
HAL Id: hal-02400525
https://hal.science/hal-02400525

Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linking different kinds of Omics data through a
model-based clustering approach

V Vandewalle, Camille Ternynck, Guillemette Marot

To cite this version:
V Vandewalle, Camille Ternynck, Guillemette Marot. Linking different kinds of Omics data through
a model-based clustering approach. IFCS 2019, Aug 2019, Thessalonique, Greece. �hal-02400525�

https://hal.science/hal-02400525
https://hal.archives-ouvertes.fr


Introduction Presentation of the model Application on a real dataset

Linking different kinds of Omics data through
a model-based clustering approach

V. Vandewalle1,2, Camille Ternynck1, Guillemette Marot1,2

1 Université de Lille, EA 2694
2 Inria Lille, Modal team

IFCS Meeting
Thessaloniki

August 28th, 2019

1/23



Introduction Presentation of the model Application on a real dataset

Heterogeneous Omics data application

Central dogma of molecular biology
DNA→ RNA→ Proteins

Gene expression measurements

• microarray measurements: continuous variables
• RNAseq measurements: count variables

For gene g
Patient 1 Patient 2 · · · Patient n

Gene g microarray 1 xg11 xg12 · · · xg1n
...
microarray ng xgng 1 xgng 2 · · · xgng n

RNAseq 1 yg11 yg12 · · · yg1n
...
RNAseq mg ygmg 1 xgmg 2 · · · xgmg n
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Introduction Presentation of the model Application on a real dataset

Usual related questions

• High dimensional framework with many genes
• Low number of subjects
• Differential expression analysis: find gene with expression

related to some disease
• Normalization of the data: remove some undesirable bias
• Often RNA transformations performed (log-transformation,

normalized log-transformation, variance stabilizing
transformation, . . . ) to treat this count variable as a
continuous one
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Introduction Presentation of the model Application on a real dataset

Considered framework

Initial questions

• Data normalisation framework: make RNAseq and microarray on the
same "scale".

• How can we detect that some RNAseq and microarray measurements
belong to the same genes (group of genes)?

Clustering of genes

1. Use the genes memberships information of the measurements,

2. Not use the genes membership information (in many settings gene
information not available)⇒ how to cluster variables from the same
gene?

Similarity criterion
Cluster together genes which have the same distribution with respect to both
microarray and RNAseq measurements.
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Introduction Presentation of the model Application on a real dataset

Considered framework
Initial questions

• Data normalisation framework: make RNAseq and microarray on the
same "scale".

• How can we detect that some RNAseq and microarray measurements
belong to the same genes (group of genes)?

Clustering of genes

1. Use the genes memberships information of the measurements,

2. Not use the genes membership information (in many settings gene
information not available)⇒ how to cluster variables from the same
gene? Semi-supervised setting, partial gene membership
information!

Similarity criterion
Cluster together genes which have the same distribution with respect to both
microarray and RNAseq measurements.
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Introduction Presentation of the model Application on a real dataset

Illustration

• Information on the
distribution

⇒ forget the individual
level

' symbolic data in
some sense
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Introduction Presentation of the model Application on a real dataset

Data
• n patients, described by G genes

• for each patient i , each gene g is described by:

• ng continuous microarray measurements xg1i , . . . , xgng i
• mg count RNAseq measurements yg1i , . . . , ygmg i

• assume that the genes come from K different clusters

• zg ∈ {0, 1}K denoting the cluster for gene g in binary coding.

Model
• For each gene g, zg is a realization of the random variable

Zg ∼M(1;π1, . . . , πK )

• Z1, . . . , ZG are assumed independent and identically distributed

• xgji the microarray measurement for the measure number j
(j ∈ {1, . . . , ng}) of the patient number i for the gene g is a realization of
the random variable Xgji .

• yg`i the RNAseq measurment for the measure number `
(` ∈ {1, . . . ,mg}) of the patient number i for the gene g is a realization
of the random variable Ygji .
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Introduction Presentation of the model Application on a real dataset

Detail of the model assumptions
Parametric model
• measures on each patient are assumed independent

• given the gene cluster each measure are independent

• Xgji |Zg = k ∼ N (µk ;σk )

• Yg`i |Zg = k ∼ P(λk )

Remarks
1. λk should be an increasing function of µk , but this contraint is not

imposed to simplify the estimation process (no need of a link function
between λk and µk )

2. gene membership of each probe assumed to be known: often the case
for human expression data, however not for bacterial data ...

3. model able to cope with partial gene information, however for
identifiability reasons it is needed that each cluster contains at least one
gene for which we have observed both RNAseq and microarray
measurements.
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Introduction Presentation of the model Application on a real dataset

Parameters estimation (1/2)
Parameters estimated by maximum likelihood through the EM algorithm

E-step
t (r)gk = P(Zgk = 1|xg , yg ; θ(r))

with

P(Zgk = 1|xg , yg) ∝ πk
∏n

i

[(∏ng
j=1 f (xgji ;αk )

)
×
(∏mg

`=1 h(yg`i ;βk )
)]

where f is the pdf for microarray data and h the pdf for RNAseq data.

M-step
π
(r+1)
k =

∑G
g=1 t(r)gk

G

α
(r+1)
k = arg maxαk

∑G
g=1 t (r)gk

∑n
i=1

∑ng
j=1 ln f (xgji ;αk )

β
(r+1)
k = arg maxβk

∑G
g=1 t (r)gk

∑n
i=1

∑mg
`=1 ln h(yg`i ;βk ),

Remarks
• the model collapses all the data of a same gene g

• clustering of genes ' clustering of distributions
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Introduction Presentation of the model Application on a real dataset

Parameters estimation (2/2)
Computations considerably speed up by the use of sufficient statistics:

µ
(r+1)
k =

1

n(r+1)
k

G∑
g=1

t (r)gk
1

n × ng

n∑
i=1

ng∑
j=1

xgji =
1

n(r+1)
k

G∑
g=1

t (r)gk x̄g

σ2
k
(r+1)

=
1

n(r+1)
k

G∑
g=1

t (r)gk
1

n × ng

n∑
i=1

ng∑
j=1

(xgji − µ(r+1)
k )2

=
1

n(r+1)
k

G∑
g=1

t (r)gk σ
2
xg +

1

n(r+1)
k

G∑
g=1

t (r)gk (µ
(r+1)
k − x̄g)2

λ
(r+1)
k =

1

n(r+1)
k

G∑
g=1

t (r)gk
1

n ×mg

n∑
i=1

mg∑
`=1

yg`i =
1

n(r+1)
k

G∑
g=1

t (r)gk ȳg

gene g can be summarized by:

• M-step: (x̄g , σ
2
xg , ȳg).

• E-step: ng and mg additionally needed.

• log-likelihood:
∑mg
`=1

∑n
i=1 log(yg`i !) additionally needed.
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Introduction Presentation of the model Application on a real dataset

Presentation of the data

The Cancer Genome Atlas (TCGA) dataset

• Data about the Acute Myeloid Leukemia 1

• 169 patients
• Keep genes with:

• Only one RNAseq measure
• Non null RNAseq values for at least 9 patients
• At least one microArray measure
• Keep probes related to only one gene

• At the end: 16,741 genes with an RNAseq measure and
one or more microarray measures

1https://portal.gdc.cancer.gov/projects/TCGA-LAML
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Introduction Presentation of the model Application on a real dataset

Link RNAseq / microarray
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Introduction Presentation of the model Application on a real dataset

Link between standard deviation and average for
RNAseq data
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Introduction Presentation of the model Application on a real dataset

Results of a clustering in 10 clusters (1/2)

Remarks

• It is essentially the
RNAseq which
determines the
cluster membership!

• How to explain this
particularly big
influence?
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Introduction Presentation of the model Application on a real dataset

Results of a clustering in 10 clusters (1/2)
Model parameters:

cluster prop mean_array var_array mean_seq
1 0.26 3.46 1.14 19.53
2 0.15 5.27 2.64 736.30
3 0.15 5.92 2.98 1577.26
4 0.15 4.13 1.74 220.13
5 0.12 6.32 3.57 2938.47
6 0.09 6.60 3.88 5207.63
7 0.05 7.15 4.96 9332.41
8 0.02 7.80 6.45 18148.48
9 0.01 8.79 8.98 41936.76

10 0.00 9.61 12.76 179799.30

• Small clusters have an higher mean

• The mean array value is monotetic according to the mean seq
value

• Huge differences according to the cluster for mean seq value
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Introduction Presentation of the model Application on a real dataset

Explanation of the influence of RNAseq

• Count for RNAseq overdispersed
⇒ Poisson not accurate, the mixture model prioritizes to

improve this bad fit,
⇒ better fit using negative binomial distribution.
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Introduction Presentation of the model Application on a real dataset

Negative binomial distribution fit

p(y |r , p) =
Γ(r + y)pr (1− p)y

Γ(r)Γ(y + 1)

r : size, p: probability, µ = r(1− p)/p: expectation

Maximum likelihood estimation
Expression of p according to r and the data

p =
Nr

Nr +
∑N

i=1 yi

Partial derivate according to r

d`(r |y1, . . . , yN)

dr
= N ln

(
Nr

Nr +
∑N

i=1 yi

)
− NΨ(r) +

N∑
i=1

Ψ(r + yi ) = 0,

Ψ: digamma function, i.e. derivate of the Gamma function.

• Non-closed form, found by numerical optimisation

• Algorithm implemented in fitdistrplus

• No sufficient statistic available due to the digamma function
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Introduction Presentation of the model Application on a real dataset

New preliminary analysis based on a negative
binomial fit on each gene

Outlier removed (log-value) :
gene mean_array var_array size_seq mu_seq

TBC1D21 1.26 -2.26 12.55 -2.24
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Introduction Presentation of the model Application on a real dataset

Results with the model based clustering approach

Clustering in 10 clusters

• Now it seems that
microarray data
dominates the
clustering process

• It should be mainly due
to bad fit of Gaussian
distribution
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Introduction Presentation of the model Application on a real dataset

Explication of the influence of microarray data

• Unimodal
distribution not
accurate for a lot
of variables.

• Consider mixture
of Gaussian

⇒ Increase the cost
of the algorithm,
work in progress
. . .
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Introduction Presentation of the model Application on a real dataset

Clustering of genes based on summary of each gene
• Rationale: as the number of patients n increases, the summary of

each gene becomes consistent.
• Use clustering of genes based on summaries provided by Gaussian

and negative binomial fit for each gene.
• Model based clustering with mixture of gaussian of these summaries
• Easier to balance the influence of each kind of data.

BIC indicates approximately 14 clus-
ters
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Introduction Presentation of the model Application on a real dataset

Analysis of the results of the Gaussian mixture

• More accurate
results, however
cluster poorly
separated

• ICL selects 3
clusters
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Introduction Presentation of the model Application on a real dataset

Resulting empirical distribution in each cluster on the
initial data

• Can be used to
cluster new data
based only on
RNAseq

• Then deduce the
distribution of
microarray data
given the
observed
RNAseq data
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Introduction Presentation of the model Application on a real dataset

Conclusion and perspective

Conclustion

• Approach very sensitive to model assumptions
• Difficulty to balance the influence of each kind of variables
• Empirical solution through clustering of summaries

Perspectives

• Work in progress to stabilize the approach
• Take into account dependency of the measurements for a

patient
• Simultaneous clustering of patients and genes
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