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The OceanGliders program started in 2016 to support active coordination and

enhancement of global glider activity. OceanGliders contributes to the international

efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and

Operational Services. It brings together marine scientists and engineers operating gliders

around the world: (1) to observe the long-term physical, biogeochemical, and biological

ocean processes and phenomena that are relevant for societal applications; and, (2) to

contribute to the GOOS through real-time and delayed mode data dissemination. The

OceanGliders program is distributed across national and regional observing systems and

significantly contributes to integrated, multi-scale and multi-platform sampling strategies.

OceanGliders shares best practices, requirements, and scientific knowledge needed for

glider operations, data collection and analysis. It also monitors global glider activity and

supports the dissemination of glider data through regional and global databases, in real-

time and delayed modes, facilitating data access to the wider community. OceanGliders

currently supports national, regional and global initiatives to maintain and expand the

capabilities and application of gliders to meet key global challenges such as improved

measurement of ocean boundary currents, water transformation and storm forecast.

Keywords: in situ ocean observing systems, gliders, boundary currents, storms, water transformation, ocean

data management, autonomous oceanic platforms, GOOS

INTRODUCTION

The ocean is an important component of the global earth system
influencing the global/regional climate, weather, ecosystems,
living resources and biodiversity. The ocean plays a major role
in many human activities including coastal protection, tourism,
search and rescue, defense and security, shipping, aquaculture
and fisheries, offshore industry and marine renewable energy.
Ocean observation serves to enable us to better understand
ocean functions and to meet the societal needs related
to these activities. The Intergovernmental Oceanographic

Commission (IOC of UNESCO) developed the Global Ocean

Observing System (GOOS) more than two decades ago to

coordinate the different national efforts in terms of sustained

ocean observations throughout the world and to maximize

the societal benefits of ocean observations. The GOOS has

three observation panels for the development of observing

strategies for climate, biogeochemistry and biology/ecosystems
and the Observation Coordination group (OCG) of the
World Meteorological Organization (WMO)/Intergovernmental
Oceanographic Commission (IOC) Joint Commission on
Oceanography and Marine Meteorology (JCOMM) for technical
coordination of on-going observations. GOOS also serves as
the ocean component of the Global Climate Observing system
(GCOS). It is implemented through GOOS Regional Alliances
and supported by a wide range of bodies, such as the Committee
on Earth Observing Satellites (CEOS), the Partnership for
Observation of the Global Ocean (POGO) and the GEO Blue
Planet initiative.

The OceanObs’99 conference stimulated the first design of the
GOOS and 10 years later, the OceanObs’09 conference assessed
the progress made in implementing the GOOS. At that time, an
international consensus was reached on how the GOOS should
continue to evolve. Discussions around the GOOS highlighted

Frontiers in Marine Science | www.frontiersin.org 2 October 2019 | Volume 6 | Article 422

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Testor et al. OceanGliders: A Component of the Integrated GOOS

the tremendous potential value for physical, biogeochemical, and
biological observations, particularly in the transition between the
open ocean and the coastal environment, which is a key area for
societal issues, economical applications and at the same time is a
prime area for autonomous underwater glider (Davis et al., 2002)
observations. Gliders were considered in this global framework
from the very beginning. Developed in the 1980–1990s (Lee
and Rudnick, 2018), they arose from the vision that a network
of small, intelligent, mobile and cheap observing platforms
could fill sampling gaps left by the other ocean observing
platforms (Stommel, 1989). This idea was first discussed at
OceanObs’99 (see Conference Statement1), when the technology
was immature, and further developed at OceanObs’09, when the
technology was still maturing but poised to make a substantial
contribution to global ocean observing (Testor et al., 2010). It
was agreed that gliders could fill important gaps left by other
observing systems and thus greatly enhance the GOOS if fully
integrated into the system, and recommendations were made for
the next decade.

Progress Over the Last Decade
Since OceanObs’09, autonomous underwater gliders have
reached a mature state and are now operated routinely. They
offer persistent fine resolution observations in the coastal and
open ocean, even at high latitudes (at least during summer
months). Typically, gliders profile from the surface to the
bottom, or to 200–1,000m depth, taking 0.5–6 h to complete
a cycle from the surface to depth and back. During that time
they travel 0.5–6 km horizontally at speeds of about 1 km/h,
even during very severe weather conditions. Deployments of
about a year are now possible, with deployments of 3–6
months now routine, and survey tracks extending over 1,000s
kilometers. Sensors on gliders measure physical variables such
as pressure, temperature, salinity, currents, turbulence and wind
speed (Cauchy et al., 2018), biological variables relevant to
phytoplankton and zooplankton, and ecologically important
chemical variables such as dissolved oxygen, irradiance, carbon
dioxide, pH (Saba et al., 2018), nitrate and hydrocarbon. Gliders
have been developed to sample under-sea ice and ice shelves
(Webster et al., 2015; Nelson et al., 2016; Lee et al., 2017), to
recover data from other deep instruments via acoustic telemetry
and send them to land while at the surface (Send et al., 2013),
to detect acoustic tags on fishes (Oliver et al., 2013, 2017) and
marine mammals. Improved gliders have reached depths of up to
6,000m (Osse and Eriksen, 2007). All these improvements greatly
open up the range of possible applications.

Their unique sampling capacities (high resolution and long
term) are especially suitable for some key oceanic phenomena.
They have yielded major scientific breakthroughs, revealing
new insights into ocean physical, biogeochemical and biological
processes. In particular, there are new results on (1) high latitudes
oceanography, air-sea-ice interactions and intermediate/deep
convection, (2) the variability of boundary currents, (3)
(sub)mesoscale processes, (4) phytoplankton phenology and
biogeochemistry, (5) higher trophic levels and biology, (6)
shallow and marginal seas, (7) climate and variability of the

1http://www.oceanobs09.net/work/oo99.php

water column, (8) internal waves, turbulence, tides, diffusivity
and vertical mixing, and (9) particles fluxes and sedimentology
(see Table 1).

Glider data are used for many applications in ocean physics,
chemistry and biology (Rudnick, 2016). Glider data management
by the scientific community has made data available to the public
in real time for classical measured variables. Ocean numerical
modeling and forecast activities already benefit from these data
(Table 1). Models of ocean circulation, particularly for regional
and coastal domains, have benefited from glider data in terms
of validation and data assimilation, particularly in regional and
coastal models. Glider data can improve hurricane intensity
forecast models and has led to major results in ocean forecasting,
weather forecasting including hurricane intensity, climatologies,
and state estimates.

Underwater gliders will enable us to enter a new era of
ocean observation and state estimates more effectively, meeting
the needs of society and marine researchers. Gliders are a vital
component in the portfolio of ocean observing platforms for
most of the national ocean observation agencies. These agencies
have invested in developing glider observing capability, and there
are now about 400–500 gliders in the world actively being used to
better observe the ocean (it is difficult to have exact numbers but
based on our community knowledge we estimate ∼250 gliders
in the USA; ∼100 in Europe; ∼50 in China; ∼30 in Australia;
∼30 in Canada; 9 in Mexico; 9 in South Korea; 5 in South
Africa; 3 in Israel; 3 in Peru; 2 in New Zealand; 2 in India, 2 in
Taiwan, etc.). Glider technology has also been used by the private
sector during the last decade for applications in pollution events,
defense, environment, and the offshore industry (Fragoso et al.,
2016).

The Evolution of a Glider
Observing Community-OceanGliders
Today, underwater gliders are operated by many teams around
the world that have developed end-to-end systems able to steer
their gliders and collect their data through their own facilities
and Iridium satellite-based communications. Glider deployments
are challenging because they must be managed in real-time
throughout their deployment with the two-way communications
needed for active piloting by the different operating teams.
Glider technology requires a high level of expertise on the
scientific and technological aspects in order to effectively operate
the vehicles. Thanks to networking, coordination and capacity-
building, training, liaison between providers and users, advocacy,
and provision of expert advice, the global glider community
has become more organized, grown rapidly, and responded to
some of the system challenges. The idea for a glider community
emerged in October 2005 at the first “EGO (Everyone’s Gliding
Observatories) Workshop and Glider School” and since then,
collaborations have further developed. EGO Workshops and
Glider Schools have been organized on an annual basis, to present
and discuss scientific and technological issues, and to train
and engage new users and countries worldwide. The formation
of a user group and global coordination has improved glider
operational reliability and data management, and resulted in
improved glider monitoring, ocean observing and developments
of the glider platform. Over the last decade, this coordination
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TABLE 1 | Highlights on results during the past decade using the glider technology.

High latitudes oceanography,

air-sea-ice interactions, or

intermediate/deep convection

Beszczynska-Möller et al., 2011; Frajka-Williams et al., 2011; Beaird et al., 2012, 2013; Evans et al., 2013; Fan et al., 2013;

Høydalsvik et al., 2013; Kohut et al., 2013; Queste et al., 2013; Guihen et al., 2014; Heywood et al., 2014; Carvalho et al., 2016;

Houpert et al., 2016; Nelson et al., 2016; Azaneu et al., 2017; Couto et al., 2017; Jones and Smith, 2017; Lee et al., 2017;

Timmermans and Winsor, 2013; Weingartner et al., 2013; Thompson et al., 2014; Ullgren et al., 2014; Venables and Meredith,

2014; Schofield et al., 2015; Swart et al., 2015; Thomalla et al., 2015; Testor et al., 2018; Våge et al., 2018; Viglione et al., 2018

Variability of boundary currents Pascual et al., 2010; Pattiaratchi et al., 2010, 2017; Ramp et al., 2011; Todd et al., 2011a,b, 2016, 2018; Albretsen et al., 2012;

Davis et al., 2012; McClatchie et al., 2012; Sherwin et al., 2012; Høydalsvik et al., 2013; Johnston et al., 2013; Lien et al., 2014,

2015; Pietri et al., 2014; Schaeffer and Roughan, 2015; Schönau et al., 2015; Yang et al., 2015; Lee et al., 2016; Mensah et al.,

2016; Schaeffer et al., 2016a; Zaba and Rudnick, 2016; Andres et al., 2017; Anutaliya et al., 2017; Durand et al., 2017; Todd,

2017; Todd and Locke-Wynn, 2017; Aulicino et al., 2018; Houpert et al., 2018; Krug et al., 2018; Seim and Edwards, 2019

Mesoscale and submesoscale

processes

Bouffard et al., 2010, 2012; Baird et al., 2011; Baird and Ridgway, 2012; Heslop et al., 2012; Mahadevan et al., 2012; Ruiz

et al., 2012; Todd et al., 2012, 2013; Alvarez et al., 2013; Pelland et al., 2013, 2014, 2016, 2018; Pietri et al., 2013; Piterbarg

et al., 2013; Timmermans and Winsor, 2013; Caldeira et al., 2014; Hristova et al., 2014; Bosse et al., 2015, 2016; Everett et al.,

2015; Farrar et al., 2015; Omand et al., 2015; Schönau and Rudnick, 2015, 2017; Sherwin et al., 2015; Borrione et al., 2016;

Caballero et al., 2016; Freitas et al., 2016; Mauri et al., 2016; Thompson et al., 2016; Thomsen et al., 2016; Brannigan et al.,

2017; Buffett et al., 2017; Du Plessis et al., 2017; Gourdeau et al., 2017; Itoh and Rudnick, 2017; Karstensen et al., 2017;

Kokkini et al., 2017; Krug et al., 2017; Mancero-Mosquera et al., 2017; Margirier et al., 2017; Morrow et al., 2017; Pascual et al.,

2017; Ruan et al., 2017; Yu et al., 2017; Zacharia et al., 2017; Gula et al., 2019

Phytoplankton phenology and

biogeochemistry

Asper et al., 2011; Briggs et al., 2011; Martin et al., 2011; Xu et al., 2011; Alkire et al., 2012, 2014; Cetinić et al., 2012, 2015;

Pierce et al., 2012; Gower et al., 2013; Zhao et al., 2013; Foloni-Neto et al., 2014; Kaufman et al., 2014, 2017; Olita et al., 2014,

2017; Biddle et al., 2015; Evans et al., 2015; Hemsley et al., 2015; Nicholson et al., 2015; Queste et al., 2015; Seegers et al.,

2015; Adams et al., 2016; Cotroneo et al., 2016; Fiedler et al., 2016; Jacox et al., 2016; Loginova et al., 2016; Pizarro et al.,

2016; Porter et al., 2016; Schaeffer et al., 2016b; Schuette et al., 2016; Thomsen et al., 2016; Bosse et al., 2017; Hemming

et al., 2017; Mayot et al., 2017; Ross et al., 2017; Thomalla et al., 2017; Little et al., 2018

Higher trophic levels and biology Kahl et al., 2010; Klinck et al., 2012; McClatchie et al., 2012; Powell and Ohman, 2012, 2015; Wall et al., 2012; Baumgartner

et al., 2013, 2014; Ohman et al., 2013; Oliver et al., 2013; Guihen et al., 2014; Kohut et al., 2014a; Pelland et al., 2014; Ainley

et al., 2015; Goericke and Ohman, 2015; Swart et al., 2016; Kusel et al., 2017; Taylor and Lembke, 2017; Benoit-Bird et al.,

2018; Chave et al., 2018

Shallow and marginal seas Castelao et al., 2010; Shulman et al., 2010; Karstensen et al., 2014; Kohut et al., 2014b; Mazzini et al., 2014; Schaeffer et al.,

2014; Piero Mazzini et al., 2015; Qiu et al., 2015; Dever et al., 2016; Mahjabin et al., 2016; Saldias et al., 2016; Heslop et al.,

2017; Zarokanellos et al., 2017

Climate and variability of the

water column

Cole and Rudnick, 2012; Schlundt et al., 2014; Domingues et al., 2015; Farrar et al., 2015; Houpert et al., 2015; Damerell et al.,

2016; Schaeffer et al., 2016a; Rudnick et al., 2017; Portela et al., 2018

Internal waves, turbulence, tides,

diffusivity and vertical mixing

Alford et al., 2012; Thorpe, 2012; Beaird et al., 2013; Johnston et al., 2013; Rainville et al., 2013, 2017; Fer et al., 2014;

Peterson and Fer, 2014; Boettger et al., 2015; Cronin et al., 2015; Johnston and Rudnick, 2015; Palmer et al., 2015; Klymak

et al., 2016; Hall et al., 2017; Schultze et al., 2017; St Laurent and Merrifield, 2017; Todd, 2017; Evans et al., 2018; Ma et al.,

2018; Scheifele et al., 2018

Particles fluxes and

sedimentology

Briggs et al., 2011; Miles et al., 2013; Bourrin et al., 2015; Omand et al., 2015; Many et al., 2016; Churnside et al., 2017;

Durrieu de Madron et al., 2017

Ocean forecasting, climatology,

and state estimates

Dobricic et al., 2010; Oke et al., 2010, 2015; Zhang et al., 2010a,b; Chudong et al., 2011; Ramp et al., 2011; Todd et al.,

2011a, 2012; Yaremchuk et al., 2011; Jones et al., 2012; Melet et al., 2012; Mourre and Alvarez, 2012; Gangopadhyay et al.,

2013; L’Heveder et al., 2013; Li et al., 2013; Rayburn and Kamenkovich, 2013; Wilkin and Hunter, 2013; Alvarez and Mourre,

2014; Chen et al., 2014; Drillet et al., 2014; Mourre and Chiggiato, 2014; Ngodock and Carrier, 2014; Pan et al., 2014, 2017;

Durski et al., 2015; Miles et al., 2015; Rudnick et al., 2015; Estournel et al., 2016a,b; Fragoso et al., 2016; Kerry et al., 2016,

2018; Chao et al., 2017a,b; Damien et al., 2017; Dong et al., 2017; Goni et al., 2017; Halliwell et al., 2017; Kurapov et al., 2017;

Onken, 2017; Todd and Locke-Wynn, 2017; Verdy et al., 2017

activity has also developed nationally and regionally. Many
national facilities have been established to serve their national
communities such as the IMOS (Integrated Marine Observing
System) Ocean Gliders facility, Ocean Gliders Canada, GMOG
(Grupo de Monitoreo Oceanográfico con Gliders) in Mexico,
MARS (Marine Autonomous and Robotic Systems) in the UK,
Norwegian National Facility for Ocean Gliders (NorGliders) in
Norway, “Parc National de Gliders” in France, etc. Glider groups
have also been set up for coordination within integrated ocean
observation initiatives such as the Integrated Ocean Observing
System (IOOS), the IntegratedMarine Observing System (IMOS)
and the European Ocean Observing System (EOOS)/EuroGOOS.

There are now several levels of coordination and this greatly
facilitates scientific and technological exchanges between glider
operators and users, in academia and industry.

Building on this diverse community, the OceanGliders
program started in September 2016 at the 7th EGO conference.
It was set up in recognition of the maturity of the glider
systems and their potential role in the GOOS in coming years.
The OceanGliders program as a component of the GOOS was
approved by the Joint WMO-IOC Technical Commission for
Oceanography and Marine Meteorology (JCOMM) at their 5th
Intergovernmental Session in October 2017 and theOceanGliders
Steering Team reports to OCG. Here we review the progress
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made in implementing a glider component of the GOOS, one
of the key recommendations from OceanObs’09, present the
recently established program and components, and offer a vision
for the coming decade.

MOVING FROM THE REGIONAL TO THE
GLOBAL

The progress of gliders in moving from a developing to a mature
technology is exemplified by the programs that have been run
continuously for over 10 years, for example, in the California
Current (Adams et al., 2016; Rudnick et al., 2017), and the
Solomon Sea (Davis et al., 2012). Long-term observations lasting
several years are becoming widespread (Heslop et al., 2012;
Schaeffer et al., 2016a; Yu et al., 2017; Du Plessis et al., 2019).
The capability to sustain these programs relies on the improved
dependability of gliders (Brito et al., 2014; Rudnick et al., 2016a;
Brito and Griffiths, 2018) and the experience, skill and confidence
of the operators. The success of these projects can be summarized
in the likelihood of a glider completing a desired mission, and
the fraction of the time that a glider is in the water. Typical
success rates of 0.9 have been achieved by experienced teams. The
delivery of data from gliders in real time has become routine, with
main glider data assembly centers in Europe (EGO/Coriolis2),
Australia (IMOS3), and the USA (IOOS4).

Underwater gliders play a special role in observing systems
designed to support regional modeling activities, because gliders
generate many profiles at controlled locations. The potential for
glider development was recognized quite early on, leading to the
influential Autonomous Ocean Sampling Network (Ramp et al.,
2009). Glider data are often used with models for two purposes:
(1) verification, meaning to evaluate model output for fidelity to
the ocean; and/or, (2) assimilation, the use of data to constrain
model output (Edwards et al., 2015; Hayes et al., 2019). Models
can either (1) forecast ocean variables in advance of any access
to data for verification; or (2) hindcast to deliver state estimates
that use data to create a complete set of ocean variables. Many
combinations of using glider data for verification or assimilation
of forecast or hindcast models have been tried in many regions
around the world. For example, off California, Kurapov et al.
(2017) used glider data (Rudnick et al., 2017) to verify a forecast
model, while Chao et al. (2018) assimilated the same glider data to
create forecasts. Temperature and salinity data from these gliders
were assimilated into a state estimate (Todd et al., 2011a, 2012;
Zaba et al., 2018), while velocity data were not assimilated so they
could be used for verification. In the Mediterranean, Dobricic
et al. (2010) showed the large-scale impact of the repetition of
a glider section and in particular when depth-average currents
were also assimilated while Mourre and Chiggiato (2014) and
Onken (2017) assimilated glider data for a forecast and verified
against data from a ship survey. A state estimate of the tropical
Pacific (Verdy et al., 2017) was verified against withheld glider

2http://www.coriolis.eu.org/Data-Products/Catalogue#/metadata/589bfa51-

2219-4cc8-a19e-83f3c3f27bb4
3https://portal.aodn.org.au/
4https://gliders.ioos.us/data/

observations on either side of the Pacific basin. These examples
illustrate the character of recent work. Ongoing work is expected
to improve regional observing modeling in the coming decade.

Underwater gliders are especially well-suited for sustained,
fine-spatial-resolution observations near the ocean boundaries.
They allow cross-front measurements to help resolve
mesoscale/sub-mesoscale fronts and associated shear-driven
instabilities in both the coastal and open ocean. The long
times for deployments of gliders are possible because they
move slowly (10s cm/s) and because energy lost to drag is
proportional to the cube of the speed through water. Gliders
must profile continuously in order to make way through water,
so fine resolution in the order of a few kilometers is common.
Gliders can be deployed and recovered from small boats, thereby
minimizing costs and allowing flexible operation. Sustained, fine-
resolution operations near boundaries are ideal for monitoring
the regional effects of climate variability. Gliders fill the gap
between the coast and the open ocean, as tracks of thousands of
kilometers are typical, making traversing the 200 nautical mile
Exclusive Economic Zone practical. Gliders could revolutionize
regional oceanographic observing just as Argo did for observing
the open ocean over the last two decades.

OceanGliders Terms of Reference
The international OceanGliders program was created as a
component of the GOOS with the broad goals of strengthening
the glider community (users, scientists, engineers, operators,
manufacturers) and facilitating the sustained worldwide use
of gliders for the benefit of society and science5. An initial
structure and set of governance rules were agreed upon, as well
as more detailed ways to maintain and develop the program,
briefly summarized in Table 2. Because of their proven ability
to fill gaps and needs in the existing observation system, gliders
are on the cusp of a transition from isolated, regional use by
a few expert teams, to widespread use around the globe by
coordinated groups with a wider range of applications. The glider
community has realized the many benefits of sharing expertise,
best practices, data, and even infrastructure components among
existing and newmembers. Providing a global program, in which
new ideas can be discussed and coordinated for larger-scale
adoption, will turn regional efforts into integrated global efforts.
This fits perfectly into the GOOS mission to promote feasible,
high-impact observing programs.

Data Management
OceanGliders targets high-impact, societally-relevant, science-
based observing through a number of initial scientific Task
Teams (OceanGliders TT). They are developed in the following
section, but one Task Team in particular relates to the smooth,
coordinated functioning of each TT with each other and with
the rest of the GOOS: the data management TT. This team aims
to address the needs of long-term observation aspects of data
management, benefiting the wider community, supporting and
encouraging scientists designing and executing process studies, as
well as engineers developing new gliders, sensors, and computing

5https://www.ego-network.org/dokuwiki/doku.php?id=public:goosgstt
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TABLE 2 | Summary of OceanGliders terms of reference and objectives.

Purpose To provide scientific leadership to promote and strengthen

the glider community and facilitate their sustained use

globally in order to respond to the integrated requirements

of the Global Ocean Observing system (GOOS). Oversee

the development and implementation of a global-scale

glider array for observing key regions of the ocean on the

long term, based on national and regional projects (https://

www.ego-network.org/dokuwiki/lib/exe/fetch.php?media=

public:gst:glider-st_tor.pdf)

Membership Anyone willing to contribute to the different Task Teams is

considered as a member, keeping in mind the focus on

developing sustained glider activity and the “Framework for

Ocean Observing.”

Steering Team Reflect and represent the sustained glider activity and to

drive OceanGliders toward its goal of filling gaps in

GOOS/GCOS

Exec Committee Chair, co-Chair, Task Teams Leaders and GOOS advisor

Task Teams Design network, define targets for Task Teams missions

(optimum strategy)

Define science implementation plans

Describe scientific requirements and societal requirements

Describe the global costs and cost-effectiveness

Define the contribution of Task Teams in a multi-platform

system designed to address scientific and societal issues,

including unique roles of gliders

Meetings Annual Steering Committee meetings

technologies to participate in metadata and data management.
Data management implies not only data repositories of a
certain standard, but the guidance and coordination in the
development of new standards and best practices (Pearlman et al.,
2019) for data collection, processing, and quality control. Data
management requires metadata and its description, storage, and
access. One of the benefits of coordination will be improved and
sustained quality control of glider data.

Network Monitoring and Data Dissemination
One main goal for glider operators is to make data publicly
available and in particular to publish data in near-real time on
the GTS (Global Telecommunication System) and in CF (Climate
and Forecast) compliant formats for operational services. They
provide their metadata and data to a Data Assembly Center
(DAC) in charge of the data management and linked to a
Global Data Assembly Center (GDAC) for further dissemination
and archive. Three de facto GDACs are currently operating:
Australia (IMOS), Europe and partners (EGO/Coriolis), and the
United States (IOOS). Each GDAC has adopted similar strategies
and conventions: CF-compliant NetCDF observation file formats
can be uploaded by operators, and public sites and tools are
provided for downloading and visualization. There are minor
differences in formats, and the implementation of tools for raw
file conversion, discovery, download and visualization varies
widely. Numerous regional and local efforts have developed
important tools but this has made it painfully obvious that
coordination is needed for global-scale visibility and availability
of ocean observations of known quality control. Initial efforts
by IMOS, EGO/Coriolis and IOOS at collecting daily glider data

illustrate some of the extent of glider activity worldwide over the
past decade (Figures 1, 2). This also represents the commitments
from glider teams that have fed these systems, showing most of
the glider deployments carried out so far in the world. The next
step of unifying and providing data seamlessly from any region
through one portal must be simpler. Already, the three GDACs
have shared detailed information on how to upload, discover,
download, and visualize using their tools. Simplifications have
been made to provide easy access among the GDACs. This
information will be centralized as in Figure 3 and accessible on
the OceanGliders website www.oceangliders.org and will be an
important tool to monitor global glider activity and promote
its objectives.

The first dedicated global glider data management meeting
has stimulated further developments (Genova, Italy, 17–
19 September, 2018). Besides sharing expertise and latest
developments at the regional level, this meeting produced a
global consensus about how glider data can be made more useful
to society, considering both historical and near real time data
sets, now and in the future. Short-term goals include: setting up a
solution to access all glider data in a single format; define indices
for glider activity monitoring; handling the real time and delayed
mode quality controls and assessments at the global level. Further
development and sharing of best practices on data and metadata
management are key for the OceanGliders Data Management
Task Team. To that end, there is now a new central directory at
www.oceanbestpractices.net, hosted by IODE, for OceanGliders.

Glider-specific tools have been developed at the GDAC and
regional/institutional (or DAC) level to complement the other
elements of the GOOS. The unique trajectory character of glider
data, and of the wide range of metadata can cause these tools to be
quite complex. Even the familiar concepts of “cruise,” “mission,”
“transect,” and “profile” do not adequately describe the nature of
glider flight and programmable behavior in real time.

There are too many to exhaustively list here, but notable
examples include: GliderScope6 (Hanson et al., 2017), IOOS7,
EGO GFCP8, NorGliders GliderPage9, SOCIB10 (Troupin
et al., 2015), MARS11, and GANDALF12. Going forward,
standardized data and metadata interfaces will benefit the future
development of such tools and enable easier, global access
to the full set of quality-controlled glider data and metadata
[e.g., the Sensor Web Enablement framework and associated
standards (Bröring et al., 2017)].

Emerging Requirements
Glider data management will need to encompass developments
within the glider networks, the GOOS and outside of the
oceanographic domain in order to anticipate future changes
in global data management. The implementation of Findable-
Accessible-Interoperable-Reusable (FAIR) data principles is a

6http://imos.org.au/gliderscope/
7https://gliders.ioos.us/map/
8https://www.ego-network.org/dokuwiki/doku.php
9http://gp.gfi.uib.no
10http://www.socib.eu/?seccion=observingFacilities&facility=glider
11https://mars.noc.ac.uk/
12http://gandalf.gcoos.org
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FIGURE 1 | Development of the glider activity over the past decade. Gliders tracks of past deployments (left) until December 2009 (OceanObs’09) and (right) until

October 2018 (OceanObs’19 submissions), as can be viewed using google-earth.

common theme in environmental data management and will
place demands for development on glider data infrastructure
(Tanhua et al., 2019). The integration of data from different
networks within the GOOS and the implementation of
new Essential Ocean Variables (EOVs) are also emerging
as requirements. Furthermore, additional demands on data
management will emerge with such as automated piloting (e.g.,
Chang et al., 2015; Smedstad et al., 2015) and operational glider
network monitoring technologies.

ADDRESSING GLOBAL
OBSERVING NEEDS

The OceanGliders group met to discuss possible areas of focus
and beyond the central need for improved data management,
identified three key areas of focus for the developing program.
These areas of interest were organized into Task Teams (TT)
whose goals are to address the societal needs for ocean data and to
entrain the community into discussions around the role of gliders
in meeting these needs. It is expected that the mission-based TTs
will organically develop by organizing the different initiatives into
integrated and coordinated global efforts.

Boundary Currents
Society experiences changes in the global ocean at the ocean’s
boundaries. These boundary regions are the nexus of societal
use of the ocean for fisheries, transportation, and recreation. The
boundary regions are also where the intense ocean currents are
key to the transport of mass, heat, salt, biogeochemical variables
and plankton. In the large ocean basins, the subtropical western
boundary currents dominate the surface poleward transport of
warm water or equatorward transport of cold water at depth

and are major drivers of climate variability. Subtropical eastern
boundary currents are often upwelling systems that comprise
some of the most biologically productive regions in the world
and host the world’s Oxygen Minimum Zones (OMZ). Subpolar
eastern boundary currents induce significant poleward heat
transport in the downwelling eastern part of the subpolar gyres.
Boundary currents in marginal seas provide the major means of
exchange with the open ocean and impact regional ecosystems.
Finally, the communication between the coast and open ocean
is regulated by the boundary currents that flow along the

continental slopes, affecting ecosystems, flood levels, erosion

and commercial activity. To summarize, there is a great need
for sustained observations of these highly dynamic boundary
current regions.

Underwater gliders are particularly effective at measuring

and monitoring subsurface biogeochemical fields that are both

key to marine ecosystem productivity and involved in some

of the most pressing ocean challenges like ocean acidification

and hypoxia. For instance, glider capabilities are well-suited to
sample the upwelling source waters transported to the edge of the

continental shelf by eastern boundary currents. Recent studies in

the Pacific and Atlantic reveal details of the spatial structure and
time evolution of, for example, low-oxygen zones in such regions
(Pierce et al., 2012; Pietri et al., 2013; Adams et al., 2016; Pizarro
et al., 2016; Thomsen et al., 2016; Karstensen et al., 2017).

From their earliest conception, underwater gliders were
viewed as components of observing/modeling systems, and
progress over the past decade has proven the efficacy of this
approach. The data provided by underwater gliders are a
natural match for regional models of coastal ocean circulation.
These regional models are necessary, as the currents and water
properties in the coastal ocean vary on the relatively small scales
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FIGURE 2 | Gliders tracks of past deployments until October 2018 (OceanObs’19 submissions), as can be viewed using google-earth from different locations.

set by topography. Accurate forecasting depends on initialization
on these small scales, which can be satisfied by a network
of gliders.

Themost widespread application of sustained glider programs
has been in boundary currents. These efforts range from the
significant western boundary currents, to the highly productive
eastern boundary upwelling systems, to regionally important
boundary currents in marginal seas. Initial targets are often the
mean and variability of velocity, temperature, and salinity, and
now moving to include biogeochemical and biological variables.
As the sustained time series increase in length, interannual
climate variability is resolved. The remarkable increase in
sustained glider observations in the last 10 years is summarized
below and illustrated by Figures 4–6.

Sustained projects in the Atlantic include observations on
the western, eastern and northern boundaries of the North
Atlantic. The marginal seas of the Atlantic, including the

Mediterranean and the Gulf of Mexico are also home to long-
term observations.

• The Davis Strait was observed repeatedly during 2005–2014
to quantify the exchange between the Arctic Ocean/Baffin Bay
and the subpolar North Atlantic (Figure 5A; Beszczynska-
Möller et al., 2011; Curry et al., 2014; Webster et al.,
2015). Although this effort succeeded in collecting year-
round observations across the seasonally ice-covered strait,
challenging logistics, harsh operating conditions and funding
prevented continuous occupation of the section over the entire
2005–2014 period.

• The warm water paths of the North Atlantic Current over
the Rockall-Hatton Plateau at 58◦N are being observed
using repeat glider sections between 15 and 21◦W as part
of OSNAP since 2014 (Figure 5E; Houpert et al., 2018;
Lozier et al., 2019).
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FIGURE 3 | The global active glider fleet trajectory map, updated daily (from http://anfog.ecm.uwa.edu.au/index.php?page=global_gliders, accessed 23 August,

2018).

FIGURE 4 | Sustained observations of boundary currents of duration from at least one to over a dozen years. Mean sections of absolute geostrophic velocity are a

unique product of underwater gliders, calculated by combining geostrophic shear with directly measured depth-average velocity. These sections at the locations in

this figure are shown in Figures 5, 6.

• The Nova Scotia Current was observed during 2011–2014
by repeat glider sections as part of the Ocean Tracking
Network (Figure 5B; Dever et al., 2016) and re-established
by Fisheries and Oceans Canada in 2018 as part of its
monitoring programs.

• Along the East Coast of the United States, a program of
routine glider surveys across the Gulf Stream is underway.
Commanded to steer across strong currents of the western
boundary current, gliders are able to occupy cross-Gulf Stream
transects as they are advected downstream (Figure 5C; Todd
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FIGURE 5 | Mean sections of geostrophic velocity from the Atlantic, Mediterranean and Indian Ocean. Sections in the Atlantic include (A) the Davis Strait, (B) the

Nova Scotia Current off the east coast of Canada, (C) the Gulf Stream off the eastern US coast, (D) the Gulf of Mexico Loop Current, and (E) the North Atlantic

Current west of the UK. Sections in the Northern Current System of the Mediterranean Sea are (F–I) along the southern coast of France, (J) between the Spanish

coast and the island of Ibiza, and (K) between Sardinia Island and Menorca. In the Indian Ocean, sections are off the (L) east and (M) south coast of Sri Lanka. The

sections are oriented generally west to east or south to north, and positive geostrophic velocity is primarily northward or eastward.

Frontiers in Marine Science | www.frontiersin.org 10 October 2019 | Volume 6 | Article 422

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Testor et al. OceanGliders: A Component of the Integrated GOOS

FIGURE 6 | Mean sections of geostrophic velocity from the Pacific. Sections in the western Pacific include the Kuroshio offshore of (A,B) Taiwan and (C,D) Luzon,

and in (E) the East Australian Current, (H) the North Equatorial Current, (I) the Mindanao Current, and (J) the New Guinea Coastal Current of the Solomon Sea.

Sections in the eastern Pacific include (F,G) two off Washington, (L) one off Oregon and four off the California coast at (M) Trinidad Head, (N) Monterey Bay, (O) Point

Conception, and (P) Dana Point. A mean section across the equator at 93◦W off the Galapagos (K) was measured by acoustic Doppler profilers, as geostrophy fails

at the equator. The sections are oriented generally west to east or south to north, and positive velocity is primarily northward or eastward.

Frontiers in Marine Science | www.frontiersin.org 11 October 2019 | Volume 6 | Article 422

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Testor et al. OceanGliders: A Component of the Integrated GOOS

et al., 2016, 2018; Todd, 2017; Todd and Locke-Wynn, 2017;
Gula et al., 2019).

• The Gulf of Mexico Loop Current was observed starting in
2007, and continuously during 2011–2014 with a focus on
mean structure, eddies and separation processes (Figure 5D;
Rudnick et al., 2015; Todd et al., 2016). Along-gradient glider
trajectories of mesoscale eddies ubiquitous in the central and
western Gulf of Mexico have been repeatedly carried out since
May 2016 to present as a component of a quasi-continuous
(90% of time) monitoring program conducted by GMOG.

• European Slope Current at 56.5N as part of the sustained
Ellett Line program. Gliders have been occupying this section
in winter since 2009, and several times per year since 2015
(Sherwin et al., 2015).

• In the Western Mediterranean, repeat glider transects have
been conducted to monitor the variability of the Northern
Current System, over 10 years in the north of the basin
(Figures 5E–H; Testor et al., 2018), for 6 years at a circulation
“choke” point (Figure 5I; Heslop et al., 2012), for 8 years at the
Mallorca Channel (Barceló-Llul et al., 2019) and more recently
between Sardinia and Balearic Islands (Figure 5J) and between
Mallorca Island and the African coast (Cotroneo et al., 2016;
Aulicino et al., 2018).

• The Norwegian Atlantic Current Observatory has undertaken
long term glider monitoring across 2 transects over 4 years,
monitoring northward flow to the Arctic regions (Høydalsvik
et al., 2013). Gliders have been used to monitor the
topographic steering of warm Atlantic waters toward Arctic
tidewater glaciers on the west Spitsbergenmargin (Fraser et al.,
2018).

• Since 2012, gliders have been deployed in the Subantarctic
Zone of the South Atlantic each year, as part of the Southern
Ocean Seasonal Cycle Experiments (SOSCEx; Swart et al.,
2012). Deployment have covered all seasons except late austral
autumn to assess bio-physical interactions from sub seasonal
to seasonal scales (Du Plessis, 2015; Swart et al., 2015;
Thomalla et al., 2015; Little et al., 2018; Du Plessis et al., 2019).

• Repeated sections were carried out off Cape Verde Islands as
part of the Collaborative Research Center 754 (DFG; Oschlies
et al., 2018), Senegal (Kolodziejczyk et al., 2018) and Angola,
primarily to study the OMZ.

Projects in the Indian Ocean range from the Bay of Bengal to the
currents that connect to the Southern Ocean:

• Gliders in the Bay of Bengal off the east and south coasts of Sri
Lanka (Figures 5K,L; Lee et al., 2016).

• Repeated sections in the Agulhas Current since 2017 as part of
Gliders IN the Agulahas (GINA, Krug et al., 2018) following
the Shelf Agulhas Glider Experiment (SAGE) in 2015. Initial
results include observations of cyclones on the inshore edge of
the current (Krug et al., 2017).

• Many cross sections of the Leeuwin Current, the poleward
flowing eastern boundary current in the southern Indian
Ocean (Pattiaratchi et al., 2017).

Projects in the Pacific include sustained observations in the
eastern boundary current of the North Pacific, and both the

midlatitude and low-latitude western boundary currents of the
North and South Pacific:

• The Kuroshio off Taiwan (Figures 6A–D; Lien et al., 2014;
Yang et al., 2015), the North Equatorial Current north of
Palau (Figure 6H; Schönau and Rudnick, 2015) and the
Mindanao Current off the Philippines (Figure 6I; Schönau
and Rudnick, 2017) were occupied continuously from 2007
to 2014 to quantify transports and water masses as part of
the project Origins of the Kuroshio and Mindanao Current
(OKMC). Observations began again in 2017 with a line
off Taiwan.

• Repeated sections across Solomon Sea were made for nearly a
decade to monitor the low latitude western boundary current
that feeds the Pacific equatorial current system from the
Southern Hemisphere (Figure 6J; Davis et al., 2012).

• The California Underwater Glider Network has occupied three
lines in the California Current System for the past decade with
a primary goal of monitoring the regional effect of climate
variability as caused by El Niño (Figures 6N–P; Rudnick et al.,
2017). A fourth line off northern California has been occupied
for 2 years (Figure 6M).

• The inshore edge of the East Australian Current (EAC)
has had repeated sections run since 2010 (Figure 6E) to
observe the separation of the current, and the momentum
balance at that point (Schaeffer and Roughan, 2015), the
hydrographic structure of the current (Schaeffer et al., 2016a),
the biogeochemistry (Schaeffer et al., 2016b).

• Sections across the California Current, immediately south
of the West Wind Drift bifurcation region, were occupied
continuously from 2003 to 2009, and then annually, for 6–9
months per year, from 2010 to 2015 (Figures 6F,G). These
observations provide data to advance the understanding of
the regional response to climate variability and California
Undercurrent Eddies (Pelland et al., 2013).

• The Ocean Observatories Initiative began occupying 5
sections off Oregon and Washington, starting in 2014
to address the influence of climate variability on eastern
boundary ecosystems. One of these lines, off Oregon, has
been occupied continuously since spring 2006 (Figure 6L;
Mazzini et al., 2014).

• Repeated sections off Peru started in 2008 (Pietri et al., 2013)
to study the Humbolt system.

• Repeated sections off Chile (Pizarro et al., 2016) primarily to
study the OMZ.

• Repeated sections in the Coral Sea adjacent to the north
Queensland coast (Australia) have been used to estimate
boundary current transport (Ridgway and Godfrey, 2015).

• The Equatorial Current System was observed during 2013–
2016 using acoustic Doppler profilers (Todd et al., 2017;
Figure 6H), as geostrophy fails at the equator. These
measurements were undertaken as part of the Repeat
Observations by Gliders in the Equatorial Region (ROGER)
program (Rudnick, 2016).

• Glider transects at 37.9◦N across the East Korean Warm
Current along the Korean Peninsula have been conducted
since 2017.
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Underwater gliders can measure absolute geostrophic velocity.
The geostrophic shear may be calculated from glider sections
by estimating the horizontal gradient of density. This shear
is referenced to the depth-average velocity that is calculated
by dead reckoning between navigational fixes at the beginning
and end of dives. This absolute, depth-dependent geostrophic
velocity normal to the glider section allows calculation of
the transport of mass, heat and salt. These transports are
the fundamental quantities needed for baseline monitoring of
boundary currents. Much work has been done to quantify
the scales resolved and the accuracy of the velocity. For
example, high frequency motions, such as internal waves,
are projected into spatial variability in a glider section, with
the result that horizontal wavelengths longer than 30 km are
resolved in midlatitudes (Rudnick and Cole, 2011). The accuracy
of the depth-average velocity, is of order 0.01 ms−1, as
inferred in early design studies, and confirmed by decades of
observations (Rudnick et al., 2018). The sustained observations
have produced several estimates of the boundary currents
(Figures 4–6).

The goal of the OceanGliders Boundary Ocean Observing
Network (BOON) is to provide coordination for a global
observing program. Because boundary currents invariably reside
in EEZs, their observation must depend on regional efforts
respectful of the coastal countries. The goal of BOON is to sustain
observations year-round. The result will be a global network
of regional networks that monitor boundary current variability
across international borders to the world’s benefit.

The OceanGliders BOON complements existing ocean
observing networks. Argo has transformed ocean science with
its global coverage. BOON connects Argo’s observations of the
open ocean with the coastal ocean by operating the transects
that are required to monitor boundary currents. BOON expands
the footprint of site-specific moorings of OceanSites by repeated
sections that may connect to mooring locations. Repeated
surveys by ships form the backbone for many existing regional
efforts, in some cases going back decades. BOONwill step change
our ability to observe boundary current variability in real-time,
across all seasons and in difficult conditions and locations,
building on the historical record and improving temporal and
spatial resolution by overlapping with these ship surveys. BOON
will identify gaps in the observation of boundary currents, with
the goal of filling them by the most appropriate technology
(Todd et al., 2019).

Storms
Tropical and extra-tropical storms are among the most
destructive natural events on Earth. Tropical storms cause an
average of 10,000 deaths per year and will potentially cost
the global economy more than $9.7 trillion over the next
century. Growing coastal populations, urbanization, and rising
sea levels magnify our vulnerabilities to storms, escalating the
need for more accurate storm tracking, intensity and impact
forecasts. Tropical storm tracking forecasting has shown steady
improvement over the past 25 years due, in part, to the
improvements in the global atmospheric forecast ensembles. But
similar improvements in tropical storm intensity forecasts have

lagged, in part due to the paucity of upper ocean data defining
its pre-storm heat content, the inability of operational ocean
models to forecast with sufficient accuracy the rapid changes in
upper ocean heat content in conditions of extreme forcing, and
the uncertainty in the processes that influence the transfer of
heat between the ocean and atmosphere. Tropical storm impacts,
such as wind and storm surge, require accurate tracking and
intensity forecasts.

Gliders have been the critical observing system element
for two study areas in particular, one focused on an area
of potential rapid intensification surrounding the Caribbean
Islands, and another in the Mid Atlantic Bight where rapid
intensity reductions have challenged forecasters.

In the tropical Atlantic and Caribbean Sea, early research
carried out by NOAA/AOML, NOAA/NHC, and University
of Miami scientists has demonstrated that the upper ocean is
linked to hurricane intensification and/or weakening provided
that the appropriate atmospheric conditions are present (Shay
et al., 2000). For example, several studies have shown how
major hurricanes, including Hurricane Katrina (2005), rapidly
intensified while traveling over a warm Loop Current and
Eddy feature in the Gulf of Mexico (Mainelli et al., 2008).
Studies carried out for other Atlantic hurricanes have shown
the close link between the upper ocean heat content and the
intensity changes observed in Cat 3 and above hurricanes. Since
this link has been established in this region, efforts are now
geared toward improving hurricane intensification forecasts of
numerical operational and experimental models to produce a
correct representation of the upper ocean density (temperature
and salinity) structure. For example, recent research has shown
that the appropriate initialization of the ocean component within
the HYCOM-HWRF intensity forecast model has improved the
representation of the upper ocean while reducing the error of
the intensity forecast of Hurricane Gonzalo (2014) by almost
50% (Dong et al., 2017; Figure 7). In this case, underwater
glider data were critical to improving the hurricane forecast
because they were the only ocean observations that captured the
salinity-stratified barrier layer that inhibited the mixing of colder
subsurface waters and subsequent upper ocean cooling ultimately
allowing for hurricane intensification (Domingues et al., 2015).

NOAAOAR research has established the relationship between
hurricane intensity and the Mid Atlantic’s two-layer water
column. Themissing essential ocean feature is the unseen bottom
Cold Pool. This vast (1,000 km long × 100 km wide) cold water
mass (∼10◦C) lies below a thin warm layer (>28◦C) during
the Atlantic hurricane season and is unobservable by satellites.
By deploying autonomous underwater gliders ahead of Mid
Atlantic land-falling hurricanes, the Cold Pool was mapped
and its evolution monitored, leading to the discovery of rapid
storm induced mixing that cooled the ocean ahead-of-eye-center
by up to 11◦C (Glenn et al., 2016). This new ahead-of-eye-
center cooling process was shown to be region-wide in multiple
hurricanes (Seroka et al., 2017) and is responsible for over
75% of the observed storm-driven cooling in the Mid Atlantic
since 1985 (Glenn et al., 2016). Furthermore, the cooling of
the surface ocean by the entrainment of the sub-surface Cold
Pool was the missing component required to accurately forecast
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FIGURE 7 | (a) Hurricane Gonzalo track forecast, (b) minimum sea level pressure (center pressure), and (c) maximum wind forecasts, along with the best track.

Gliders improve hurricane forecast. The dashed line denotes the track location closest to the glider at 0000 UTC 13 Oct 2014. (Figure 12 from Dong et al., 2017).

the rapid de-intensification of Hurricane Irene (Seroka et al.,
2016). In stark contrast, gliders deployed ahead of Superstorm
Sandy revealed a different Cold Pool response and impact
on intensity. The onshore track, large wind field, and slow
approach forced the Cold Pool more than 70 km offshore. This
removed the bottom Cold Pool water and resulted in limited
surface cooling and little storm weakening ahead of Sandy’s
historic storm surge in the region (Miles et al., 2017). The
warm surface layer and the bottom Cold Pool, and their rapid
evolution during hurricanes, must be well-resolved to reduce the
uncertainty of hurricane intensity predictions. This can only be
accomplished with underwater gliders reporting whatever the
sea conditions are, and real-time subsurface profiles over the
GTS, since operational ocean models cut off satellite altimeter
data assimilation for water depths <150m, leaving satellite
Sea Surface Temperature (SST) as the only operational data
contribution on continental shelves.

Picket lines of subsurface gliders sustained for the hurricane
season in areas of rapid intensity change where identified as
the most critical addition to the integrated ocean observations
required to improve the ocean component of coupled ocean-
atmosphere forecast models. A U.S. collaborative effort between
NOAA, Navy, NSF, Industry and Academia implemented the
hurricane glider picket line concept for the first time during

the 2018 hurricane season. Data flow from individual glider
operators to the GTS was coordinated through the U.S.
IOOS Glider Data Assembly Center (DAC). The system was
tested in September when 3 hurricanes were simultaneously
present in the North Atlantic, each with gliders deployed
in their path. This included Hurricane Florence, a category
4 storm at its peak that impacted the eastern seaboard
of the US (Figure 8). The glider data transmitted over the
GTS were used as input to the operational Ocean Heat
Content maps that were used to help with NHC forecast
intensity decisions.

OceanGliders supports the development of sustained glider
observations to address hurricane issues worldwide as well as
additional ones related to extra-tropical storms. Extra-tropical
storms, also referred to as mid-latitude cyclones, are large scale
(>1,000 km) low pressure weather systems that occur in middle
and high latitudes and are associated with frontal systems. The
wind speeds of these storms can be as high as those associated
with tropical storms but their impacts last longer because of
their greater spatial extent. Due to the large-scale features, extra-
tropical storms are well-represented in atmospheric models.
Hence, ocean gliders have mainly contributed to understanding
the impacts of the storms on the ocean and coastal environments,
particularly in terms of changes to the heat content (e.g., rapid
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FIGURE 8 | Hurricane Florence, Isaac and Helene cloudtops (left to right) on September 11, 2018, with NHC best tracks behind each hurricane, NHC probability of

tropical storm force winds ahead of each hurricane, and the tails of the diverse fleet of ocean glider in the picket lines transmitting upper ocean data in near-real time

to forecasters.

cooling), its feedback on storm intensity, sediment resuspension
and transport processes, and ecosystem response.

Ocean gliders are complementary to other storm sampling
systems in their ability to relatively rapidly profile the upper
ocean and transmit data to land even during the most severe
storm conditions (Domingues et al., 2019). They provide

unique datasets for studies of rapid upper ocean evolution
and high-value profile data for assimilation in both operational
forecast and research models before, during and after storms.
Ocean glider measurements have revealed rapid changes in
the distribution of water properties (temperature, salinity), and
suspended sediment and chlorophyll (proxy for phytoplankton
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FIGURE 9 | (a) Wind speed and direction at Rottnest Island, south-west Australia. The vertical dashed lines represent timing of the ocean glider transects; Ocean

glider vertical cross-sections of: (b,e,h) temperature (◦C); (c,f,i) chlorophyll (mg·m−3 ); and, (d,g,j) backscatter (x10−3m−1) across the Rottnest continental shelf. The

time series of wind indicate calm winds (speeds ∼5m·s−1 ) followed by two winter storms (speeds >20m·s−1). The wind speeds reduced to ∼7m·s−1 on 23 May

before increasing again to >20m·s−1. There were 3 cross-shore ocean glider transects during this period. During the calm period (17–18 May 2016), a well-mixed

water column with cooler (∼20◦C) water was present on the inner-shelf region to 5 km from the coast. Seaward of 5 km, a dense shelf water cascade (DSWC,

Pattiaratchi et al., 2011) was present and extended along the sea bed to the shelf break. On the inner shelf, chlorophyll concentrations and backscatter values were

higher within the DSWC and low in the surface layer. The two storms vertically mixed the continental shelf resulting in a well-mixed water column, increased

suspended sediment elevated chlorophyll concentrations (modified from Chen et al., in review).

biomass) concentrations. Gliders with turbulence packages are
being used to quantify the strength of storm driven mixing
and its relevance in supporting prolonged phytoplankton
production (Swart et al., 2015; Nicholson et al., 2016) as also
highlighted by data collected on the inner continental shelf along
the Rottnest continental shelf in south-west Australia (Figure 9).

Water Transformation
Physical, chemical, and biological properties are imported,
redistributed, mixed and exported in substantial amounts by the
oceanic circulation and processes. Any attempt to understand,
model, and predict the evolution of the global and regional
climates and marine ecosystems must include observations of
their variability and their local and remote sensitivities to external
changes. Indeed, fluctuation in any aspect is to lead to changes
in the others, with the potential for feedback loops between
them. While average conditions of the oceanic circulation and
processes have been studied and assessed, little is known about
the shifts in the system because of difficulties in observing
water transformation phenomena directly and determining their
(physical, chemical, biological) impacts.

Water transformation processes occur at relatively small scales
and high frequencies not presently addressed by the GOOS. They
are critical phenomena, however, that need to be assessed to
better understand and model the evolution of the global/regional
oceans, and in particular, their deep reservoirs of heat, salt,
nutrients, etc. We do not know how these ocean processes
influence change in these water properties. To fill this gap, the
OceanGliders program proposes the long term and sustained
observation of these phenomena with gliders whose unique
capabilities (including under ice operations) and versatility allow
the monitoring of such processes, in combination with other
observing techniques, with sufficient accuracy. OceanGliders
aims to address the two following global needs in ocean
observations, by considering several key regions where water
transformation processes that are important for the global
(physical, chemical and biological) ocean occur.

Open Sea and Shelf Water Formation
Much of what is known about the oceanic circulation derives
from the fundamental concept of water mass. The global/regional
ocean is composed of a limited number of water masses that
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are formed (or transformed) in particular regions because of
favorable local conditions (atmospheric regimes, stratification,
topography, general circulation and major currents interactions)
that can trigger buoyancy changes and the vertical mixing of the
resident water masses in the surface and/or bottom boundary
layers. Due to preconditioning effects (bottom topography,
atmospheric forcing, stratification) the water formation processes
lead to large mixed patches (100s km) presenting quasi-
homogeneous (physical, chemical and biological) properties, and
intermediate (100s of m, shelf/slope bottom) or sometimes deep
(1–2 km, bottom) mixed layer depths, or thick (100s of m)
bottom boundary layers.

The buoyancy decrease can be due to strong air-sea
interactions (Swart et al., 2015; Houpert et al., 2016), sea ice and
polynya formation in winter (Queste et al., 2015; Schofield et al.,
2015), rough bottom topography (Beaird et al., 2013; Ruan et al.,
2017), and major current instabilities (Schaeffer and Roughan,
2015). The water formation processes are common in winter in
the subpolar gyres and high latitudes leading to the formation
of the open ocean and shelf waters (Pattiaratchi et al., 2011;
Durrieu de Madron et al., 2013; Bourrin et al., 2015; Peterson
et al., 2017—Figure 9). It is so-called deep convection in few
areas in the world where the mixing can reach great depths
and ventilate the deep layers of the ocean due to peculiar and
regional conditions (Testor et al., 2018). Later, in spring, these
regions restratify, while the new water masses spread (or cascade
on the ocean bottom) and mix with their surroundings. During
this phase, intense blooms occur as the vertical mixing brought
a large amount of nutrients in the euphotic layer and this can
be sustained for a while by restratification processes (Queste
et al., 2015; Schofield et al., 2015; Mayot et al., 2017), while the
impacts on the benthic ecosystems can be important because
of resuspended sediments. Mixing due to rough topography
can also occur in overflow regions (Antarctic, Mediterranean,
Denmark Strait) leading to the formation of new water masses
and sediment resuspension (Durrieu de Madron et al., 2013,
2017; Venables et al., 2017) and through upwelling dynamics.
The ice edge, presently in retreat toward the shelf, is a region of
particular interest for water mass transformation, and gliders are
ideal tools for exploring the marginal ice zone, as demonstrated
in studies close to Greenland (Lee and Thomson, 2017;
Våge et al., 2018).

These processes lead to the formation of water masses that
move (together with their properties) through the oceanic
basins interacting at the large scale with other water masses.
This mixing can “buffer” or “memorize” climatic (physical,
biogeochemical and biological) signals for long periods of time,
until these water masses are mixed again vertically in the
following years/decades/centuries, possibly far away (1,000s of
km) from their formation areas. This water mass transformations
can lead to rapid changes in the ocean, both locally and in remote
places (Schroeder et al., 2017; Bosse et al., 2018).

Presently the large-scale formation of mode waters in winter
is relatively well-covered by the present GOOS, but not by
other open sea and shelf water mass formations that are more
constrained by the regional scale. These processes are critical
to the ventilation of the ocean and the evolution of the marine

ecosystem, and this limits our understanding of the present
state and evolution of the ocean and marine ecosystem. They
occur sometimes in local patches on the shelf and in open sea,
and on an intermittent basis, and are consequently not well
resolved (temporally and spatially) at present. In addition, they
generally result from different oceanic and atmospheric factors
that encompass at least a year, owing to preconditioning effects
(Durrieu de Madron et al., 2011; Bosse et al., 2018). This implies
that sustained in-situ observing efforts must often be carried
out in relatively large areas throughout the year to fully grasp
the phenomena, with efforts occurring at a high frequency,
and with high horizontal resolution to resolve the features that
are involved. Moreover, in case of strong air-sea interactions
in winter/spring, it is challenging to carry out traditional in
situ measurements due to severe conditions at sea, for example
winter convection in the Labrador Sea (deYoung et al., 2018).
The observation of such phenomena remained a challenge until
the use of autonomous underwater gliders, in combination with
more classical ocean observing techniques. Much progress has
been made during the last decade thanks to these relatively new
platforms as demonstrated by many new publications on that
subject (see introduction) and has led to a paradigm shift for deep
convection (Figure 10). OceanGliders supports initiatives to fill
these observational gaps in regions of water mass transformation
in the coastal and open ocean.

Mesoscale and Submesoscale Phenomena
Mesoscale eddies (10–100 km horiz.) occur throughout the ocean
and are not well-resolved by the present GOOS, particularly
their vertical structure. They are responsible for large fluxes of
energy and matter in the ocean. Depending on whether they
rotate cyclonically or anticyclonically, they can be rich or poor
in nutrients and can provide favorable or unfavorable conditions
for phytoplankton and other organisms. They can be surface
constrained, centered at intermediate depths or even extend
down to the bottom (even the abyssal plain) and resuspend
sea-floor sediments (Durrieu de Madron et al., 2017). Between
their cores and their surroundings, temperature can vary by
several degrees and practical salinity by 1 g/kg or more, while
biogeochemical properties such as oxygen saturation can vary
from 0 to 100% and pH by more than 1 (Bosse et al., 2017;
Karstensen et al., 2017—Figure 11).

Mesoscale eddies can have a sub-surface expression, typical of
the water mass composing their cores, and some are undetectable
by satellite which makes their observation a challenge. They can
be very coherent and dissipate mainly through very small-scale
processes (diffusion, microturbulence) making their lifetimes
extend to months or even years (Yu et al., 2017). They are able to
transport the physical, biogeochemical, and biological properties
of the waters composing their cores over great distances (1,000s
km) after their formation before they finally dissipate (Fan et al.,
2013; Pelland et al., 2013; Bosse et al., 2015, 2016, 2017; Meunier
et al., 2018a). They can dissipate due to dramatic events like
vertical mixing driven by atmospheric forcing reaching into
their cores or by interactions with other eddies, currents or
topography. Their properties, particularly their biological ones,
can also change drastically throughout their lifetime due to such
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FIGURE 10 | Schematic diagram of the evolution of the convection area during the violent mixing phase in a period of 1–2 weeks. Underlying stratification/outcrop is

shown by selected isopycnals (continuous black lines). The volume of fluid just mixed by convection is shaded and color coded according to potential density classes.

(Figure 13 from Testor et al., 2018). Numerous glider deployments have allowed to objectively map the (physical and biogeochemical) evolution of the deep convection

area on a 10-days basis for quantitative estimates while high resolution measurements allowed to investigate the small scale processes at stake.

external factors (McClatchie et al., 2012; Ainley et al., 2015; Villar
et al., 2015; Durrieu de Madron et al., 2017). The impact of such
factors on the properties of the eddy cores clearly depends on
their vertical structure which in turn, depends on the oceanic
(and atmospheric) conditions at their formation.

Mesoscale eddies can be formed through vertical mixing (due
to air-sea-ice interactions or induced by rough topography, major
current barotropic/baroclinic instabilities and/or detachments

from the boundary circulation due to the continental slope
curvature (Caldeira et al., 2014) and/or other effects like
upwelling (Bosse et al., 2015). Mesoscale eddies can be classified
according to their formation mechanism because they present
similar characteristics and core properties. It has been shown
that a number of different types of eddies (Loop Current
Eddies, Agulhas rings, Dead Zone Eddies, Gulf Stream rings,
Meddies, Suddies, Weddies, Algerian/Sardinian Eddies, deep
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FIGURE 11 | Some highlights of (sub)mesoscale oceanic processes revealed by gliders that have been identified as important for the functioning of the physical,

chemical and biological ocean: (A) Vertical section across a Dead Zone Eddy (DZE) showing its lens-like structure in nitrate concentrations (from Figure 7 of

Karstensen et al., 2017); (B) Vertical section of salinity across the upwelling front off Peru (from Figure 7 of Pietri et al., 2013); (C) Vertical section across a SCV

“Suddy” (from Figure 2 of Bosse et al., 2015); (D) Vertical section across the shelf of Antarctica peninsula (from Figure 1 of Thompson et al., 2014); (E) Vertical section

across a LCE showing intrathermocline eddies (ITE) within (from Figure 11 of Meunier et al., 2018b); (F) Vertical section of dissolved oxygen in the Persian Gulf (from

Figure 2 of Queste et al., 2013).

convection SCVs, ITEs. . . ) can have a great impact on the
ocean circulation/ecosystem state and evolution through their
particular structures and transport mechanisms. Other fine
scale processes are clearly involved in the ocean mixing, like
microturbulence (Fer et al., 2014; Palmer et al., 2015; Schultze
et al., 2017) or frontogenesis, filamentation due to stirring or
symmetric instability (Figure 11 and Ruiz et al., 2012; Thompson
et al., 2014, 2016; Thomsen et al., 2016; Pietri et al., 2013;
Brannigan et al., 2017; Buffett et al., 2017; Du Plessis et al., 2017;
Pascual et al., 2017; Kolodziejczyk et al., 2018) that can lead
to significant vertical velocities and fluxes. However, the extent
and variability of their impact over long periods of time still
needs to be assessed. The “mesoscale” dynamics and associated
“submesoscale” features are important contributors to the ocean

state and are of crucial importance for biogeochemical and
biological processes in the ocean. Gliders offer a new high-
resolution lens for observing the full seasonal cycle, a dominant
mode of the earth system, in their ability to observe the physical-
biological coupling at sub-seasonal and sub-mesoscale (Martin
et al., 2009; Swart et al., 2012, 2015; Monteiro et al., 2015;
Thomalla et al., 2015; Du Plessis et al., 2017).

It is difficult for an in situ ocean observing system to
capture all these important but relatively small circulation
features, but a regular (annual) statistical assessment of the
numbers and properties (and impact) of the main families
of eddies and smaller processes can be achieved through
subsurface, continuous and sustained glider observations of
sufficient horizontal resolution. The time and space resolution
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of the glider sampling, for a variety of different sensors, make
gliders essential observing platforms for studies and continuous
assessments of the role of (sub)mesoscale processes in the ocean
circulation and ecosystem. Over the last decade, a remarkable
number of articles on (sub)mesoscale dynamics and smaller
scale mixing processes based on underwater glider data and
their impact on biogeochemistry and biology has been published
(see introduction). The importance of Submesoscale Coherent
Vortices (SCV), filaments along fronts and around mesoscale
eddies, and induced vertical movement, has been demonstrated
from ground truth and their impact can now be monitored on
the long term in key regions with gliders (Hristova et al., 2014;
Bosse et al., 2016; Yu et al., 2017).

Underwater gliders do sample the vertical structure of the
ocean in an unprecedented way, with high resolution along
the horizontal over long periods of time. Gliders also transmit
the observational data in near real-time. This remote access
to observational data that resolves the (sub)mesoscale can
improve forecasting the ocean dynamics, biogeochemistry and
ecosystem. The glider data is a perfect match for assimilation
in regional/coastal numerical models, providing ocean state
estimates at small scales with increased accuracy benefiting
societal applications. Gliders can map the subsurface ocean
at high resolution and provide powerful tools for monitoring
previously inaccessible ecological processes. OceanGliders
promotes and supports all physical, biogeochemical and
biological studies focusing on these small-scale processes
and encourages long-term continuation of these studies. The
anomalies caused by these (sub)mesoscale variabilities exceed
by one order of magnitude those attributed to changes in large
scale circulation and marine ecosystem variability brought about
by a warming planet, as assessed by the IPCC (Bates et al.,
2018) and must be considered to further our understanding and
monitoring of the physical, biogeochemical and biological ocean.

END-USER BENEFITS

In section Addressing global observing needs, we have detailed
the unique “oceanographic” monitoring space that gliders
occupy. Here we describe how this translates to benefit for the
end users of a fully integrated observing system, i.e., what key
roles (primary and supporting) a global sustained glider network
can play in delivering services for both science and society.

Gliders can make sustained observations at high resolution,
bringing temporal and spatial scales, hourly to sub seasonal and
from 10m to 1,000 km’s, relevant for a number of key ocean
processes within economic reach. They are navigable and can
be directed to sample ocean phenomena in real-time and with
a fleet of gliders monitoring can be continuous, if required,
and operational. Glider sensor payloads are expanding and their
unique role in acoustic monitoring is already being exploited.
They can sample in extreme conditions and to increasing depths,
from surface to 6,000 m depth.

Gliders require pilots; however navigation is increasingly
automated as a result of advances in platform reliability,
community experience and piloting support tools. Glider
observations require careful data processing protocols, an area

that is being actively resolved, with tools and services emerging,
and standard products from several deployments (e.g., gridded
sections, geostrophic currents, etc.) that could be more accessible
to non-expert users, many of which are from the OceanGliders
community. Although gliders are relatively “slow” samplers, this
is not an impediment to providing sampling capability at key
space and time scales for the global observing system.

Gliders are uniquely poised to deliver sustained and
responsive observations to the GOOS in the following areas:

• Connecting coast to open ocean: key for monitoring the
regional effects of climate variability, and of processes
(circulation, currents, upwelling) that have an impact on
regional ecosystems.

• Boundary current monitoring: key to the transport of heat,
salt, biogeochemical variables (nutrients) and plankton,
they influence ecosystems and therefore variability in
ocean productivity, and impact flood levels, erosion and
commercial activity.

• The observation of ocean state variables at a high density
in time and space in order to gain insight into the
variability/statistical distribution of these variables locally
given the turbulent nature of ocean flows.

• Surface to deep profiles in extreme conditions: observing
ocean structure that affects the strength of violent storms (e.g.,
hurricanes) and of violent ocean mixing.

• Sustained observations in the polar regions where ship
persistence is challenging due to ice and harsh conditions.

• Fast deployment and real-time navigation enabling delivery of
vital information for environmental disaster management.

Looking at these key sampling capabilities under the GOOS
theme areas of climate, operational services and ocean health, it is
clear that sustained glider monitoring, as part of a fully integrated
global ocean observing system, delivers a range of benefits.

Climate
• Monitoring boundary currents delivers knowledge on sub-

seasonal variability and long-term trends that affect climate,
leading to improved climate prediction. This information is
used for adaptation to climatic change.

• Sustained 3D observations of deep and shelf water formation,
a key component of our climate and ocean circulation
system, provide knowledge to assess deep storage of heat, salt,
nutrients and carbon sequestration. They uniquely can aid our
understanding of variability in water formation and the impact
of this on the global ocean budgets.

• Monitoring the subsurface development of climate oscillations
(e.g., el Niño) aid prediction, support advanced warning
capability and improved parameterization of climate patterns
that affect seasonal forecasts.

Operational Services
• Monitoring lines across key coast-to-open ocean transects

(often boundary current regions) increase the accuracy of
regional ocean forecasts, which have economic impact (e.g.,
offshore wind, powerful eddies that affect oil platform drilling,
flood hazard warnings, abundance and location of commercial
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species) supporting reanalysis and predictionmodels, good for
getting real time data back to inform the next modeling cycle.

• Glider deployments in the path of hurricanes and violent
storms (tropical and extratropical) provide in situ water
profiles of ocean structure and heat/salt content assimilated
real-time into models, significantly increasing the accuracy
of the storm intensity prediction, which is vital to regional
government and emergency services.

• Speedy deployments of gliders at pollution events, provide
simultaneous data on ocean circulation and pollutants, either
to track the pollutants or to improve ocean forecasts by
providing data for assimilation. This supports decisionmaking
by better disaster management services and thus can reduce
environmental impact.

• Speedy and flexible deployments of gliders can enable co-
locatedmeasurements with other air/ocean observing systems,
which are key for advancing scientific understanding of
marine biogeochemical-physical interactions and/or air-sea
flux interactions across the oceanic surface. These can also
help provide precious data points for future coupled data
assimilation methods under active consideration for balanced
initialization of coupled earth system models.

• Sustained ocean sound monitoring delivers real time
information on key marine mammal species, for ship
avoidance decisions. Increasingly, this is a must for
conservation of populations as new shipping routes
increasingly intersect with marine mammal habitats.

• Monitoring boundary currents or water transformation in key
areas delivers knowledge on ocean changes, both sub-seasonal
variability and long-term trends, that affect climate. Real-time
information on these key components of the global circulation
better constrain models and are used, for example, to increase
the accuracy of forecasts for coastal regions.

Ocean Health
• Sustained transects from coastal to open ocean, including

boundary currents and water transformation areas, are key
for monitoring the regional effects of ocean variability
on regional ecosystems. Physical, chemical and biological
information from these sections improves understanding
of ecosystem response to environmental stressors (e.g.,
low dissolved oxygen, ocean acidification), aids regional
ecosystem management and can provide ocean health
monitoring indicators.

• Sustained acoustic (fish tags, passive acoustics for mammals,
active acoustics for zooplankton) and video monitoring
from coast to open ocean, deliver information assessing
distributions and stocks as well as behaviors of marine
organisms and response to environmental conditions that
enables improved physical/ecosystem modeling, prediction,
and resource management.

THE WAY FORWARD

At present, global glider operations are still at the pilot stage
and are not fully developed. There are some regional operations,
e.g., the repeated glider transects off the west coast of the

United States, that are well-established and fully operational but
full coordination of glider missions at the regional, basin or
global scale, as discussed, remain in the planning stages. There
has been enough activity to prove that we have the capability to
conduct such operations but the development of clear scientific
and operational goals for the proposed network remains under
discussion. Indeed, this white paper is a contribution to that
discussion and is meant to further stimulate consideration of the
potential opportunities to fill gaps in the present networks of
global ocean sampling.

Further developments should be framed with clear
measurement goals and analysis of the appropriate technological
solutions to address the observational challenges. There are now
many different options to address the three themes of the GOOS:
Climate, Operational Services and Ocean Health, including
autonomous surface and underwater craft, drifters, subsurface
moorings, ships of opportunity and research ships and satellite
systems. All of the options should be considered to determine
which solution, or mix of platforms, best meets the observational
goals. We have some of the tools needed for this analysis but also
need to work together as a community to optimize the design of
the global observing system.

Ocean gliders, and other autonomous marine vehicles, are
evolving and improving at a remarkable pace. Their endurance,
related to battery capacity and sensor performance, continues
to improve, as does their range of operations in both the
coastal and open sea environments. It is now possible to
sample the deep ocean with gliders, with developments that
will enable us to routinely reach depths of 6,000m, while
missions of many months or longer are now routine. There
is also a growing range of private companies building these
systems providing a wider range of options. This diversity
shows the wide interest in these platforms and builds our
confidence in their further development and availability, which
is a key aspect of sustainability. Performance in extreme
conditions, such as winter conditions, and navigation under
sea-ice, is improving, and there are very few places on the
planet where they cannot operate. Autonomy continues to
develop, while full operational independence is still quite a
few years away. As with many new platforms, in the first
few years enormous effort is required to setup and deploy
them. After two decades of operation, the learning curve for
new users is not as steep as it was because of technological
improvements and because the global community supports
new users. Internationally, the OceanGliders program will help
the glider community focus on the GOOS requirements. It
builds on several long-term glider observational programs
that exist in Europe, Australia, Canada, the United States,
Mexico, Peru, Chile, South Africa, New Zealand, etc. Further
development and coordination among these initiatives, and
new ones that form, will provide support for coordinated
global operations.

Global observing systems have shifted from a primarily
physical focus to expanded measurements, spanning biological
and biogeochemical variables. Essential Ocean Variables
(EOV) within the GOOS now span a wide range, including
biogeochemistry, biology and ecosystems. There has been
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a lot of progress in developing such sensors for gliders, for
example, fluorometers for measuring phytoplankton have been
in development for a long-time. So too have active/passive
multi-frequency acoustic sensors been deployed on gliders to
measure oceanic currents, surface wind intensity, zooplankton,
and to detect acoustic small/large fish tags, marine mammals,
sharks etc. Other sensors include imagery, as well as nitrate,
oxygen and pH, carbon dioxide sensors, and various optical
sensors to detect light, backscatter, attenuation, particles,
harmful algal blooms and ocean acidification. However, the
battery capacity of the gliders still limits the total range of
sensors that can be deployed on a single vehicle. It is clear that
further battery and sensor developments will enable a wider
range of possibilities and demonstrate that the platform has
potential for making an even wider range of observations than at
the moment.

Data from ocean gliders are presently being used in
operational ocean models and operational weather forecast
models. The data are typically streamed in real-time through
the GTS and are then available to all operational users. They
have been used in research or pre-operational systems and
improved weather forecast modeling and operational global and
regional ocean forecasts such as Mercator Ocean, FOAM (Met
Office), MFS (Mediterranean Forecasting System), BLUELink
(Bureau of Meteorology, Australia), CONCEPTS (Fisheries
and Oceans, Environment and Climate Change Canada and
Department of National Defence, Canada), HYCOM/NCODA
(USA), NAVOCEANO (USNaval Oceanographic Office), REMO
(Brazil), TOPAZ/NERSC (Norway). Observation impact studies
show the value of sub-surface hydrographic observations, such
as those from gliders, in improving prediction. Moreover,
data products can be created, such as data aggregations and
mean fields, that are easily usable for model validation and
assessment. In this paper we have presented plans to deploy
gliders in the waters near hurricanes, in ocean boundary currents
and in key areas of water transformation. Data from such
deployments could provide critical information to improve the
performance of ocean forecast models as ocean dynamics in
such regions remains a modeling challenge for the next decade.
Improved prediction at sub-seasonal to seasonal (S2S) scales
requires use of ensembles (or super-ensembles) including those
from ocean models. These ensembles can also provide a good
representation of quantified uncertainty in time and space which
could be targeted by future flexible positioning of underwater
gliders in real-time or near real-time. Having a large network
of gliders, potentially with different sensor packages and/or
different measurement goals, will lead to piloting challenges
on a day-to-day basis for individuals. Eventually the sampling
patterns might be autonomously determined through use of
data-assimilating models, remote sensing products, and other in
situmeasurements.

The increasing operational interest in gliders and glider teams’
capability suggests that the applications mentioned in section
End-user benefits could all become operationally routine within
a decade. Looking further ahead there is much capacity for the
use of gliders to expand, particularly in relation to ocean health
and human pressures.

We envision that:

• Increase in sensor capability of gliders will increase their use
for early warning of environmental stress or pollution (Verfuss
et al., 2019), for example to manage compliance areas of
ecosystem sensitivity.

• The weather/modeling community may invest in gliders in
key ocean areas to support improved prediction, perhaps with
artificial intelligence, smart models autopiloting the gliders in
real-time in the regions of greatest uncertainty.

• Deep gliders will deliver the same insight on deep variability of
currents, water mass, heat, salt, biogeochemical and biological
variables, fundamentally changing our ability to model deep
flow and thus climate scale predictions and seasonal forecasts.
They will also be our cost-effective eyes and ears on the deep,
policing infringement of deep mining and reporting on deep
ecosystem health.

• Increasing battery life, introducing novel energy sources, and
improving solutions to bio-fouling, will lower costs and extend
glider operation time. This will allow for the monitoring of
open ocean areas at low cost (there will still be a need to deploy
them from small boats).

• International consortia will share sites for
recovery/deployment, facilities for refurbishment, and
even pilots to optimize operations worldwide and reduce the
costs of operation and the loss probability.

• The cost of the gliders will decline as their numbers increase
and the number of users worldwide increase.

• The glider’s payload space will increase enabling them
to carry a wider range of sensors and/or a different
battery configuration.

In considering the application of gliders to problems such
as boundary currents, water transformations or storms, a
careful analysis of the measurement challenge should include
consideration of other approaches to ocean observation. Gliders
have strengths and limitations, as do all platforms and sensors,
and both should be taken into account when designing an
observing solution to address critical gaps in our global ocean
observing strategy. Formal design exercises must be carried
out with the other components of the GOOS considering its
3 themes: Climate, Operational Services and Ocean Health.
Such design studies must consider all the societal benefits
and needs of GOOS applications, including human impact,
ecosystem, biodiversity and pollution assessments as well as
sustainable management and marine hazard response (cf. GOOS
strategic mapping13).

Numerical simulation experiments, using sophisticated
coupled ocean-atmosphere models to determine the best
mix of platforms and the tradeoffs in ocean sampling that
result from deploying different systems should be carried out.
However, this must be done while keeping a critical eye on the
model’s performances and this must not be the only basis when
producing a design. While gliders may fill a critical role for a
particular system, for example a particular boundary current, it

13http://www.goosocean.org/index.php?option=com_content&view=article&id=

120&Itemid=277
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may still be the case that a mix of moorings, drifters and other
platforms would provide the best observational solution because
of logistical constraints. It could be that biological requirements
balance the needs of operational services, in a particular region
in terms of resources optimization or the contrary, and so on.

The OceanGliders program can contribute to societal
development and sustainability, and there are many examples of
this potential already being achieved. These can be exemplified
by activities that contribute toward achieving the United Nations
Sustainable Development Goals (SDGs)14, of which SDG2 (Zero
Hunger), SDG13 (Climate Action) and SDG14 (Life Below
Water) are arguably most germane. Examples of glider networks
making such contributions include deployments in climatically
sensitive regions that are also important breeding and nursery
grounds for foodwebs, and the focus of a significant fishing
industry. Sustained glider missions in these areas conducted
as part of whole-ecosystem research programs provide the
underpinning scientific knowledge for ecosystems-based fishery
management. Glider networks provide enhanced data collection
and improved transfer of knowledge to policymakers, so as to
support such societally-relevant sustainability activities.

It is important to consider the targeted phenomena, their
space/time scales and EOV since they will impose requirements
in terms of sampling. The different OceanGliders TT will
define what “operational” means for them. The Boundary
Currents TT requirements of sampling the seasonal cycle implies
that “operational” means having gliders in water year-round,
while Storms requirements imply having gliders in the water
only during the storm periods, and Water Transformation
requirements could be year-round or focus only on the
winter/summer period depending on the water transformation
phenomenon that is considered. Other requirements will emerge
as the program develops with TT on biogeochemistry or polar
regions for instance.

The world ocean will change. We need to assess those
changes appropriately and must not underestimate what could
be done with gliders. Without doubt, there will be more end-user
engagements, new technologies on board, more connectivity,
more sensors, more gliders and more users to address that.
The flexibility of gliders allows complementarity, and this is
an asset for their integration in the GOOS. The challenge for
the next decade will be to build a GOOS glider component
that will help the GOOS reach the right balance between its
different components to deliver products for societal benefits
and applications, through the monitoring of the required oceanic
phenomena and EOV.

VISION

Our vision is for a mature sustained global glider observing
network by 2030. It will not only support regional, sustained
operational deployment of gliders serving the present societal
needs around operational services, ocean health and climate,
but also solely allow new ocean observing applications in this
framework. The outstanding capacity of gliders to play a role

14https://sustainabledevelopment.un.org/?menu=1300

as an agent of integration, across scales, from the coast to the
open ocean, and from physics to biology, needs to be used to
enhance the GOOS, integrating with its other components (in
situ and satellites). These global glider operations will likely have
different schedules of operation, carry different sensors, and serve
different needs but will have a shared support system through
the OceanGliders program that will allow them to work together
efficiently, to govern and support the system, coordinating global
glider operations and ensuring that the needs of society for ocean
data are best met.

OceanGliders will support global standards and best practices
to ensure that the operations and the data delivered can be
monitored at the global scale. Improved data interfaces and
standardized data will ensure quality-controlled data are easily
found and effectively used. By 2030 one should be able to
effortlessly, perhaps unknowingly, find and acquire quality-
controlled physical, biogeochemical and biological data from
gliders alongside an already huge range of earth observations and
use them to address scientific, commercial, or policy initiatives.
Attaining our vision would ensure that the value of observations
to society will never be lost, indeed, will increase over time as they
are used and reused and in new ways not originally imagined.

Here, we have identified three key areas for the OceanGliders
program to focus on: Boundary Currents, Storms and Water
Transformation. These represent interests heard from the glider
and user community, but we expect more to develop, as the
OceanGliders program matures. Moving forward, OceanGliders
will have, together with a wide range or stakeholders and
participants, to conduct a value-chain assessment to explore
further needs of users to ensure that the network continues to
be fit-for-purpose, as discussed in the Framework on Ocean
Observing. Through this paper, we have sought to demonstrate,
through exploration of some key thematic examples, the
opportunities and potential benefits of coordinated deployment
of ocean gliders to fill some key gaps in the existing ocean
observation system. The precise form of such activity requires
a comprehensive and integrated analysis of the needs for
observation, that is the most broadly defined societal needs,
and an assessment of the different approaches to observation,
just one of which is ocean gliders. Such an assessment will
have to address needs related to the three key thematic
areas of the GOOS: Ocean health, Operational services
and Climate.

In his seminal paper, Stommel (1989), foresaw an operational
fleet of 300–550 gliders at any time evolving in the world ocean to
support the GOOS by 2025. Only a substantial increase in global
resources would yield such an outcome by 2030. We propose
a more modest implementation of the OceanGliders global
program for the next decade. Sustained observations of boundary
currents are perhaps the most established capability of gliders
relevant to the GOOS. A sensible goal is to have continuously
100 gliders in a sustained Boundary Ocean Observing Network
within the next 10 years, with some additional gliders addressing
Storms and Water Transformation issues where and when this
fleet would not already do so. We are confident that operation of
such a fleet of 100 gliders is achievable. Further development will
rely on capacity building and would be driven by a combination
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of need and demonstrated benefit of the glider program.We have
presented results from 25 boundary current sections sustained
for a minimum of 1 year, and for as long as 12 years. While
not all these 25 sections are currently sustained, the proof that
they are operable has been made. An increase in this sampling
by a factor of 4 is a relatively reasonable worldwide goal. The
operational cost to keep one glider in the water for 1 year is
approximately $200K, thus 100 gliders would cost $20M per
year, a relatively affordable cost for a global component of
the GOOS.
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