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Take home message

Data/density visualization

Traditionally: chose the form of the mapping from X to Y for user convenience
Proposal: chose the form of the density of the data on Y for cluster interpretation
convenience
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Model-based clustering: pitch1

Data set: x = (x1, . . . , xn), each xi ∈ X with dX variables (possibly mixing
continuous, categorical, functional. . . )

Unknown partition in K clusters : z = (z1, . . . , zn) with binary notation
zi = (zi1, . . . , ziK )

Statistical model: couples (xi , zi ) independently arise from the parametrized pdf

f (xi , zi )︸ ︷︷ ︸
∈F

=
K∏

k=1

[πk fk (xi )]zik ⇒ f (xi ) =
K∑

k=1

πk fk (xi )

Estimating f : implement the MLE principle through an EM-like algorithm

Estimating K : use some information criteria as BIC, ICL,. . .

Estimating z: use the MAP principle ẑik = 1 iif k = arg max` ti`(f̂ ) where

tik (f ) = p(zik = 1|xi ; f ) =
πk fk (xi )
K∑

`=1

π`f`(xi )︸ ︷︷ ︸
f (xi )

.

1See for instance [McLachlan & Peel 2004], [Biernacki 2017]
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Model-based clustering: poor user-friendly understanding

n or K large: poor overview of partition ẑ

dX large: too many parameters to embrace as a whole in f̂k

Complex X : specific and non trivial parameters involved in f̂k

Visualization procedures

Aim at proposing user-friendly understanding of the mathematical clustering results
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Overview of clustering visualization: individual and pdf mappings

Indivdual mapping: visualize x and its estimated partition ẑ

Transforms x, defined on X , into y = (y1, . . . , yn), defined on a new space Y

M ind ∈Mind : x ∈ X n 7→ y = M ind(x) ∈ Yn

Many methods, depending on X definition: PCA, MCA, MFA, FPCA, MDS. . .

Some of them use ẑ in M ind: LDA, mixture entropy preservation [Scrucca 2010]

Nearly always, Y = R2

Model f̂ (x , z) is not taken into account, approach focused on x

Pdf mapping: display information relative to the f distribution

Transforms f =
∑

k πk fk ∈ F , into a new mixture g =
∑

k πkgk ∈ G

Mpdf ∈Mpdf : f ∈ F 7→ g = Mpdf(f ) ∈ G

G is a pdf family defined on the space Y
Mpdf is often obtained as a by product of M ind (variable change formula)

G is not a usual mixture family (Gaussian, ...) when M ind is a nonlinear mapping

For large n, M ind finally displays Mpdf

Often, both y and g are overlaid
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Traditional visualization strategies and proposal

Traditional strategies: Controlling the mapping family Mpdf 2

G(Mpdf)︸ ︷︷ ︸
uncontrolled

=

{
g : g = Mpdf(f ), f ∈ F ,Mpdf ∈ Mpdf︸ ︷︷ ︸

controlled

}

Nature of G can dramatically depend on the choice of Mpdf

It can potentially lead to very different cluster shapes!

Arguments for traditional Mpdf: user-friendly, easy-to-compute

Examples: linear mappings in all PCA-like methods

Proposed strategy: Controlling the pdf family G

Mpdf(G)︸ ︷︷ ︸
uncontrolled

=

Mpdf : g = Mpdf(f ), f ∈ F , g ∈ G︸︷︷︸
controlled


It is the reversed situation where G is controlled instead of Mpdf

Offer opportunity to impose directly G to be a user-friendly mixture family

Strategy M and Strategy G are both valid but Strategy G is rarely explored!

2Similar thinking withMind
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Spherical Gaussians as candidates

Users are usually familiar with multivariate spherical Gaussians on Y = RdY

Thus a simple and “user-friendly” candidate g is a mixture of spherical Gaussians

g(y ;µ) =
K∑

k=1

πk︸︷︷︸
from f

φdY (y ; µk︸︷︷︸
?

, I )

where µ = (µ1, . . . ,µK ) and φdY (.;µk , I ) the pdf of the Gaussian distribution

with expectation µk = (µk1, . . . , µkdY
) ∈ RdY

with covariance matrix equal to identity I

g(·;µ) should be then linked with f in order to define a sensible G

G = {g : g(·;µ),µ ∈ arg min δ(f , g(·;µ)), f ∈ F}
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g as the “clustering twin” of f

Question: how to choose δ since generally X 6= Y?
Answer: in our clustering context, δ should measure the clustering ability difference

Kullback-Leibler divergence of clustering ability between both f and g(·;µ)2

δKL(f , g(·;µ)) =

∫
T

pf (t) ln
pf (t)

pg (t;µ)
dt

where

pf : pdf of proba. of classification t(f ) = (ti (f ))ni=1, with ti (f ) = (tik (f ))K−1
k=1

pg (·;µ): pdf of proba. of classif. t(g) = (ti (g))ni=1, with ti (g) = (tik (g))K−1
k=1

T = {t : t = (t1, . . . , tK−1), tk > 0,
∑

k tk = 1}
Thus, g should produce a distribution of the class membership posterior probabilities
similar the one resulting of f .

A natural requirement: pg (·;µ) and g should be linked by a one-to-one mapping

Currently not true since rotations and/or translations are possible

It means: for one distribution f , there is a unique optimal distribution g(·;µ)

Additional constraints on g(·;µ): dY = K −1, µK = 0, µkh = 0 (h > k), µkk ≥ 0

2pf is the reference measure
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Estimating the Gaussian centers

The Kullback-Leibler divergence δKL has generally no closed-form

Estimate it by the following consistent (in S) Monte-Carlo expression

δ̂KL(f , g(·;µ)) =
1

S

S∑
s=1

ln pg (t(s);µ)︸ ︷︷ ︸
L(µ;t)

+cst

with S independent draws of conditional proba. t = (t(1), . . . , t(S)) from pf

It is the normalized (observed-data) log-likelihood function of a mixture model

But, by construction, all the conditional probabilities are fixed in this mixture

Thus, just maximize the normalized complete-data log-likelihood Lcomp(µ; t):
K = 2: this maximization is straightforward
K > 2: use a standard Quasi-Newton algorithm with different random initializations,
for avoiding possible local optima
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From a multivariate to a bivariate Gaussian mixture

g is defined on RK−1 but it is more convenient to be on R2

Just apply LDA on g to display this distribution on its most discriminative map

It leads to the bivariate spherical Gaussian mixture g̃

g̃(ỹ ; µ̃) =
K∑

k=1

πkφ2(ỹ ; µ̃k , I ),

where ỹ ∈ R2, µ̃ = (µ̃1, . . . , µ̃K ) and µ̃k ∈ R2

Use the % of inertia of LDA to measure the quality of the mapping from g to g̃

Remark

If X = Rd and f is a Gaussian mixture with isotropic covariance matrices,
then the proposed mapping is equivalent to applying a LDA to the centers of f
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Overall accuracy of the mapping between f and g̃

Use the following difference between the normalized entropies of f and g̃

δE(f , g̃) = −
1

lnK

K∑
k=1

{∫
X

tk (x ; f ) ln tk (x ; f )dx −
∫
R2

tk (ỹ ; g̃) ln tk (ỹ ; g̃)d ỹ
}

Such a quantity can be easily estimated by empirical values

Its meaning is particularly relevant:
δE(f , g̃) ≈ 0: the component overlap conveyed by g̃ (over f ) is accurate
δE(f , g̃) ≈ 1: g̃ strongly underestimates the component overlap of f
δE(f , g̃) ≈ −1: g̃ strongly overestimates the component overlap of f

δE(f , g̃) permits to evaluate the bias of the visualization

13/22



Clustering: from modeling to visualizing Mapping clusters as spherical Gaussians Numerical illustrations for functional data Discussion

Drawing g̃

Cluster centers: the locations of µ̃1, . . . , µ̃K are materialized by vectors

Cluster spread: the 95% confidence level displayed by a black border

Cluster overlap: iso-probability curves of the MAP classification for different levels

Mapping accuracy: δE(f , g̃) and also % of inertia by axis
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Bike sharing system: data3 and model

Station occupancy data collected over the course of one month on the bike
sharing system in Paris

Data collected over 5 weeks, between February, 24 and March, 30, 2014, on 1 189
bike stations

Functional data: station status information (available bikes/docks) downloaded
every hour from the open-data APIs of JCDecaux company

The final data set contains 1 189 loading profiles, one per station, sampled at
1 448 time points

Model: profiles of the stations were projected on a basis of 25 Fourier functions

Model-based clustering of these functional data [Bouveyron et al. 2015] with the r
package FunFEM [Bouveyron 2015]

Retain 10 clusters

Visualization using ClusVis R package

3[Bouveyron et al. (2015)]
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Bike sharing system: cluster of curves visualization
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Mapping of f on this graph is accurate because δE(f , g̃) = −0.03
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Conclusion and extensions

Conclusion

Generic method for visualizing the results of a model-based clustering

Very easy to understand output since “Gaussian-like”

Permits visualization for any type of data, because only based on proba. of
classif.

Can be used after any existing package of model-based clustering

The overall accuracy of the visualization is also provided

Extensions

Possibility to explore other pdf visualizations than Gaussians

However, should keep in mind simple visualizations are targeted

Possibility to compare pdf candidates through δKL or δE
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About individual visualization

Theoretically, impossible to obtain individual visualization from pdf visualization

However, we can propose a pseudo scatter plot of x as follows

xi 7−→ ti (f ) = ti (g)
bijection7−→ yi ∈ RK−1 LDA7−→ ỹi ∈ R2

ỹ allows only to visualize the classification position of x

Caution: do not overlay pdf and individual plots since ỹ = (ỹ1, . . . , ỹn) is not
necessarily drawn from a Gaussian mixture
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Model-based clustering: flexibility of F for complex X

Continuous data (X = RdX ): multivariate Gaussian/t distrib. [McNicholas 2016]

Categorical data: product of multinomial distributions [Goodman 1974]

Mixing cont./cat.: product Gaussian/multinomial [Moustaki & Papageorgiou 2005]

Functional data: the discriminative functional mixture [Bouveyron et al. 2015]

Network data: the Erdös Rényi mixture [Zanghi et al. 2008]

Other kinds of data, missing data, high dimension,. . .
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