a variance
term and give a bound on the MISE of f̂m.

Proposition 4.1. If f and g are L2(Rd+) functions, then we have the inequality:

∀m ∈ Nd, E‖f − f̂m‖2
L2 6 ‖f − fm‖2

L2 + 2dDm ρ
2(G−1

m )
n

∧ ‖h‖∞‖G
−1
m ‖2

F

n
.

Remark 4.2. Using the Cauchy–Schwarz inequality, it holds ‖h‖∞ 6 ‖f‖L2‖g‖L2 which is finite
by assumption. Moreover, if g is bounded, we also have ‖h‖∞ 6 ‖g‖∞.
Remark 4.3. The norm equivalence (3) implies that ‖G−1

m ‖2
F 6 Dm ρ

2(G−1
m ), so the order of

magnitude of the variance term is given by ‖G−1
m ‖2

F . The minimum is important only for the
small values of m (because of the constants).

Under an additional assumption, Comte and Genon-Catalot (2018) improved the variance
bound in the one-dimensional case. We generalize their result to the multivariate case.

Proposition 4.4. We denote Y (j)
1 the j-th coordinate of Y1. We assume that for any nonempty

subset J of {1, . . . , d}, we have:

MJ(g) := E

∏
j∈J

1√
Y

(j)
1

 < +∞. (11)

Then we have the following inequality:

∀m ∈ (N∗)d, E‖f − f̂m‖2
L2 6 ‖f − fm‖2

L2 + c(g)
√
Dm ρ

2(G−1
m )

n
∧ ‖h‖∞‖G

−1
m ‖2

F

n
,

where c(g) is a positive constant depending on MJ(g) for J ⊆ {1, . . . , d}.

To study the bias term, we assume that f belongs to a Sobolev–Laguerre space. In dimension
d = 1, these functional spaces have been introduced by Bongioanni and Torrea (2009) to study
the Laguerre operator. The connection with Laguerre coefficients was established later by Comte
and Genon-Catalot (2015). Following the same idea, we define Sobolev–Laguerre balls on Rd+.

Definition 4.5 (Sobolev–Laguerre ball). Let L > 0 and s ∈ (0,+∞)d, we define the Sobolev–
Laguerre ball of order s and radius L by:

Ws(Rd+, L) :=

f ∈ L2(Rd+)

∣∣∣∣∣∣
∑
k∈Nd

a2
k(f) ks 6 L

,
with ak(f) := 〈f, ϕk〉L2 the Laguerre coefficients of f .
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Assuming f to belong to Ws(Rd+, L), the bias term decreases to 0 with polynomial rate.
Indeed, for m ∈ (N∗)d, we have:

‖f − fm‖2
L2 =

∑
k∈Nd

∃q, kq>mq

a2
k(f) 6

d∑
q=1

∑
k∈Nd
kq>mq

a2
k(f) ksqq k−sqq 6 L

d∑
q=1

m−sqq . (12)

The case where the Laguerre coefficients of f decrease with exponential rate is also interest-
ing. We define new functional spaces, “smooth Laguerre spaces”, in the following way.

Definition 4.6 (Smooth Laguerre ball). Let L > 0 and r ∈ (0,+∞)d, we define the smooth
Laguerre ball of order r and radius L as:

Sr(Rd+, L) :=

f ∈ L2(Rd+)

∣∣∣∣∣∣
∑
k∈Nd

a2
k(f) er·k 6 L

.
By the same argument as previously, if f belongs to Sr(Rd+, L), the bias term decreases to

0 with exponential rate:

∀m ∈ (N∗)d, ‖f − fm‖2
L2 6 L

d∑
q=1

e−rqmq . (13)

Now, we need to control the variance term in Proposition 4.1. In the one-dimensional
case, this control can be provided under assumptions on the Laplace transform G of g and
under assumptions on the derivatives of g, see lemma 3.6 in (Comte et al., 2017). In the next
proposition, we extend this result to the multivariate case. Moreover, we make assumptions
only on the behavior of the Laplace transform of g, we do not need to study its differentials.

We recall that the Laplace transform of g is the function G defined on the domain Pd+ by:

G(s) :=
∫
Rd+

e−s·xg(x) dx,

where P+ stands for the set of complex numbers with non-negative real part. In addition, we
extend the set C of complex numbers by adding a point at infinity denoted by ∞. The control
of the Frobenius norm of G−1

m relies on the behavior of G when some of its arguments take the
∞ value.

Proposition 4.7. We assume that β ∈ `1(Nd), with β defined in (7). We assume that G is
non-zero on Pd+ and that there exists α ∈ (N∗)d such that the function:

Kα(s) := (1 + s)αG(s), s ∈ Pd+,

can be extended as a non-zero function on (P+ ∪ {∞})d such that the restriction of Kα on
(iR ∪ {∞})d is continuous. Then for m ∈ Nd satisfying m > 4, there exists a constant C > 0
depending on β such that ‖G−1

m ‖2
F 6 Cm2α.

Remark 4.8. If g ∈ Ws(Rd+, L) with L > 0 and s ∈ (1,+∞)d, the Laguerre coefficients of g
belong to `1(Nd). Indeed, using Cauchy–Schwarz inequality,

∑
k∈Nd
|bk| =

∑
k∈Nd
|bk| k

s
2 k−

s
2 6

∑
k∈Nd

b2
k k

s

 1
2
∑
k∈Nd

k−s

 1
2

< +∞,

because for every q ∈ {1, . . . , d}, sq > 1.
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Remark 4.9. We notice that in dimension d = 1, these assumptions simply become:

1. The Laplace transform G does not vanish on P+.
2. The Fourier transform of g admits an asymptotic expansion g∗(ω) = ω−α (Kα + o(1))

when |ω| goes to +∞, for some α ∈ N∗ and some non-zero constant Kα.

It is easy to see that this second assumption is a consequence of the assumptions on the deriva-
tives of g made in (Comte et al., 2017, subsection 2.5).
Remark 4.10. If the distribution of Y is a product of gamma distributions

⊗d
q=1 Γ(αq, λq) with

α ∈ (N∗)d, then G and Kα are given by:

G(s) =
d∏
q=1

(
1 + sq

λq

)−αq
and Kα(s) = λα

d∏
q=1

(
1 + sq
λq + sq

)αq
,

so the assumptions of Proposition 4.7 are fulfilled.
Gathering (12) or (13) with Proposition 4.7, we obtain convergence rates for our estimator.

Theorem 4.11. Let s, r ∈ (0,+∞)d and L > 0. Assume that g satisfies the assumptions of
Proposition 4.7 with α ∈ (N∗)d.

1. For mopt ∈ (N∗)d given by mopt,j ∝ n
1/
(
sj+sj

∑d

i=1
2αi
si

)
, there exists a constant C > 0

depending on s, L and g such that:

sup
f∈Ws(Rd+,L)

E‖f − f̂mopt‖2
L2 6 C n

−1/
(

1+
∑d

i=1
2αi
si

)
.

2. For mopt ∈ (N∗)d given by mopt,j ∝ logn
rj

, there exists a constant C > 0 depending on r,
L and g such that:

sup
f∈Sr(Rd+,L)

E‖f − f̂mopt‖2
L2 6 C

(logn)
∑d

i=1
2αi

n
.

Remark 4.12. Our convergence rates on Sobolev–Laguerre balls are similar to convergence rates
found by Comte and Lacour (2013) on anisotropic Sobolev balls, in the context of deconvolution
using a kernel estimator with an ordinary smooth noise.
Remark 4.13. We could have considered mixed regularities for f . For instance, if the coefficients
of f satisfy: ∑

k∈Nd
a2
k k

s1
1 · · · k

sj0
j0

exp(rj0+1kj0+1 + · · ·+ rdkd) 6 L,

for some 1 6 j0 < d, then we can give the following upper-bound on the bias term:

‖f − fm‖2
L2 6 L

 j0∑
j=1

m
−sj
j +

d∑
j=j0+1

e−rjmj
 .

By choosing mj ∝ logn
rj

for j > j0, the MISE of f̂m is then:

E‖f − f̂m‖2
L2 . L

j0∑
j=1

m
−sj
j + ‖h‖∞

Nn

j0∏
j=1

m
2αj
j + L (d− j0)

n
,
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with Nn := n∏
j>j0

(log(n)/rj)2αj . We can now choose the j0-first components of m like in the

case 1 of Theorem 4.11, but with a sample size Nn, and we get:

E‖f − f̂mopt‖2
L2 6 C

(
n∏

j>j0
(log(n)/rj)2αj

)−1/
(

1+
∑j0

j=1

2αj
sj

)
.

It is the rate we would find on a Sobolev–Laguerre ball in dimension j0, up to a logarithmic
factor.

5. Adaptive estimation and oracle inequalities

In practice, we do not know the underlying regularity of f , so we can not compute the model
mopt of Theorem 4.11. We want a data-driven procedure that automatically provides the bias-
variance compromise, without assumptions on f . More precisely, we want to select m̂ from the
data such that the MISE of f̂m̂ is close to the oracle MISE: infm E‖f − f̂m‖2

L2 .
Let m∗ ∈ (N∗)d fixed such that Dm∗ 6 n. We only look at sub-models of m∗ that are not

“too big”. More precisely, we consider the models that belong to the following model collection:

Mn :=
{
m 6 m∗

∣∣∣∣Dm ρ
2(G−1

m ) 6 n

logn

}
. (14)

We assume that the Yi’s distribution satisfies the following assumptions.

(A1) The noise density g is bounded.

(A2) For every nonempty J ⊆ {1, . . . , d}, MJ(g) defined by (11) is finite.

(A3) For every b > 0, we have
∑
m∈Mn

ρ2(G−1
m ) e−b

√
Dm 6 K(b), with K(b) a positive constant

not depending on n.

Under assumptions (A1) and (A2), we can apply Proposition 4.4 to control the variance
term E‖f̂m − fm‖2

L2 by:

V (m) := c(g)
√
Dm ρ

2(G−1
m )

n
∧ (‖g‖∞ ∨ 1)‖G−1

m ‖2
F logn

n
. (15)

Moreover under assumption (A3), we can control the right deviation of ‖f̂m − fm‖2
L2 when m

belongs toMn.

Lemma 5.1. Under assumptions (A1) to (A3), there exists a numerical constant a0(d) > 0
depending on the dimension d such that for every a > a0(d):∑

m∈Mn

E
[(∥∥f̂m − fm∥∥2

L2 − aV (m)
)
+

]
6
C

n
,

with C a positive constant depending on g and a.
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The one-dimensional case. When d = 1, we consider two procedures, indexed by i ∈ {1, 2},
the first procedure being the one studied by Mabon (2017). In both procedures, the projection
space is chosen by minimizing the penalized criterion:

m̂i := arg min
m∈Mn

[
−‖f̂m‖2

L2 + κi peni(m)
]
, i ∈ {1, 2} (16)

whereMn is defined by (14), κi is a numerical constant to be adjusted and peni is the penalty
term. Mabon (2017) proposes the following penalty term:

pen1(m) := 2mρ2(G−1
m )

n
∧ (‖g‖∞ ∨ 1)‖G−1

m ‖2
F logn

n
, (17)

and provides an oracle inequality for the estimator f̂m̂1 under assumptions (A1) and (A3),
see Theorem 4.1 in Mabon’s article. This choice is based on the bound of the variance term of
Proposition 4.1. However if g is bounded, assumption (A2) holds automatically in dimension
d = 1, so we can apply Proposition 4.4 to get a better bound on the variance term. Thus, we
propose the penalty term:

pen2(m) := V (m) = c(g)
√
mρ2(G−1

m )
n

∧ (‖g‖∞ ∨ 1)‖G−1
m ‖2

F logn
n

. (18)

We show that our estimator f̂m̂2 also satisfies an oracle inequality.

Theorem 5.2. We assume d = 1. Under assumtions (A1) to (A3), there exists a numerical
constant κ0 > 0 such that for every choice of κ > κ0, we have the following oracle inequality:

E
[∥∥f − f̂m̂2

∥∥2
L2

]
6 4 inf

m∈Mn

(∥∥f − fm∥∥2
L2 + κpen2(m)

)
+ C

n
,

with C a positive constant depending on κ and g.

The multivariate case. We use the procedure similar to Goldenshluger and Lepski (2011) for
model selection introduced by Chagny (2013b) for the estimation of a conditional density func-
tion. We apply this procedure to our multivariate deconvolution problem, and we establish an
oracle inequality.

We choose m̂ in the model collectionMn defined in (14), minimizing:

m̂ := arg min
m∈Mn

[
A(m) + κ2V (m)

]
, (19)

where V (m) is defined by (15) and A(m) is a term which has the order of the bias term (see
the proof):

A(m) := max
m′∈Mn

(∥∥f̂m′ − f̂m∧m′∥∥2
L2 − κ1V (m′)

)
+
,

and where κ1, κ2 are two numerical constants to be adjusted.

Theorem 5.3 (Oracle inequality). Under assumptions (A1) to (A3), there exists a numerical
constant κ0(d) > 0 depending on the dimension d such that for every choice of κ1, κ2 satisfying
κ0(d) < κ1 6 κ2, we have the following oracle inequality:

E
[∥∥f − f̂m̂∥∥2

L2

]
6 C inf

m∈Mn

(∥∥f − fm∥∥2
L2 + V (m)

)
+ C ′

n
,

with C a positive constant depending on κ1 and κ2, and C ′ a positive constants depending on g,
d and κ1.
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Remark 5.4. It is important to notice that the proof of Theorem 5.3 only depends on the
deconvolution structure through Lemma 5.1, to obtain a concentration bound on the variance
term. The rest of the proof does not use the deconvolution structure again. Thus, the procedure
can be applied to more general model selection problems.

6. Numerical illustrations

6.1. Estimators comparison in one-dimensional case
We want to compare the two estimators f̂m̂1 and f̂m̂2 defined in Section 5, with different

distributions for X and Y , and with different sample size n. We compare their MISE:

Ri = Ri(f, g, n) := E
∥∥f − f̂m̂i∥∥2

L2 , i ∈ {1, 2}.

We also compute the oracle risk:

Ro = Ro(f, g, n) := min
16m6m∗

E
∥∥f − f̂m∥∥2

L2 ,

wherem∗ is the maximal element ofMn. We compute an approximation of ‖·‖2
L2 with Simpson’s

rule on a bounded interval I of R+ with 1000 points. We compute the expectations with an
empirical mean over 500 samples (we use the same samples for R1, R2 and Ro).
Remark 6.1. Since f is non-negative, f̂m is replaced by (f̂m)+ := max(f̂m, 0) in the following.

Distributions for X. We consider several distributions for X. In each case, we normalize the
distribution for the variance to be 1. We use the same examples as Mabon (2017).

• Exponential E(1), I = [0, 5].

• Gamma Γ(20,
√

20), I = [0, 10].

• Rayleigh, f(x) = x
σ2 exp(− x2

2σ2 ) with σ2 = 2
4−π , I = [0, 6].

• Weibull, f(x) = k
λ

(
x
λ

)k−1 e−(x/λ)k , with k = 3
2 and λ = 1/

√
Γ(1 + 4

3 )− Γ(1 + 2
3 )2, I =

[0, 5].

• Beta B(4, 5) with normalisation 9√
2 , I = [0, 8].

• Gamma mixture 0.4 Γ(2, 2) + 0.6 Γ(16, 4) with normalisation 1√
2.96 , I = [0, 5].

Distributions for Y . We choose gamma distributions for Y . We recall the density of the gamma
distribution with parameters α > 1 and λ > 0:

g(x) = λα

Γ(α) x
α−1 e−λx, x > 0.

with Γ the gamma function. These distributions satisfy assumptions (A1) to (A3), so we can
use the procedure described in Section 5. We can compute the Laguerre coefficients of g exactly:

∀k ∈ N, bk =
√

2
(

λ

λ+ 1

)α k∑
j=0

(
k

j

)(
α− 1 + j

j

)(
−2

1 + λ

)j
,

11



where
(
α−1+j

j

)
:= (α−1+j)×(α−2+j)×···×α

j! . Denoting bm the vectors [bk]k6m−1, we can compute:

bm =
√

2
(

λ

λ+ 1

)α
Pmvm,

where Pm is the m×m matrix with components Pij :=
(
i
j

)
for 0 6 i, j 6 m− 1, and vm is the

vector of size m:

vm :=
[(

α− 1 + j

j

)(
−2

1 + λ

)j]
06j6m−1

.

Therefore, we can compute easily and efficiently the matrix Gm and its inverse.
We choose two distributions for Y : the Γ(2,

√
20) distribution which has variance 1

10 and the
Γ(2,
√

8) distribution which has variance 1
4 .

The constant c(g). This constant in the penalty pen2 is not known, so we have to evaluate it
numerically. Following the proof of the Proposition 4.4, we see this constant appears in the
upper bound:

ρ2(G−1
m )

n

m−1∑
k=0

E
[
ϕk(Z1)2] 6 c(g)

√
mρ2(G−1

m )
n

,

which is true for every density of X1 and for every m. Therefore,

c(g) = sup
X1∼f

sup
m∈N∗

1√
m

m−1∑
k=0

E
[
ϕk(X1 + Y1)2].

For every distribution of X we considered earlier and for every m from 1 to 50, we computed:

1√
m

m−1∑
k=0

E
[
ϕk(X1 + Y1)2],

using an empirical mean over 1000 realizations of (X1, Y1) to compute the expectation, then
we took the maximum. For the two distributions we considered for Y1, the worst constant was
about 0.4 and was reached for X1 ∼ E(1). For the other distributions of X1, we found constants
between 0.2 and 0.3. To be safe, we chose a bigger constant c(g) = 0.5 for both Γ(2,

√
20) and

Γ(2,
√

8) distributions.

The constants κ. We use the same constant κ1 = 0.03 as Mabon (2017). Concerning the
constant κ2, we made several simulations to calibrate it and we chose κ2 = 0.04. During the
calibration of κ2, we realized that the collectionMn did not have enough models. The selected
dimensions were too small and lead to bad performances. Therefore, we considered the following
collection:

M′n :=
{

1 6 m 6 m∗
∣∣∣∣mρ2(G−1

m ) 6 10 n

logn

}
.

Procedure. We take the maximal dimension to be m∗ = 20. We use two sample sizes: n = 200
and n = 2000. Given a distribution forX, a distribution for Y , a sample size n, and a subdivision
Σ(I) of I, do:

1. Compute the matrix G20 and its inverse.
2. Compute the collectionM′n.
3. Compute f(x) for x ∈ Σ(I).

12



Distribution of X MISE σ2
Y = 1/10 σ2

Y = 1/4
n = 200 n = 2000 n = 200 n = 2000

E(1)
R1 139 8.57 113 9.95
R2 204 30.4 203 37.2
Ro 10.6 0.93 14.7 1.50

Γ(20,
√

20)
R1 127 32.1 407 109
R2 80.4 16.4 350 58.0
Ro 26.8 3.84 34.7 5.24

Rayleigh
R1 68.1 7.13 88.7 8.23
R2 42.1 6.44 50.3 9.13
Ro 29.8 4.76 35.0 7.33

Weibull
R1 55.2 4.89 79.0 6.80
R2 64.3 8.56 70.3 10.5
Ro 30.8 4.84 42.0 6.59

B(4, 5)
R1 122 16.8 184 29.8
R2 39.6 6.50 53.0 16.5
Ro 30.9 4.52 35.5 5.59

Γ mixture
R1 286 63.8 717 82.9
R2 162 47.1 595 71.2
Ro 151 34.0 228 49.4

Table 1: MISE computation over 500 samples. MISE are multiplied by 104. The column “σ2
Y = 1/10” corresponds

to the case Yi ∼ Γ(2,
√

20) and the column “σ2
Y = 1/4” to the case Yi ∼ Γ(2,

√
8).

4. Repeat 500 times:
(a) Generate a sample Zi = Xi + Yi, i = 1, . . . , n.
(b) Compute the Laguerre coefficients vector ĉ20 and compute â20 = G−1

20 ĉ20.
(c) Compute m̂1 and m̂2 minimizing:

m̂i = arg min
m∈M′n

(
−
m−1∑
k=0

â2
k + κi peni(m)

)
, i ∈ {1, 2},

and compute
(
f̂m̂1(x)

)
+ and

(
f̂m̂2(x)

)
+ for x ∈ Σ(I).

(d) Compute J1 = ‖f − (f̂m̂1)+‖2
L2 and J2 = ‖f − (f̂m̂2)+‖2

L2 using Simpson’s rule.
(e) For m from 1 to 20, compute

(
f̂m(x)

)
+ for x ∈ Σ(I); then compute J(m) = ‖f −

(f̂m)+‖2
L2 using Simpson’s rule.

5. Compute R1 (resp. R2) as the mean of J1 (resp. J2) over the 500 samples.
6. For each m, compute the mean of J(m) over the 500 samples, then compute Ro as the

minimum of these quantities.

Results. We show our results in Table 1. We note that in the cases X ∼ E(1) and X ∼
Γ(20,

√
20), both estimators performed badly compared to the oracle. We see that our estima-

tor f̂m̂2 is better when X has gamma, Rayleigh, beta and mixture gamma distribution. The
estimator f̂m̂1 is better when X has Weibull and exponential distribution.

For illustration, Figure 1 shows several estimations when the distribution of X is a mixture
gamma. It’s a bimodal distribution, so it’s interesting to see if the estimators are able to
recover the two “peaks” and the “hollow” of the true density. For small samples (n = 200), the
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Figure 1: Density estimation when X is a mixture of gamma distributions and when Y ∼ Γ(2,
√

20). The thick
blue curve represents the true density and each thin red curve represents the estimation obtained with one sample
(total: 200 samples). First line: n = 200, second line: n = 2000. Left: f̂m̂1 , right: f̂m̂2 .

estimator f̂m̂1 seems to fail more often than the estimator f̂m̂2 . For large samples (n = 2000),
both estimators locate well the two pikes (by overestimating the first one and underestimating
the second one), but the estimator f̂m̂1 locates less well the hollow and underestimates more the
second pike.

6.2. Model selection in two-dimensional case
In this subsection, our goal is to illustrate the procedure similar to Goldenshluger and Lepski

(2011) on two examples, in the case d = 2.

Distributions for X. To generate a random vector X = (X(1), X(2)), we do the following: we
generate a random variable W (1) with some distribution and we generate W (2) independently
with some other distribution, and we compute:[

X(1)

X(2)

]
=
[

1 0.1
0.2 1

] [
W (1)

W (2)

]
,

such that the coordinates of X are not independent. We consider the following distributions for
W (1) and W (2):

• Gamma Γ(3, 1)

• Beta B(4, 5) with normalisation 9√
2

• Rayleigh, f(x) = x
σ2 exp(− x2

2σ2 ) with σ2 = 2
4−π

• Weibull, f(x) = k
λ

(
x
λ

)k−1 e−(x/λ)k , with k = 3
2 and λ = 1/

√
Γ(1 + 4

3 )− Γ(1 + 2
3 )2

Distribution for Y . We chose distributions of the form Γ(α1, λ1)⊗Γ(α2, λ2). These distributions
satisfy the assumptions (A1) to (A3) of the Section 5. Moreover, the Laguerre coefficients can
be computed easily: if γi is the density of the distribution Γ(αi, λi), then we have g = γ1 ⊗ γ2,
so:

∀k ∈ N2, bk = 〈γ1, ϕk1〉L2 × 〈γ2, ϕk2〉L2 .
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W distribution Gamma Beta Rayleigh Weibull

Gamma
n = 500 7.78 12.99 11.73 20.30

(4.6, 4.8) (3.6, 7.0) (4.7, 5.9) (5.1, 6.4)

n = 5000 1.36 3.40 1.96 6.30
(4.5, 5.6) (3.8, 8.9) (4.9, 6.5) (4.6, 8.5)

Beta
n = 500 11.75 22.04 18.73 28.15

(6.5, 3.9) (6.2, 6.3) (6.9, 5.0) (6.7, 5.4)

n = 5000 2.78 6.66 3.89 12.19
(8.3, 4.6) (7.1, 7.8) (8.9, 5.8) (7.6, 7.0)

Rayleigh
n = 500 11.82 20.17 18.08 32.78

(5.8, 4.7) (4.6, 6.9) (5.7, 5.8) (6.2, 6.8)

n = 5000 1.86 4.21 3.07 8.39
(6.3, 5.2) (5.5, 8.5) (6.6, 6.3) (6.5, 7.7)

Weibull
n = 500 17.91 24.01 40.37 64.66

(6.6, 5.2) (5.4, 6.8) (7.1, 6.3) (8.0, 7.4)

n = 5000 4.29 8.54 5.89 11.06
(7.9, 4.7) (6.8, 7.7) (7.7, 6.5) (7.2, 8.0)

Table 2: MISE computation over 100 samples of size n, for n = 500 and n = 5000. In rows: distribution of W (1).
In columns: distribution of W (2). In each cell, we show the MISE (multiplied by 104) and the mean selected
model.

Refer to Subsection 6.1 for the computation of 〈γi, ϕki〉L2 . We chose the distribution Γ(2,
√

20)⊗
Γ(2,
√

20) for Y .

The κ constants. After several simulations, we chose κ1 = κ2 = 10−5. However, this calibration
is rough. Like in the one-dimensional case, the model collection Mn defined by (14) was too
small, so we considered the following collection:

M′n :=
{
m 6 m∗

∣∣∣∣Dm ρ
2(G−1

m ) 6 104 n

logn

}
.

Results. We took the maximal model to be m∗ = (12, 12). In each case, we simulated a sample
of size n = 500 and n = 5000, then we computed the model m̂ defined by (19). We computed
E‖f − f̂m̂‖2

L2 by approximating the double integral by a Riemann sum:∫∫
R2

+

(
f(x, y)− f̂m̂(x, y)

)2
dxdy ≈

N1−1∑
i=0

N2−1∑
j=0

(
f(xi, yj)− f̂m̂(xi, yj)

)2
∆xi ∆yj

on a grid with step size 0.01, and by computing the expectation with an empirical mean over
100 samples.

We show our results in Table 2. In each case, we compute the MISE and the mean selected
model. We emphasize that in the majority of the samples, the selected model is anisotropic:
the components of m̂ are not equal. It is a property we expected from a procedure similar to
Goldenshluger and Lepski (2011). The estimator adapts to the regularity of f .

For illustration, Figure 2 shows the result of the estimation when W (1) has a Gamma dis-
tribution and W (2) has a Weibull distribution, for a sample of size 5000. We show both the
adaptive estimator f̂m̂ and the estimator with no selection procedure f̂(12,12), where we simply
choose the maximum model. We see that the procedure selected the model m̂ = (5, 8), which
has a smaller dimension than the maximum model.
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Figure 2: Density estimation when W (1) has a Gamma distribution and W (2) has a Weibull distribution, for a
sample of size n = 5000. First column: true density, second column: adaptive estimator f̂m̂, third column: max
model estimator f̂(12,12). The selected model is m̂ = (5, 8).

7. Proofs

7.1. Proofs of Sections 3 and 4
Proof of Proposition 3.1. Using the relation (6), we have:

f ∗ g =
∑
k∈Nd

∑
j∈Nd

akbj (ϕk ∗ ϕj) =
∑
k∈Nd

∑
j∈Nd

akbj

d⊗
q=1

2−1/2(ϕkq+jq − ϕkq+jq+1).

By setting `q = kq + jq, we get:

f ∗ g = 2−d/2
∑
`∈Nd

∑
k∈Nd
k6`

akb`−k

d⊗
q=1

(ϕ`q − ϕ`q+1) = 2−d/2
∑
`∈Nd

(a ∗ b)`
d⊗
q=1

(ϕ`q − ϕ`q+1).

Using the tensor product multi-linearity:
d⊗
q=1

(ϕ`q − ϕ`q+1) =
d⊗
q=1

1∑
εq=0

(−1)εq ϕ`q+εq =
1∑

ε1=0
· · ·

1∑
εd=0

d⊗
q=1

(−1)εq ϕ`q+εq

=
∑

ε∈{0,1}d
(−1)|ε| ϕ`+ε.

Thus, we get:

f ∗ g =
∑
`∈Nd

(a ∗ b)`

2−d/2
∑

ε∈{0,1}d
(−1)|ε| ϕ`+ε

 =
∑
`∈Nd

2−d/2
∑

ε∈{0,1}d
(−1)|ε| (a ∗ b)`−ε

ϕ`.
Since h = f∗g, by uniqueness of the Laguerre coefficients of h, we obtain the desired relation.
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Proof of Proposition 3.2. First, we notice that ∀`, G`` = E[e−(Y (1)
1 +···+Y (d)

1 )] > 0. We proceed
by induction on |k|.

• If |k| = 0, then k = 0 and a0 = (G0,0)−1 c0.

• Let r ∈ N, we suppose (9) is true for every k ∈ Nd such that |k| 6 r. Let k ∈ Nd with
|k| = r + 1. From (8),

ck =
∑
`6k
` 6=k

Gk` a` + Gkk ak.

If ` 6 k with ` 6= k then |`| < |k|, so we can use the induction assumption:

ak = (Gkk)−1

ck −∑
`6k
6̀=k

Gk`

∑
j6`

H`j cj

 .

Thus, by setting Hkk := (Gkk)−1 and Hkj := (Gkk)−1∑
j6`6k,` 6=k Gk` H`j for every

j 6 k, j 6= k, we’ve just proved (9) for all k such that |k| = r + 1.

Proof of Proposition 4.1. By Pythagoras theorem, ‖f − f̂m‖2
L2 = ‖f − fm‖2

L2 + ‖fm − f̂m‖2
L2 .

We decompose the second term on the Laguerre basis:

‖fm − f̂m‖2
L2 =

∑
k6m−1

(ak − âk)2 = ‖am − âm‖2
Rm .

We now give an upper bound on the last quantity in two different ways.

1. The first way is a bound using the spectral norm.

E‖fm − f̂m‖2
L2 = E‖G−1

m (cm − ĉm)‖2
Rm

6 ρ2(G−1
m )E‖cm − ĉm‖2

Rm

= ρ2(G−1
m )E

 ∑
k6m−1

(
1
n

n∑
i=1

ϕk(Zi)− E
[
ϕk(Z1)

])2


= ρ2(G−1
m )

n

∑
k6m−1

Var
(
ϕk(Z1)

)
6
ρ2(G−1

m )
n

∑
k6m−1

E
[
ϕk(Z1)2].

Yet for every x ∈ Rd+, ϕk(x)2 6 2d and card{k ∈ Nd | k 6 m− 1} =
∏d
q=1 mq, so:

E‖fm − f̂m‖2
L2 6

ρ2(G−1
m )

n

∑
k6m−1

E
[
ϕk(Z1)2] 6 2d

(∏d
q=1 mq

)
ρ2(G−1

m )

n
. (20)
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2. For the second way, we develop the square.

E‖G−1
m (cm − ĉm)‖2

Rm = E

 ∑
`6m−1

 ∑
k6m−1

[G−1
m ]`k(ck − ĉk)

2


= E

 ∑
`6m−1

∑
k6m−1

∑
k′6m−1

[G−1
m ]`k(ck − ĉk) [G−1

m ]`k′(ck′ − ĉk′)


=

∑
`6m−1

∑
k6m−1

∑
k′6m−1

[G−1
m ]`k[G−1

m ]`k′ Cov(ĉk, ĉk′)

=
∑

`6m−1

∑
k6m−1

∑
k′6m−1

[G−1
m ]`k[G−1

m ]`k′
Cov

(
ϕk(Z1), ϕk′(Z1)

)
n

= 1
n

∑
`6m−1

Cov

 ∑
k6m−1

[G−1
m ]`k ϕk(Z1),

∑
k′6m−1

[G−1
m ]`k′ ϕk′(Z1)


= 1
n

∑
`6m−1

Var

 ∑
k6m−1

[G−1
m ]`k ϕk(Z1)

 .

We control the variance by the expectation of the square:

Var

 ∑
k6m−1

[G−1
m ]`k ϕk(Z1)

 6 E


 ∑
k6m−1

[G−1
m ]`k ϕk(Z1)

2


=
∫
Rd+

 ∑
k6m−1

[G−1
m ]`k ϕk(z)

2

h(z) dz

6 ‖h‖∞

∥∥∥∥∥∥
∑

k6m−1

[G−1
m ]`k ϕk

∥∥∥∥∥∥
2

L2

= ‖h‖∞
∑

k6m−1

[G−1
m ]2`k.

In the end, we obtain:

E‖fm − f̂m‖2
L2 6

‖h‖∞
n

∑
`6m−1

∑
k6m−1

[G−1
m ]2`k = ‖h‖∞‖G

−1
m ‖2

F

n
.

To prove Proposition 4.4, we will use the following lemma about the order of magnitude of
the functions ϕk for k ∈ N.

Lemma 7.1 (Askey and Wainger 1965). There exists k0 ∈ N and C > 0 such that for every
k > k0,

∣∣∣ϕk(x2)∣∣∣ 6 C ×



1 if 0 6 x 6 1
k ,

k−
1
4 x−

1
4 if 1

k 6 x 6 δk,

k−
1
4 (ν − x)− 1

4 if δk 6 x 6 ν − ν 1
3 ,

k−
1
3 if ν − ν 1

3 6 x 6 ν + ν
1
3 ,

k−
1
4 (x− ν)− 1

4 exp
(
−η(x− ν) 3

2 ν−
1
2
)

if ν + ν
1
3 6 x 6 (1 + λ)ν,

exp(−ξx) if (1 + λ)ν 6 x,
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where ν := 4k+ 2, where δ et λ are small enough positive constants, and where η and ξ are fixed
positive constants.

Proof of Proposition 4.4. Following the proof of Proposition 4.1, we see we need to improve the
upper bound in (20). Using Lemma 7.1, we have for all k ∈ N,

|ϕk(x)|2 6 C


1 if 0 6 2x 6 1

k ,

1/
√
kx if 1

k 6 2x 6 δk,

Rk if 2x > δk.

where Rk = o(1/
√
k) does not depend on x. Since “0 6 x 6 1

k” is equivalent to “1 6 1√
kx

”, we
get |ϕk(x)|2 6 C( 1√

kx
+Rk). Thus for k = (k1, . . . , kd) ∈ Nd, we get:

E
[
ϕk(Z)2] = E

 d∏
j=1

ϕkj (Z(j))2

 6 E

 d∏
j=1

C

(
1√
kjZ(j)

+Rkj

)
6 E

 d∏
j=1

C

(
1√
kjY (j)

+Rkj

)
= Cd√

k1 · · · kd
E
[

1√
Y (1) · · ·Y (d)

]
+ C̃ o

(
1√

k1 · · · kd

)
,

where C̃ depends on MJ for J ⊂ {1, . . . , d}. Therefore:∑
k6m−1

E
[
ϕk(Z)2] 6 c(g)

√
Dm,

with c(g) a positive constant depending on MJ for J ⊂ {1, . . . , d}.

Proof of Theorem 4.11. Using Proposition 4.1, the bound (12) on the bias term, and Proposition
4.7, if f belongs to Ws(Rd+, L), we have:

∀m ∈ (N∗)d, E‖f − f̂m‖2
L2 6 L

d∑
i=1

m−sii + ‖h‖∞
n

d∏
i=1

m2αi
i .

By Remark 4.2, ‖h‖∞ is controlled by ‖f‖L2‖g‖L2 . Because f ∈Ws(Rd+, L), we have ‖f‖2
L2 6 L,

so ‖h‖∞ 6
√
L ‖g‖L2 . Thus,

∀m ∈ (N∗)d, E‖f − f̂m‖2
L2 6 L

d∑
i=1

m−sii +
√
L ‖g‖L2

n

d∏
i=1

m2αi
i =: ψn(m).

Let mopt minimizing ψn, then the gradient of ψn vanishes on mopt, so we have:

∀j ∈ {1, . . . , d}, L sj
2αj

m
−sj
opt,j =

√
L ‖g‖L2

n

d∏
i=1

m2αi
opt,i. (21)

Therefore, the coordinates of mopt must satisfy si
2αim

−si
opt,i = sj

2αjm
−sj
opt,j for every i and j in

{1, . . . , d}. Using these relations in (21), we obtain:

∀j ∈ {1, . . . , d}, mopt,j = Cj(s, L, g)n1/
(
sj+sj

∑d

i=1
2αi
si

)
,
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where Cj(s, L, g) are constants depending on s, L and g. The minimum value of ψn is then:

ψn(mopt) = C(s, L, g)n−1/
(

1+
∑d

i=1
2αi
si

)
,

where C(s, L, g) is a constant depending in s, L and g.
Now, if f belongs to Sr(Rd+, L), we use the bound (13) on the bias term:

∀m ∈ (N∗)d, E‖f − f̂m‖2
L2 6 L

d∑
i=1

e−rimi +
√
L ‖g‖∞
n

d∏
i=1

m2αi
i =: φn(m).

We minimize the function φn(m) as we did above, and we find the following relations:

∀j ∈ {1, . . . , d}, rjmopt,j e−rjmopt,j = Cj(r, L, g) (rjmopt,j)
∑d

i=1
2αj

n
,

where Cj(r, L, g) are constants depending on r, L and g. Taking the log, we find:

rjmopt,j +
(

d∑
i=1

2αi − 1
)

log(rjmopt,j) = logn− logCj(r, L, g).

Thus, when n goes to +∞, we have rjmopt,j ∼ logn. Taking mopt ∈ (N∗)d such that mopt,j ∝
logn
rj

, we find:

φn(mopt) 6 C(r, L, g) (logn)
∑d

i=1
2αi

n
,

where C(r, L, g) is a constant depending on r, L and g.

7.2. Proposition 4.7
7.2.1. Preliminary results

To prove this proposition, we first need to extend the theory of Toeplitz matrices to hyper-
matrices. For more details about Toeplitz matrices, see Böttcher and Grudsky (2005). We say
that T is an infinite lower triangular Toeplitz hypermatrix if it is lower triangular according to
Definition 2.5 and if the value of T`k depends only on the difference `− k:

T =
[
T`k
]
`,k∈Nd , T`k = a`−k,

with a = [ak]k∈Zd and ak = 0 if k /∈ Nd. So there is a bijection that takes a ∈ RNd and returns
the corresponding Toeplitz hypermatrix T (a). We can see T (a) as a linear map on RNd :

x =
[
xk
]
k∈Nd 7−→

∑
k∈Nd

T`k xk


`∈Nd

=

∑
k6`

a`−k xk


`∈Nd

= a ∗ x.

The associativity of the convolution product gives that for every a and b, we have T (a)×T (b) =
T (a ∗ b).

Notation. If m ∈ (N∗)d, we denote by Tm(a) ∈ R(m,m) the sub-hypermatrix of T (a) constructed
by taking only the coefficients [T (a)]`,k for `, k 6 m− 1. Note that as a linear map on Rm, we
have Tm(a) = T (a)|Rm because of the triangular structure.
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Operator on `p(Nd). If a ∈ `1(Nd) and if x is in `p(Nd) with p ∈ [1,+∞], then a ∗ x belongs
to `p(Nd) we have ‖a ∗ x‖`p 6 ‖a‖`1‖x‖`p . In other words, T (a) is an operator from `p(Nd) to
`p(Nd) and its operator norm is bounded by ‖a‖`1 .

The `2 case. We will need to study T (a) as an operator on `2(Nd) and give a bound on its
norm with milder assumptions than a ∈ `1(Nd). We define a subspace of L2(Td) that plays an
important role in this matter.

Definition 7.2 (Hardy space). We define the Hardy space as the following subset of L2(Td):

H2(Td) :=
{
u ∈ L2(Td)

∣∣∀k /∈ Nd, ck(u) = 0
}
,

where ck(u) denotes the k-th Fourier coefficient of u and T is the set of complex numbers with
unitary module.

The map that takes a function and returns its Fourier coefficient is then an isometric bijection
between H2(Td) and `2(Nd).

F : H2(Td) −→ `2(Nd)
f 7−→

[
ck(f)

]
k∈Nd

.

We see that if u and v are H2(Td) functions, the identity F [u] ∗ F [v] = F [u × v] translates for
Toeplitz hypermatrices into T

(
F [u]

)
× T

(
F [v]

)
= T

(
F [u× v]

)
.

Under the additional assumption that F−1[a] belongs to L∞(Td), we show in the next
proposition that T (a) defines an operator from `2(Nd) to `2(Nd).

Proposition 7.3. Let a ∈ `2(Nd) such that u := F−1[a] ∈ L∞(Td). Then T (a) defines an
operator on `2(Nd) and its operator norm is bounded by ‖u‖∞.

Proof. Let x ∈ `2(Nd) and let v := F−1[x]. Then:∥∥T (a)x
∥∥
`2 =

∥∥F [u] ∗ F [v]
∥∥
`2 =

∥∥F [u× v]
∥∥
`2 = ‖u× v‖L2 6 ‖u‖∞‖v‖L2 = ‖u‖∞‖x‖`2 .

Before we can prove Proposition 4.7, some facts need to be established. We denote by
Ĉ := C ∪ {∞} the Riemann sphere. We will use the following functions:

• We make the assumption that β belongs to `1(Nd) so that the power series B(z) :=∑
k∈Nd βkz

k is normally convergent on Dd and defines a function which is continuous on
Dd and holomorphic on Dd.

• We denote by G the Laplace transform of g. This function is defined on Pd+, continuous
on Pd+, and holomorphic on {s ∈ Cd | ∀q, Re(sq) > 0}.

• If u is a L1(Rd+) or L2(Rd+) function, we denote by:

u∗(ω) :=
∫
Rd+

eiω·x u(x) dx, ω ∈ Rd,

its Fourier transform, where ω · x :=
∑
i ωixi. The Fourier transform of the Laguerre

functions ϕk, k ∈ Nd can be computed from the case d = 1:

ϕ∗k(ω) =
d∏
q=1

ϕ∗kq (ωq) =
d∏
q=1

(−1)kq
√

2 (1 + iωq)kq
(1− iωq)kq+1 .
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We will need to understand the behaviour of the map z 7→ 1+z
1−z .

Lemma 7.4. Let η : Ĉ → Ĉ be the homographic function η(s) := s−1
s+1 (with η(∞) = 1 and

η(−1) =∞).

1. The function η is invertible and its inverse is η−1(z) = 1+z
1−z .

2. The image of {s ∈ C | Re(s) > 0} by η is D.
3. The image of {s ∈ C | Re(s) = 0} by η is T \ {1}.

In the next proposition that generalizes lemma C.1 from Comte et al. (2017), we show that
the functions G and B are linked through the transformation η.

Proposition 7.5. If θ ∈ Rd, we denote eiθ := (eiθ1 , . . . , eiθd). If β ∈ `1(Nd), then [βk]k∈Nd are
the Fourier coefficients of θ 7→ G( 1+eiθ

1−eiθ ) and we have:

∀θ ∈ Rd, G

(
1 + eiθ

1− eiθ

)
=
∑
k∈Nd

βk eik·θ = B(eiθ),

with normal convergence of the series.

Remark 7.6. If g ∈Ws(Rd+, L) with s ∈ (1,+∞)d, then β is `1(Nd), see Remark 4.8.

Proof of Proposition 7.5. We start from the expression of βk and we use the Plancherel isometry:

βk = 2−d/2
∑
k61

(−1)|ε| bk−ε = 2−d/2
∑
k61

(−1)|ε|
〈
g, ϕk−ε

〉
L2

= 2−d/2
∑
k61

(−1)|ε| 1
(2π)d

〈
g∗, ϕ∗k−ε

〉
L2 =

〈
g∗,

2−d/2

(2π)d
∑
ε61

(−1)|ε| ϕ∗k−ε

〉
L2

.

Let us compute the second factor in the scalar product. The reader is referred to Section 2 for
the notations governing vectors and multi-indices computation.

2−d/2

(2π)d
∑
ε61

(−1)|ε|ϕ∗k−ε(ω) = 2−d/2

(2π)d
∑
ε61

(−1)|ε|
d∏
q=1

(−1)kq−εq
√

2 (1 + iωq)kq−εq
(1− iωq)kq−εq+1

= (−1)|k|

(2π)d
∑
ε61

(
1 + iω
1− iω

)k−ε( 1
1− iω

)1

Using the multibinomial theorem (Proposition 2.1),

=
(

iω + 1
iω − 1

)k 1
(2π)d

(
1− iω
1 + iω + 1

)1( 1
1− iω

)1

=
(

iω + 1
iω − 1

)k 1
πd

d∏
q=1

1
1 + ω2

q

,

We derive the following expression:

βk = 1
πd

∫
Rd
g∗(ω)

(
iω − 1
iω + 1

)k dω1 · · · dωd
(1 + ω2

1) · · · (1 + ω2
d) .
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The change of variable e−iθq = iωq−1
iωq+1 = η(iωq) gives then:

βk = 1
(2π)d

∫
[0,2π]d

g∗
(

eiθ + 1
i(eiθ − 1)

)
e−ik·θ dθ (22)

= 1
(2π)d

∫
[0,2π]d

G

(
1 + eiθ

1− eiθ

)
e−ik·θ dθ.

Therefore, if k ∈ Nd, the k-th Fourier coefficient of the function θ 7→ G( 1+eiθ

1−eiθ ) is βk. On the
other hand, if k /∈ Nd, let us show that the Fourier coefficients vanish. Without loss of generality,
we assume that k1 < 0, and we compute the k-th Fourier coefficient:

1
(2π)d

∫
[0,2π]d

G

(
1 + eiθ

1− eiθ

)
e−ik·θ dθ

= 1
πd

∫
Rd
g∗(ω)

(
iω1 − 1
iω1 + 1

)k1 d∏
q=2

(
iωq − 1
iωq + 1

)kq dω1 · · · dωd
(1 + ω2

1) · · · (1 + ω2
d)

= 1
πd

∫
Rd
g∗(ω)

(
i(−ω1)− 1
i(−ω1) + 1

)−k1 d∏
q=2

(
iωq − 1
iωq + 1

)kq dω1 · · · dωd
(1 + ω2

1) · · · (1 + ω2
d)

= −1
πd

∫
Rd
g∗(−ω1, ω2, . . . , ωd)

(
iω − 1
iω + 1

)k′ dω1 · · · dωd
(1 + ω2

1) · · · (1 + ω2
d) ,

where k′ := (−k1, k2, . . . , kd). Let δ be the map on Rd defined by δ(ω) := (−ω1, ω2, . . . , ωd),
then we have:

−1
πd

∫
Rd
g∗
(
δ(ω)

)( iω − 1
iω + 1

)k′ dω1 · · · dωd
(1 + ω2

1) · · · (1 + ω2
d) =

〈
−g∗ ◦ δ, 2−d/2

(2π)d
∑
ε61

(−1)|ε| ϕ∗k′−ε

〉
L2

= 2−d/2
∑
k61

(−1)|ε| 1
(2π)d

〈
−g∗ ◦ δ, ϕ∗k′−ε

〉
L2

= 2−d/2
∑
k61

(−1)|ε|
〈
g ◦ δ, ϕk′−ε

〉
L2 ,

because (g ◦ δ)∗ = −g∗ ◦ δ. This last expression is always zero:〈
g ◦ δ, ϕk′−ε

〉
L2 =

∫
Rd
g(−x1, x2, . . . , xd)ϕk′−ε(x) dx = 0,

since the function g is zero of x1 > 0 and ϕk′−ε is zero if x1 < 0. Thus, the Fourier coefficients
of θ 7→ G( 1+eiθ

1−eiθ ) are [βk]k∈Nd .

The function G is continuous on (iR ∪ {∞})d, so the function G ◦ (η−1)⊗d is continuous on
Td by Lemma 7.4. Therefore, since the Fourier series θ 7→ G( 1+eiθ

1−eiθ ) is normally convergent, this
function is equal to its Fourier series at each point:

∀θ ∈ Rd, G

(
1 + eiθ

1− eiθ

)
=
∑
k∈Nd

βk eik·θ.

We need a last technical lemma before we start the proof of Proposition 4.7.
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Lemma 7.7. Let α ∈ (N∗)d, then (1− z)−α admits a power series expansion on Dd given by:

∀z ∈ Dd, (1− z)−α =
∑
j∈Nd

(
α− 1 + j

j

)
zj .

Moreover, denoting ζj the j-th coefficient in the power series above, for m > 4 we have
‖Tm(ζ)‖2

F 6 m2α where T (ζ) is the Toeplitz hypermatrix contructed from the coefficients ζj.

Proof of Lemma 7.7. We recall the following identity: for z ∈ D and r ∈ N∗, we have (1−z)−r =∑∞
j=0

(
r−1+j
j

)
zj . Thus, for z ∈ Dd and α ∈ (N∗)d, we have:

(1− z)−α =
d∏
q=1

(1− zq)−αq =
d∏
q=1

∞∑
jq=0

(
αq − 1 + jq

jq

)
zjqq =

∑
j∈Nd

(
α− 1 + j

j

)
zj .

Therefore,

∥∥Tm(ζ)
∥∥2
F

=
∑

j6m−1

(
α− 1 + j

j

)2
#
{

(k, `) ∈ Nd × Nd
∣∣ k 6 ` 6 m− 1, `− k = j

}
=

d∏
q=1

mq−1∑
jq=0

(
α− 1 + jq

jq

)2
(mq − jq),

and it reduces to the case d = 1 which was already solved in (Comte et al., 2017, appendix C).
So if mq > 4 for every q, then ‖Tm(ζ)‖2

F 6
∏d
q=1 m

2αq
q = m2α.

7.2.2. Proof of Proposition 4.7
From Proposition 7.5, we get G = B ◦ η⊗d. We define a function w on (D \ {1})d by:

∀z ∈ (D \ {1})d, w(z) := (1− z)−αB(z).

This function is related to Kα by the identity:

∀z ∈ (D \ {1})d, w(z) = 2−αKα

(
(η−1)⊗d(z)

)
.

Thus, the function w can be extended as a function on Dd, still denoted w, and according to
our assumptions on Kα and Lemma 7.4, w satisfies:

• w|Td is continuous;

• w is continuous on (D \ {1})d;

• w is holomorphic on Dd;

• w doesn’t vanish on Dd.

Thus, the function w−1 = 1/w is well defined on Dd and has the same properties. In particular,
since it is holomorphic on Dd, it admits a power series expansion:

∀z ∈ Dd, w−1(z) =
∑
k∈Nd

dk z
k.
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Let us have look on what is happening on Td. For r ∈ [0, 1[, we denote w−1
r the function on Td

defined by:
∀t ∈ Td, w−1

r = w−1(rt) =
∑
k∈Nd

dk r
|k| tk.

On the one hand, the Fourier coefficients of w−1
r are dk r|k| (we set dk = 0 if k /∈ Nd). On the

other hand, we can compute the Fourier coefficients and we get:

∀k ∈ Zd, dk r
|k| = 1

(2π)d

∫
[0,2π]d

w−1(reiθ) e−ik·θ dθ.

Since w−1 is continuous on (D \ {1})d, we have w−1
r → w−1

|Td a.e. on Td. By dominated conver-
gence, we obtain:

∀k ∈ Zd, dk = 1
(2π)d

∫
[0,2π]d

w−1(eiθ) e−ik·θ dθ.

Therefore, (dk) are the Fourier coefficients of w−1
|Td . Thus, we have shown that w−1

|Td ∈ H2(Td)
and:

w−1(t) =
∑
k∈Nd

dk t
k,

with L2(Td)–convergence of the series.
By Lemma 7.7, the function (1−z)−α admits a power series expansion on Dd given by (1−z)−α =∑
k∈Nd ζkz

k. Thus, the power series equality B(z)× (1− z)−α ×w−1(z) = 1 on the domain Dd

translates to their coefficients into the relation β ∗ ζ ∗ d = δ0, where δ0 is the element of RNd

defined by: [
δ0
]
k

=
{

1 if k = 0,
0 else.

Taking the corresponding Toeplitz hypermatrices, we get G × T (ζ) × T (d) = INd , where INd is
the infinite hypermatrix given by:

[INd ]`k =
{

1 if ` = k,

0 else.

Thus, for m ∈ N∗, we get G−1
m = Tm(ζ) × Tm(d). Taking the Frobenius norm, we obtain the

following inequality: ∥∥G−1
m

∥∥2
F
6
∥∥Tm(ζ)

∥∥2
F
× ρ2(Tm(d)

)
.

From Proposition 7.3, we have:

ρ2(Tm(d)
)

= sup
x∈Rm\{0}

‖Tm(d)x‖2
Rm

‖x‖2
Rm

6 sup
x∈`2(N)\{0}

‖T (d)x‖2
`2

‖x‖2
`2

=
∥∥w−1
|Td
∥∥2
∞,

and by Lemma 7.7, we have ‖Tm(ζ)‖2
F 6 m2α if m > 4.

7.3. Proofs of Section 5
Proof of Theorem 5.2. The proof is identical to the one in Mabon (2017), but we use our Lemma
5.1 instead of Mabon’s proposition 7.1.
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Proof of Lemma 5.1. We will prove that ‖f̂m − fm‖2
L2 can be written as the supremum of an

empirical process, then we will use Talagrand’s inequality (Theorem A.1). Let m ∈ (N∗)d, for
every t ∈ Sm we set:

G−1
m (t) :=

∑
k6m−1

[
G−1
m ×d tm

]
k
ϕk,

where tm ∈ Rm is the matrix of Laguerre coefficients of t. We define the empirical process νn
on the space Sm∗ by:

νn(t) := 1
n

n∑
i=1

(
G−1
m∗(t)(Zi)− E

[
G−1
m∗(t)(Zi)

])
.

Note that Sm∗ contains every Sm as a subspace for m ∈ Mn and because of the triangular
structure of G−1, we have for every t ∈ Sm, G−1

m∗(t) = G−1
m (t). For m ∈Mn, we have then:∥∥f̂m − fm∥∥2

L2 =
∑

k6m−1

(âk − ak)2 =
∑

k6m−1

ν2
n(ϕk).

The map t 7→ νn(t) being linear on Sm and (ϕk)k6m−1 being a basis of Sm, we have by Cauchy–
Schwarz inequality:∑

k6m−1

ν2
n(ϕk) = sup

t∈Bm
ν2
n(t), where Bm :=

{
t ∈ Sm

∣∣ ‖t‖L2 = 1
}
.

Thus, we have: ∥∥f̂m − fm∥∥2
L2 = sup

t∈Bm
ν2
n(t).

We apply Talagrand’s inequality1. We need the constants M,H and v to apply this inequality.

• Computation of M :

sup
t∈Bm

sup
x∈Rd+

∣∣G−1
m (t)(x)

∣∣ = sup
t∈Bm

sup
x∈Rd+

∣∣∣∣∣∣
∑

k6m−1

[
G−1
m ×d tm

]
k
ϕk(x)

∣∣∣∣∣∣
6 2d/2 sup

t∈Bm

∑
k6m−1

∣∣[G−1
m ×d tm

]
k

∣∣
6 2d/2

√
Dm sup

t∈Bm

∥∥G−1
m ×d tm

∥∥
Rm = 2d/2

√
Dm ρ(G−1

m ).

Thus, M2 := 2dDm ρ
2(G−1

m ).

• Computation of H:

E
[

sup
t∈Bm

∣∣νn(t)
∣∣]2

= E
[∥∥f̂m − fm∥∥L2

]2
6 E

[∥∥f̂m − fm∥∥2
L2

]
6
c(g)
√
Dm ρ

2(G−1
m )

n
∧ ‖g‖∞‖G

−1
m ‖2

F

n
,

by Proposition 4.4. Thus, we take:

H2 := c(g)
√
Dm ρ

2(G−1
m )

n
∧ (‖g‖∞ ∨ 1)‖G−1

m ‖2
F

n
.

1this inequality concerns countable families of functions, but it’s not a problem here since νn is continuous
on Sm∗ and Bm is separable.
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• Computation of v:

sup
t∈Bm

Var
(
G−1
m (t)(Z1)

)
6 sup
t∈Bm

E
[
G−1
m (t)(Z1)2] = sup

t∈Bm

∫
Rd+

G−1
m (t)(x)2 h(x) dx

6 ‖h‖∞ sup
t∈Bm

∥∥G−1
m (t)

∥∥2
L2

6 ‖g‖∞ sup
t∈Bm

∥∥G−1
m ×d tm

∥∥2
Rm = ‖g‖∞ ρ2(G−1

m ).

Thus, v := ‖g‖∞ ρ2(G−1
m ).

We consider two cases.
1. “c(g)

√
Dm ρ

2(G−1
m ) 6 (‖g‖∞ ∨ 1)‖G−1

m ‖2
F ” case, then we have:

nH2

v
= c(g)
‖g‖∞

√
Dm,

nH

M
=
√
c(g)

2d/2
√
nD−1/4

m >

√
c(g)

2d/2 n1/4,

since Dm 6 n. For δ > 0, Talagrand’s inequality gives:

E
[(∥∥f̂m − fm∥∥2

L2 − 2(1 + 2δ)H2
)

+

]
.
‖g‖∞ρ2(G−1

m )
n

exp
(
−Kδ c(g)

‖g‖∞

√
Dm

)
+ Dm ρ

2(G−1
m )

C(δ)2 n2 exp
(
−KC(δ)

√
2δ

7

√
c(g)

2d/2 n1/4

)
.

We control the first term using assumption (A3’):∑
m∈Mn

‖g‖∞ρ2(G−1
m )

n
exp

(
−Kδ c(g)

‖g‖∞

√
Dm

)
6
‖g‖∞K(δ)

n
,

where K(δ) is a constant not depending on n. To control the second term, we use that
Dm ρ

2(G−1
m ) 6 n when m ∈Mn:∑

m∈Mn

Dm ρ
2(G−1

m )
C(δ)2 n2 exp

(
−KC(δ)

√
2δ

7

√
c(g)

2d/2 n1/4

)
. exp

(
−K̃(δ)n1/4

)
= o

(
1
n

)
,

so we have our result.
2. “c(g)

√
Dm ρ

2(G−1
m ) > (‖g‖∞ ∨ 1)‖G−1

m ‖2
F ” case, then we have:

nH2

v
= ‖G

−1
m ‖2

F

ρ2(G−1
m )

> 1, nH

M
=
√
n (‖g‖∞ ∨ 1)1/2 ‖G−1

m ‖F
2d/2
√
Dm ρ(G−1

m )
>

√
n

2d/2D
−1/2
m .

Let us show that ρ(G−1
m ) > 1. We notice that 2d/2

b0
is an eigenvalue of G−1

m : indeed, if E0
is the elementary hypermatrix with 1 in position (0, . . . , 0) and zeros elsewhere, then:

G−1
m ×d E0 = 2d/2

b0
E0.

Since the operator norm is bigger than the spectral radius, we have:

ρ(G−1
m ) > 2d/2

b0
= 1

E
[
e−(Y (1)

1 +···+Y (d)
1 )
] > 1.
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Thus, if m ∈Mn we have Dm 6 Dm ρ
2(G−1

m ) 6 n
logn . Therefore,

nH
M >

√
logn

2d/2 .
We apply Talagrand’s inequality with δ = a logn and a > 0 to be chosen later:

E
[(∥∥f̂m − fm∥∥2

L2 − 2(1 + 2a logn)H2
)

+

]
.

‖g‖∞ρ2(G−1
m )

n

1
nKa

+ Dm ρ
2(G−1

m )
C(a logn)2 n2 exp

(
−KC(a logn)

√
2a

7
logn
2d/2

)
.

We assume that2 n > exp(3/a), such that C(a logn) = 1. Then:

E
[(∥∥f̂m − fm∥∥2

L2 − 2(1 + 2a logn)H2
)

+

]
.
‖g‖∞ρ2(G−1

m )
n1+Ka

+ Dm ρ
2(G−1

m )
n2 exp

(
− K

√
2a

7× 2d/2 logn
)
.

We control the first term using that if m ∈Mn then ρ2(G−1
m ) 6 n:∑

m∈Mn

‖g‖∞ρ2(G−1
m )

n1+Ka 6
‖g‖∞
nKa−1 6

‖g‖∞
n

,

if a > 2/K = 12. To control the second term, we use that if m ∈Mn then Dm ρ
2(G−1

m ) 6
n: ∑

m∈Mn

Dm ρ
2(G−1

m )
n2 exp

(
− K

√
2a

7× 2d/2 logn
)

6 n
− K

√
2a

7×2d/2 6
1
n

if a > 2d×72

2K2 .

Proof of Theorem 5.3. Let m ∈Mn,

‖f̂m̂ − f‖2
L2 6 3‖f̂m̂ − f̂m∧m̂‖2

L2 + 3‖f̂m∧m̂ − f̂m‖2
L2 + 3‖f̂m − f‖2

L2 . (23)

By definition of A(m) and m̂, and since κ1 6 κ2, we get:

‖f̂m̂ − f̂m∧m̂‖2
L2 + ‖f̂m∧m̂ − f̂m‖2

L2 6 A(m) + κ1V (m̂) +A(m̂) + κ1V (m)
6 2A(m) + (κ1 + κ2)V (m).

Thus, by taking the expectation in (23) and using Proposition 4.4, we obtain:

E
[
‖f̂m̂ − f‖2

L2

]
6 6E[A(m)] + 3(κ1 + κ2)V (m) + 3

(
‖f − fm‖2

L2 + V (m)
)
. (24)

Now, we need to control E[A(m)]. Let m′ ∈Mn.

‖f̂m′ − f̂m∧m′‖2
L2 6 3‖f̂m′ − fm′‖2

L2 + 3‖fm′ − fm∧m′‖2
L2 + 3‖fm∧m′ − f̂m∧m′‖2

L2 .

Thus,

A(m) 6 3
[

max
m′∈Mn

(
‖f̂m′ − fm′‖2

L2 −
κ1

6 V (m′)
)

+

+ max
m′∈Mn

(
‖fm∧m′ − f̂m∧m′‖2

L2 −
κ1

6 V (m′)
)

+
+ max
m′∈Mn

‖fm′ − fm∧m′‖2
L2

]
.

(25)

We denote these three terms T1, T2(m) and T3(m), in that order.

2actually, we assume later that a > 12, so there is no assumptions on n after all.
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Bound on E[T1]. We control the maximum by the sum on all terms:

T1 6
∑

m′∈Mn

(
‖f̂m′ − fm′‖2

L2 −
κ1

6 V (m′)
)

+
.

By Lemma 5.1, there exist κ0 such that for every choice of κ1 > κ0, E[T1] 6 C/n for some
constant C depending on κ1 and g.

Bound on E[T2(m)]. We decompose the maximum by looking at which indices j we have m′j <
mj :

T2(m) = max
J⊆{1,...,d}

max
m′∈Mn

{j |m′j<mj}=J

(
‖fm∧m′ − f̂m∧m′‖2

L2 −
κ1

6 V (m′)
)

+

6 max
J⊆{1,...,d}

max
m′∈Mn

{j |m′j<mj}=J

(
‖fm∧m′ − f̂m∧m′‖2

L2 −
κ1

6 V (m ∧m′)
)

+
, (26)

since V is non-decreasing in its arguments. For J ⊆ {1, . . . , d} fixed, we introduce the collection:

Mn(m,J) := {m′ ∈Mn | ∀j ∈ J, m′j < mj and ∀j /∈ J, m′j = mj}.

Then we notice that {j |m′j < mj} = J if and only if m ∧m′ ∈Mn(m,J). So (26) becomes:

T2(m) 6 max
J⊆{1,...,d}

max
m′∈Mn(m,J)

(
‖fm′ − f̂m′‖2

L2 −
κ1

6 V (m′)
)

+

6 2d
∑

m′∈Mn

(
‖fm′ − f̂m′‖2

L2 −
κ1

6 V (m′)
)

+
.

Then, as we did with T1, we have for every choice of κ1 > κ0, E[T2(m)] 6 2d × C/n.

Bound on T3(m). For m′ ∈Mn fixed, let Jm,m′ := {j |mj < m′j} and let Sm,m′ be the following
closed subspace of L2(Rd+):

Sm,m′ := Span{ϕk : k ∈ Nd and ∀j ∈ Jm,m′ , kj 6 mj − 1}.

Then we notice that Sm′ ∩ Sm,m′ = Sm∧m′ and that Sm ⊆ Sm,m′ . We denote by Πm′ the
projection on Sm′ and Πm,m′ the projection on Sm,m′ . Then, because Πm′ is 1-lipschitz,∥∥fm′ − fm∧m′∥∥2

L2 =
∥∥Πm′(f −Πm,m′f)

∥∥2
L2 6

∥∥f −Πm,m′f
∥∥2

L2 6
∥∥f − fm∥∥2

L2 ,

where the last inequality comes from the definition of the projection on Sm,m′ . So T3(m) is
controlled by the bias term ‖f − fm‖2

L2 .

End of the proof. We use the bounds on E[T1], E[T2(m)] and T3(m) to control E[A(m)] in (24):

E
[
‖f − f̂m̂‖2

L2

]
6 9 ‖f − fm‖2

L2 + 3(1 + κ1 + κ2)V (m) + 6(1 + 2d)C
n

.

Since this bound holds for every m ∈Mn, we get:

E
[
‖f − f̂m̂‖2

L2

]
6 max{9, 3(1 + κ1 + κ2)} inf

m∈Mn

(
‖f − fm‖2

L2 + V (m)
)

+ 6(1 + 2d)C
n

.
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Appendix A. Talagrand’s inequality

This concentration inequality is derived from the work of Klein and Rio (2005). A proof can be
found in the PhD thesis of Chagny (2013a, chapter 2).

Theorem A.1 (Talagrand’s inequality). Let n ∈ N∗ and let F be a set at most countable of
measurable functions on a polish space E. Let ξ1, . . . , ξn be independent random variables with
values in E. We consider νn the centred empirical process defined by:

νn(f) := 1
n

n∑
i=1

(
f(ξi)− E[f(ξi)]

)
, f ∈ F .

We assume that there exists three positive constants M , H and v such that:

sup
f∈F
‖f‖∞ 6M, E

[
sup
f∈F

∣∣νn(f)
∣∣] 6 H, sup

f∈F

1
n

n∑
i=1

Var
(
f(ξi)

)
6 v.

Then for every δ > 0, we have the following inequality:

E

[(
sup
f∈F

ν2
n(f)− 2(1 + 2δ)H2

)
+

]
6

4
K

(
v

n
e−Kδ nH

2
v + 49M2

K C(δ)2 n2 e−
KC(δ)

√
2δ

7
nH
M

)
,

with C(δ) :=
(√

1 + δ − 1
)
∧ 1 and K = 1/6.
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