Mapping clusters as spherical Gaussians

Numerical illustrations for functional data Discussion

Model-based clustering: pitch 1 Data set: x = (x 1 , . . . , xn), each x i ∈ X with d X variables (possibly mixing continuous, categorical, functional. . . )

Unknown partition in K clusters : z = (z 1 , . . . , zn) with binary notation z i = (z i1 , . . . , z iK )

Statistical model: couples (x i , z i ) independently arise from the parametrized pdf

f (x i , z i ) ∈F = K k=1 [π k f k (x i )] z ik ⇒ f (x i ) = K k=1 π k f k (x i )
Estimating f : implement the MLE principle through an EM-like algorithm

Estimating K : use some information criteria as BIC, ICL,. . . Estimating z: use the MAP principle ẑik = 1 iif k = arg max t i ( f ) where

t ik (f ) = p(z ik = 1|x i ; f ) = π k f k (x i ) K =1 π f (x i ) f (x i )
.

1 See for instance [McLachlan & Peel 2004] 

Visualization procedures

Aim at proposing user-friendly understanding of the mathematical clustering results

Mapping clusters as spherical Gaussians Numerical illustrations for functional data Discussion

Overview of clustering visualization: individual and pdf mappings Indivdual mapping: visualize x and its estimated partition ẑ

Transforms x, defined on X , into y = (y 1 , . . . , yn), defined on a new space Y

M ind ∈ M ind : x ∈ X n → y = M ind (x) ∈ Y n
Many methods, depending on X definition: PCA, MCA, MFA, FPCA, MDS. . . Nearly always, Y = R 2 Model f (x, z) is not taken into account, approach focused on x Pdf mapping: display information relative to the f distribution

Transforms f = k π k f k ∈ F , into a new mixture g = k π k g k ∈ G M pdf ∈ M pdf : f ∈ F → g = M pdf (f ) ∈ G
G is a pdf family defined on the space Y M pdf is often obtained as a by product of M ind (variable change formula)

G is not a usual mixture family (Gaussian, ...) when M ind is a nonlinear mapping For large n, M ind finally displays M pdf Often, both y and g are overlaid 

G M pdf (G) uncontrolled =    M pdf : g = M pdf (f ), f ∈ F , g ∈ G controlled    It is
•; µ) 2 δKL(f , g (•; µ)) = T p f (t) ln p f (t) p g (t; µ) dt where p f : pdf of proba. of classification t(f ) = (t i (f )) n i=1 , with t i (f ) = (t ik (f )) K -1 k=1 p g (•; µ): pdf of proba. of classif. t(g ) = (t i (g )) n i=1 , with t i (g ) = (t ik (g )) K -1 k=1 T = {t : t = (t 1 , . . . , t K -1 ), t k > 0, k t k = 1}
Thus, g should produce a distribution of the class membership posterior probabilities similar the one resulting of f .

2 p f is the reference measure 

(f ) = (t ik (f )) K -1 k=1 p g (•; µ): pdf of proba. of classif. t(g ) = (t i (g )) n i=1 , with t i (g ) = (t ik (g )) K -1 k=1 T = {t : t = (t 1 , . . . , t K -1 ), t k > 0, k t k = 1}
Thus, g should produce a distribution of the class membership posterior probabilities similar the one resulting of f .

A natural requirement: p g (•; µ) and g should be linked by a one-to-one mapping

Currently not true since rotations and/or translations are possible

It means: for one distribution f , there is a unique optimal distribution g (•; µ)

Additional constraints on g (•; µ): g is defined on R K -1 but it is more convenient to be on R 2

d Y = K -1, µ K = 0, µ kh = 0 (h > k), µ kk ≥ 0 2 p f is
Just apply LDA on g to display this distribution on its most discriminative map It leads to the bivariate spherical Gaussian mixture g

g (ỹ ; μ) = K k=1 π k φ 2 (ỹ ; μk , I ),
where ỹ ∈ R 2 , μ = ( μ1 , . . . , μK ) and μk ∈ R 2

Use the % of inertia of LDA to measure the quality of the mapping from g to g

Remark

If X = R d and f is a Gaussian mixture with isotropic covariance matrices, then the proposed mapping is equivalent to applying a LDA to the centers of f

Overall accuracy of the mapping between f and g

Use the following difference between the normalized entropies of f and g

δE(f , g ) = - 1 ln K K k=1 X t k (x; f ) ln t k (x; f )dx - R 2 t k (ỹ ; g ) ln t k (ỹ ; g )d ỹ
Such a quantity can be easily estimated by empirical values Its meaning is particularly relevant:

δ E (f , g ) ≈ 0: the component overlap conveyed by g (over f ) is accurate δ E (f , g ) ≈ 1: g strongly underestimates the component overlap of f δ E (f , g ) ≈ -1: g strongly overestimates the component overlap of f δE(f , g ) permits to evaluate the bias of the visualization 

  g = M pdf (f ), f ∈ F , M pdf ∈ M pdf controlled Nature of G can dramatically depend on the choice of M pdf It can potentially lead to very different cluster shapes! Arguments for traditional M pdf : user-friendly, easy-to-compute Examples: linear mappings in all PCA-like methods 2 Similar thinking with M ind 7/22 Clustering: from modeling to visualizing Mapping clusters as spherical Gaussians Numerical illustrations for functional data Discussion Traditional visualization strategies and proposal Traditional strategies: Controlling the mapping family M pdf 2 G(M pdf ) uncontrolled = g : g = M pdf (f ), f ∈ F , M pdf ∈ M pdf controlled Nature of G can dramatically depend on the choice of M pdf It can potentially lead to very different cluster shapes! Arguments for traditional M pdf : user-friendly, easy-to-compute Examples: linear mappings in all PCA-like methods Proposed strategy: Controlling the pdf family

  the reversed situation where G is controlled instead of M pdf Offer opportunity to impose directly G to be a user-friendly mixture family Strategy M and Strategy G are both valid but Strategy G is rarely explored! 2 Similar thinking with M ind 7modeling to visualizing Mapping clusters as spherical Gaussians Numerical illustrations for functional data Discussion Spherical Gaussians as candidates Users are usually familiar with multivariate spherical Gaussians on Y = R d Y Thus a simple and "user-friendly" candidate g is a mixture of spherical Gaussians g (y ; µ) = K k=1 π k from f φ d Y (y ; µ k ? , I ) where µ = (µ 1 , . . . , µ K ) and φ d Y (.; µ k , I ) the pdf of the Gaussian distribution with expectation µ k = (µ k1 , . . . , µ kd Y ) ∈ R d Y with covariance matrix equal to identity I g (•; µ) should be then linked with f in order to define a sensible G G = {g : g (•; µ), µ ∈ arg min δ(f , g (•; µ)), f ∈ F} 9/22 Clustering: from modeling to visualizing Mapping clusters as spherical Gaussians Numerical illustrations for functional data Discussion g as the "clustering twin" of f Question: how to choose δ since generally X = Y? Answer: in our clustering context, δ should measure the clustering ability difference Kullback-Leibler divergence of clustering ability between both f and g (

  visualizing the results of a model-based clustering Very easy to understand output since "Gaussian-like" Permits visualization for any type of data, because only based on proba. of classif. Can be used after any existing package of model-based clustering The overall accuracy of the visualization is also provided Extensions Possibility to explore other pdf visualizations than Gaussians However, should keep in mind simple visualizations are targeted Possibility to compare pdf candidates through δKL or δE 20/22 Clustering: from modeling to visualizing Mapping clusters as spherical Gaussians Numerical illustrations for functional data DiscussionAbout individual visualizationTheoretically, impossible to obtain individual visualization from pdf visualization However, we can propose a pseudo scatter plot of x as followsx i -→ t i (f ) = t i (g ) bijection -→ y i ∈ R K -1 LDA -→ ỹi ∈ R 2ỹ allows only to visualize the classification position of x Caution: do not overlay pdf and individual plots since ỹ = (ỹ 1 , . . . , ỹn) is not necessarily drawn from a Gaussian mixture

Mapping of f on this graph is accurate because δE(f , g ) = -0.03